The Reliability of Diverse Systems: a Contribution using Modelling of the Fault Creation Process

Peter Popov (corresponding author), Lorenzo Strigini
Centre for Software Reliability, City University
Northampton Square, London, EC1V 0HB, UK
phone: +44 (0)20 7477 8963, fax: +44 (0)20 7477 8585
e-mail: (ptp,strigini)@csr.city.ac.uk

CSR technical report - submitted for publication

Abstract

Design diversity is a defence against design faults causing common-mode failure in redundant systems, but we badly lack knowledge about how much reliability it will buy in practice, and thus about its cost-effectiveness, the situations in which it is an appropriate solution and how it should be taken into account by assessors and safety regulators. Both current practice and the scientific debate about design diversity depend largely on intuition. More formal probabilistic reasoning would facilitate critical discussion and empirical validation of any predictions: to this aim, we propose a model of the generation of faults and failures in two separately-developed versions. We show results about: i) what degree of reliability improvement an assessor can reliably expect from diversity; and ii) how this reliability improvement may change with higher-quality development processes. We discuss the practical relevance of these results and the degree to which they can be trusted.
The Reliability of Diverse Systems: a Contribution using Modelling of the Fault Creation Process

Peter Popov, Lorenzo Strigini

1. Introduction

Design diversity is an intuitively attractive method for increasing the reliability of critical systems, including critical software, subject to design error. However, its use is controversial because we do not know how to quantitatively evaluate its advantages. So, a system designer does not know precisely how cost-effective diversity will be, compared to other methods for improving system dependability, and generally safety assessors and regulators do not know how effective it has been, in a system that they are called to evaluate.

Design diversity requires that each redundant computation channel run a separate version (or "variant") of the software, developed by a separate team, without communication between the teams, to avoid the propagation of any errors between the teams. Other precautions may be added ("forced" diversity) for minimising the chance of common-cause errors in the design process: for instance, different principles of operation for the two channels, different design methods, notations, and computer-aided design tools.

Experimental evaluation of the advantages from design diversity is severely limited. Real-world diverse systems usually suffer too few failures of their component versions to give any precise indication of the gain produced by diversity; controlled experiments are limited by cost to being inadequate replicas of an industrial development process.

Practical decisions about whether to use diversity, how to apply it in a project, and how to assess its effect on the dependability of the resulting system, are thus based on industry-specific traditions, on intuition and on speculation. So, design diversity remains controversial, although its use is practically mandatory in some industries. Opponents claim that its benefits are limited and similar benefits could be achieved, with fewer negative effects on cost and project complexity, by better engineering of a single software version. Supporters object that these claims are unproven and diversity is an obviously advantageous, feasible method. Such arguments cannot be resolved rationally without an agreement on how to estimate how much benefit diversity will bring in a given situation.

Discussion of design diversity has often relied on extending the little available experimental knowledge on the basis of assumptions and claims that the participants consider intuitively plausible. Most recently, to speculate about the reliability gain to be
achieved by multiple-version software, Hatton [1] offers a tentative argument based on: 1) the reliability advantage given by diversity in the Knight-Leveson experiment [2], and 2) the fact that, if versions failed independently, increasing the reliability of the versions would also increase the reliability gain given by diversity. Extrapolating from these facts he concludes that the balance of evidence points to diversity as better than alternative methods for achieving high reliability. Though useful as a "what if" projection to stimulate debate, this way of reasoning implicitly treats the specific measures chosen for mathematical convenience as physical invariants, without proposing any plausible, empirically verifiable (or, rather, falsifiable) causal model that would give them this status.

We set out to improve on these previous discussions by modelling the effect of diversity in terms of a more concrete model of the mechanisms that are believed to produce them. In this, we follow the approach of Eckhardt and Lee [3] and Littlewood and Miller [4] (both summarised in [5]. In the rest of the paper, we will refer to their models as the "EL" and "LM" models, for brevity), which produced convincing arguments against beliefs in failure independence between diverse versions, and intuition about the factors that make diversity more effective. However, the entities in our model are closer to observable entities in software development, and we try to predict measures of more practical interest than the mean probability of failure\(^1\) studied in these earlier papers.

We limit our discussion to a very simple scenario, which yet has important practical applications:

- we consider "non-forced" diversity, pursued by only enforcing strict separation between the developments of the two versions. This is the situation in some actual software projects, but in addition it can be seen as a worst-case analysis for the many real systems in which "forced" and "functional" diversity are used. These are expected to be superior to non-forced diversity, but the degree of superiority is unknown: hence the utility of studying a limiting case;

- we consider the simplest possible diverse-redundant configuration: two versions, with perfect adjudication (simple "OR" combination of binary outputs, giving a "1-out-of-2", diverse system). This configuration has important practical applications, e.g. in plant protection systems (Fig. 1).

\(^{1}\) The mean is taken over the population of all versions which could have been written, under the same known conditions, to the same specification, and over the set of demands (inputs) on which the versions can be executed using the probability distributions defined on the population of versions and the demand (input) space.
In Section 2, we describe the model we use. In Section 3, we study its implications, asking two questions:

- what amount of gain does the model predict from using diversity? This question is relevant for assessors (e.g. in regulatory agencies for safety-critical systems) who have to decide whether a specific diverse system is dependable enough for operation; and to project managers in the choice of development methods;

- should we then expect the advantages procured by diversity to increase or to decrease with increasing quality of the development process (interpreted as average reliability of the versions)? This question concerns the evolution of development processes, and in the short term it concerns the many software development organisations which need to evolve their processes to face increasingly stringent dependability requirements. Deciding this question may involve, in extreme cases, abandoning diversity as a consequence of adopting other dependability-enhancing strategies, or, vice-versa, adopting diversity rather than alternative improvement strategies. Many believe that the better the versions, the higher the gain from fault tolerance, on the basis of analogies with the case of independent failures [1] or of results in an experiment [2]. We have argued elsewhere [6, 7] that neither the experimental evidence nor modelling results are conclusive.
In Section 3, we study the implications of this model in general. We observe that useful qualitative conclusions can be drawn if we separate two extreme cases: that of very high-quality software with a high chance of having no faults (discussed in Section 4), and that of software in which very many, but low-probability faults are possible (discussed in Section 5). Our summary and discussion of results is in Section 6.

2. Our model

2.1. Failure points and failures

Consider the demand space, i.e., the set of all possible demands on the 2-channel system. A demand occurs when the controlled system enters a state that requires the intervention of the protection system. Demands differ in the details of the state of the controlled system, and thus possibly in the input sequences that they cause to the protection system. A design fault in a version consists in the fact that, for one or more possible demands, that version will not respond as required (it will fail). Any such demand is a failure point in the demand space for that version. Any set of demands on which a version will fail is called a failure region for that version. If a failure region of one version overlaps with a failure region of the second version, their intersection is a failure region for the system: demands from this region will cause the two-version system to fail.

2 Called the input space in previous literature. We use the term "demand space" because we have found "input space" to be often misunderstood: "inputs" commonly designates both the names and the values of the individual external variables sampled by the software. A "demand", as defined here, may be a sequence of multiple samples of many input variables. Our analysis refers to systems whose operation can be seen as a series of demands, possibly separated by idle periods.
Fig. 2. An example of failure regions in a two-dimensional demand space: each demand is a single reading of two input variables, \textit{var1} and \textit{var2}. Various authors have reported the shapes of failure regions in actual programs with multi-dimensional demand spaces [9, 10, 11]. Besides simple shapes like those shown above, they have found non-intuitive shapes, including non-connected regions like arrays of separate points or lines.

Each demand in the demand space has a certain (possibly unknown) probability of happening during the operation of the controlled system. If we add up the probabilities of all those demands that are failure points for both versions, we obtain the probability of failure on demand (PFD) of the two-version protection system.

This is essentially the basis of the models used in [3] and [4].

\textbf{2.2. Faults and their introduction}

We know from experience that a mistake in design will not usually affect a single point in the demand space, but a whole set. If the mistake is made, the whole set of points becomes a failure region; if not, the failure region will not be there.

So, our simple model considers that there is a fixed set of \textit{possible} faults, each one with its associated failure region, and each corresponding to one of the mistakes that \textit{may} be made. A mistake, here, is a mistake of the whole development process, so that a fault is left in the delivered product: it includes a whole sequence of human errors, first in the act of creating a defect, then in inspections, testing and debugging, allowing the defect to go
unnnoticed, or to be only partially fixed\(^3\). The accidental errors in the development process select some of these faults, at random. Some faults are more likely than others to be chosen; some failure regions are "larger" than others, in the sense that the probability that a demand will be in these regions is higher. Developing versions for a given application under a regime of separate development means choosing, randomly and independently, possible subsets of this set of possible faults\(^4\).

We thus have a collection of potential faults and associated failure regions, \(\{F_1, F_2, \ldots, F_n\}\). Each one, e.g., \(F_i\), has a certain probability \(p_i\) of being actually produced in a newly developed version (following \([3], [4]\) again, we can think of the process of producing a version as sampling from a distribution of possible versions). It is also characterised by its probability \(q_i\) of being 'hit' during operation, i.e., its contribution to the unreliability of the system.

We assume these failure regions to be non-overlapping. So, the PFD of a version is given by the sum of the \(q_i\) values of those faults that are actually present.

So far, this model is the same as the EL and LM models, except in being "coarser-grained": we consider whole failure regions rather than individual failure points. The conclusions of the EL and LM models about the average PFD of a two-version system (greater than the product of the versions' average PFDs) are easily re-derived here. However, the average reliability is not especially interesting in practical decision-making: we need some idea of the probability of achieving a given reliability, i.e., about probability distributions rather than averages. Such predictions cannot be obtained from the EL and LM models, because their parameters do not describe how likely it is that a version has a certain set of failure points or failure regions: they only describe each failure point in isolation. We need to add some further information to the model: we add the assumption that the mistakes are statistically independent of each other. It is as though the design team, faced with the possibility of inserting a fault, tossed dice to decide whether to insert it or not.

\(^3\) The concept of a "fault" corresponding to each failure region is unnecessary for this model, and the term "fault" itself is loaded with implicit, unrealistic assumptions (cf \([12]\)), but we use it here as a convenient simplification. Thus, "the i-th fault is present in version A" is a convenient short-hand for "in version A, the i-th potential failure region is actually a failure region".

\(^4\) It may be useful to recall here that assuming "independent choice" does not imply that the versions will fail independently, or that there are no common factors affecting the mistakes in the separate developments: failure correlation and fault similarities are possible, and modelled by the probabilities of the various sets of faults. This is indeed the essential insight of the EL and LM models.
All these additional assumptions - one-to-one mapping between faults and failure regions, non-overlapping failure regions, and independent introduction of faults - which, incidentally, are shared by most other models of software failure processes in the literature - are obviously false. However, 1) we believe that they do not make a big difference on the main useful results of the model, and will argue this thesis later; and 2) it is much easier to check and refute empirically whether they are acceptable approximations of reality than it was for the assumptions used in previous arguments about diversity. So, we ask the reader to accept them and follow us in examining the implications of this model.
Table 1. Mathematical symbols and abbreviations used in this article

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ</td>
<td>Probability of failure on demand of a generic system, seen as a random variable</td>
</tr>
<tr>
<td>Θ₁, Θ₂</td>
<td>Probability of failure on demand of a randomly chosen program version, and of a 1-out-of-2 two-version system, respectively, seen as random variables</td>
</tr>
<tr>
<td>μ₁, μ₂</td>
<td>Abbreviations for E(Θ₁), E(Θ₂): mean values of the probability of failure on demand of a randomly chosen program version, and of a 1-out-of-2 two-version system, respectively</td>
</tr>
<tr>
<td>σ₁, σ₂</td>
<td>Abbreviations for σ(Θ₁), σ(Θ₂): standard deviations of the probability of failure on demand of a randomly chosen program version, and of a 1-out-of-2 two-version system, respectively</td>
</tr>
<tr>
<td>σ(A)</td>
<td>Standard deviation of a random variable A</td>
</tr>
<tr>
<td>σ²(A)</td>
<td>Variance of a random variable A</td>
</tr>
<tr>
<td>θₚ</td>
<td>A required upper bound on the probability of failure on demand</td>
</tr>
<tr>
<td>CDF</td>
<td>"Cumulative distribution function"</td>
</tr>
<tr>
<td>E(A)</td>
<td>Mean (expected value) of the random variable A</td>
</tr>
<tr>
<td>n</td>
<td>Number of potential faults and failure regions in a program version</td>
</tr>
<tr>
<td>N₁, N₂</td>
<td>Number of faults in a randomly chosen program version, and of common faults in a randomly chosen pair of versions, seen as random variables</td>
</tr>
<tr>
<td>pᵢ</td>
<td>Probability of the i-th potential fault being present in a randomly chosen program version</td>
</tr>
<tr>
<td>pₘₐₓ</td>
<td>max{p₁, p₂,, pₙ}</td>
</tr>
<tr>
<td>P(...)</td>
<td>Probability of event described by (...)</td>
</tr>
<tr>
<td>PFD</td>
<td>"Probability of failure on demand"</td>
</tr>
<tr>
<td>qᵢ</td>
<td>Probability of failure per demand associated with the i-th potential fault and failure region (i.e., probability of a demand which is part of that failure region being presented to the system in operation)</td>
</tr>
</tbody>
</table>

3. The PFD of one-version and of two-version systems

In this model, the PFD for a version or system is the sum of many independent random variables, i.e., the contributions of the individual potential faults. The mean and the variance of this sum are then equal to the sums of the means and of the variances of the individual random variables, respectively. The i-th random variable takes the value qᵢ with probability pᵢ and the value 0 with probability (1-pᵢ), when we consider a single version. These
probabilities become p_i^2 and $(1-p_i^2)$ for a two-version system, since we consider independent developments of the two versions. Thus:

$$E[\Theta_1] = \sum_{i=1}^{n} p_i q_i, \quad E[\Theta_2] = \sum_{i=1}^{n} \left(p_i^2 q_i\right),$$

$$\sigma(\Theta_1) = \sqrt{\sum_{i=1}^{n} p_i (1-p_i) q_i^2}, \quad \sigma(\Theta_2) = \sqrt{\sum_{i=1}^{n} p_i^2 (1-p_i^2) q_i^2}$$

Given n potential faults, we have a model with $2n$ parameters. All parameters are unknown and unmeasurable in practice. So, direct use of these formulas is out of the question. Despite this, we now proceed to use this model in a way that has practical value, by selecting special cases of interest in which the study of the model is simple and does not require detailed knowledge of all parameters. We consider two measures of reliability, which have practical relevance in different scenarios. These are at the two ends of a spectrum of possible scenarios:

- some programs (e.g. in some safety systems) are very simple and developed to high standards: it is plausible that they often contain no fault. The expected value of the number of faults is close to 0, and all the p_i are close to 0. There are only two events with non-negligible probability: having zero common faults or having one common fault. However, even one fault (common to the two versions) may be enough to violate the system dependability requirements. So, we are effectively interested in the probability of the versions having no common fault.

- there are very many possible faults, and many have small q_i compared to the acceptable system PFD. We are then interested in the probability of the system PFD not exceeding a required bound ϑ_R, or vice-versa in which bound will not be exceeded with a set probability. E.g., we might ask what is the 99th percentile of the distribution of the system PFD (i.e., an upper bound such that the system PFD has 99% probability of not exceeding it). For this scenario, we will exploit the fact that the PFD of our systems is a sum of independent variables to approximate the distribution of the PFD with a normal (Gauss) distribution, according to the central limit theorem. As this is an asymptotic result, we will not know in practice how good an approximation it is in a specific case, but this simplification is useful for studying the important qualitative trends implied by our model.
3.1. Lemmas: considerations on the means and standard deviations of the PFD

We briefly study these measures, in part to be able to compare our observations with previous studies, but more importantly to derive useful lemmas for the rest of the analysis.

3.1.1. Comparison between the mean PFDs, μ_1 and μ_2

As indicated above,

$$\mu_1 = \sum_{i=1}^{n} p_i q_i, \quad \mu_2 = \sum_{i=1}^{n} p_i^2 q_i$$

We now define $p_{\text{max}}=\max\{p_1, p_2, ..., p_n\}$. We can thus write:

$$\mu_2 = \sum_{i=1}^{n} p_i^2 q_i \leq \sum_{i=1}^{n} p_{\text{max}} p_i q_i = p_{\text{max}} \sum_{i=1}^{n} p_i q_i = p_{\text{max}} \mu_1$$

Quality assurance activities strive to reduce the values of the p_i parameters. The actual values are not known. However, these parameters have intuitive meanings relating to developers' experiences, and the typical values achieved by given software development processes could be studied empirically. Estimating small p_i parameters could be infeasible, but to use inequality (4) we only need to estimate an upper bound.

So, if an assessor were convinced that a developer’s quality assurance activities reduce the probability of the most common fault to, say, 10%, the assessor should also believe that a two-version system from that developer has, on average, at least 10 times better PFD than a single version. This may be a modest reliability gain, in particular compared with claims of independence (for this upper-bound prediction to be equivalent to or better than independence, we would need $p_{\text{max}} \leq \mu_1$), but is an indisputable upper bound (on the average unreliability).

3.1.2. Comparison between the standard deviations of the PFD, σ_1 and σ_2

We have seen in (2) that:

$$\sigma^2(\Theta_1) = \sum_{i=1}^{n} p_i (1-p_i) q_i^2$$

$$\sigma^2(\Theta_2) = \sum_{i=1}^{n} p_i^2 (1-p_i^2) q_i^2$$

It can be shown that
\[p^2(1-p^2) \leq p(1-p), \quad \text{iff } p \leq (-1+5^{0.5})/2 = 0.618033987 \]

So, if we write:

\[
\sigma_2 = \sqrt{\sum_{i=1}^{n} p_i^2 (1 - p_i^2) q_i^2} \tag{7}
\]

\[
\sigma_1 = \sqrt{\sum_{i=1}^{n} p_i (1 - p_i) q_i^2} \tag{8}
\]

we can also see that, if for all \(i, i=1,2, ..., n \), it holds that \(p_i \leq 0.618033987 \), then all summands within the square root expression for \(\sigma_2 \) are smaller than those in the corresponding expression for \(\sigma_1 \), i.e., the standard deviation - a rough indication of the extent of variation around the average - of the PFD of a two-version system is guaranteed to be smaller than that of a single version, provided the probabilities of individual faults are small. We can actually derive a more informative result:

\[
\sigma_2 = \sqrt{\sum_{i=1}^{n} p_i^2 (1 - p_i^2) q_i^2} = \sqrt{\sum_{i=1}^{n} p_i (1 + p_i) (1 - p_i) q_i^2} < \sqrt{\sum_{i=1}^{n} p_{\text{max}} (1 + p_{\text{max}}) p_i (1 - p_i) q_i^2} = \sqrt{p_{\text{max}} (1 + p_{\text{max}}) \sum_{i=1}^{n} p_i (1 - p_i) q_i^2} = \sqrt{p_{\text{max}} (1 + p_{\text{max}})} \sigma_1 \tag{9}
\]

So, if all \(p_i \) are small as indicated above, we can give an upper bound for \(\sigma_2 \) in terms of \(\sigma_1 \) and \(p_{\text{max}} \).

4. Probability of no common faults

In this section we consider a situation in which the requirement is effectively that the two versions have no common failure point, and ask the two questions outlined in the Introduction.
4.1. Gain from diversity

Here, we compare the risks of a PFD greater than 0 in a two-version system - $P(N_2>0)$, $P(\Theta_2>0)$ - vs. that in a one-version system: $P(N_1>0)$, $P(\Theta_1>0)$. Notice that the smaller the ratio, the greater the advantage given by diversity. We can write:

\[P(N_1=0) = \prod (1-p_i), \quad P(N_2=0) = \prod (1-p_i^2). \]

Therefore,

\[\frac{P(N_2>0)}{P(N_1>0)} = \frac{1 - \prod (1-p_i^2)}{1 - \prod (1-p_i)} \leq 1 \] (10)

4.2. Effects of an improved process

The first question to address is what we mean by improved development process. Changing the development process presumably implies changing all the model parameters. A process may be better than another, e.g., from the viewpoint of average version reliability and yet worse from some other viewpoint. We can, however, imagine at least two types of “process improvement” whose consequences would be of practical interest:

- some specific p_i values decrease: e.g., new V&V methods are introduced that make specific fault types much less likely;
- all the p_i decrease, more or less in the same proportion, e.g., because greater effort is put into eliminating all kinds of bugs.

5 We could compare the probabilities of satisfying a requirement that there are no faults, i.e., of having a PFD=0, in a single-version vs. in a two-version system. The advantage of diversity would be described by the ratio:

\[\frac{P(N_2=0)}{P(N_1=0)} = \frac{\prod (1-p_i^2)}{\prod (1-p_i)} = \prod (1+p_i) \geq 1, \]

which increases if any p_i increases. However, we believe that practitioners will usually be interested in the ratio of the risks of a PFD greater than 0, as these are intended to be small in the first place, so that large changes in the risk, e.g. $P(N_1>0)$ may appear as small changes in the corresponding probability of success, $P(N_1=0)$.

5 We could compare the probabilities of satisfying a requirement that there are no faults, i.e., of having a PFD=0, in a single-version vs. in a two-version system. The advantage of diversity would be described by the ratio:
Any change from a process to an “obviously better”, different process - i.e., a change in which no p_i increases and one or more decrease- can be described as a succession of changes of these two types.

4.2.1. Decrease of a single parameter p_i

If we derive the partial derivative of expression (10) above with respect to a generic p_i, we find that it may be positive or negative depending on the values of the parameters.

We outline a proof here for the special case of only two possible faults. *(note for reviewers: the general proof is printed here in Appendix A)*

We can solve the equation:

$$\frac{\partial}{\partial p_1} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) = 0$$

and show that its only solution is:

$$p_1 = \frac{2p_2 \left(1 + p_2 + \sqrt{2 \left(1 + p_2\right)}\right)}{2\left(1 - p_2^2\right)} > p_2.\tag{11}$$

Similarly, we can solve the equation

$$\frac{\partial}{\partial p_2} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) = 0$$

and show that its only solution is:

$$p_2 = \frac{2p_1 \left(1 + p_1 + \sqrt{2 \left(1 + p_1\right)}\right)}{2\left(1 - p_1^2\right)} > p_1.\tag{12}$$

Thus, the partial derivative with respect to only the greater p_i can become 0. Assume that $p_1 > p_2$ and call p_{1z} the value of p_1 for which the derivative is 0. For $p_1 < p_{1z}$, the derivative

$$\frac{\partial}{\partial p_1} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) < 0.\tag{13}$$

This implies that decreasing p_1 below p_{1z} will increase the ratio (i.e. reduce the gain from fault tolerance).

In summary, it appears that a form of process improvement that only reduces certain p_i parameters certainly improves the gain given by diversity if the affected faults are less likely than others. Otherwise it may reduce this gain, although it still improves reliability.
4.2.2. Proportional decrease of all the p_i parameters

In this case we represent the p_i as $p_i = kb_i$ and the effect of the process improvement is analysed through the partial derivative,

$$\frac{\partial}{\partial k} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right).$$

We have proven elsewhere that this partial derivative is positive, irrespective of the values of the p_i parameters and of k (note for reviewers: the proof is printed here in Appendix B): this kind of process improvement always increases the advantage of using diversity.

4.2.3. Implications for the practitioners

The implications of the above developments are that the gain obtained from fault-tolerance as a function of process improvement will depend on the details of how the improvement affects the probabilities of the various possible faults. If we assume that the improvement affects in the same proportion every possible fault, then the gain is always guaranteed to increase with the process quality. This view is popular and recently argued, for instance, in [1]. In our model, however, such a relationship between the process quality and the gain from fault-tolerance has only been proved under an assumption, which is hardly realistic, of all faults being proportionally affected by the process improvement. In the second extreme case, when the process improvement only affects a single fault, it becomes possible to actually reduce the gain from the fault tolerance by improving the process, which is at first sight counterintuitive. A similar observation on the effect of fault removal on the reliability gain given by fault tolerance has been reported in [13].

A real process improvement will not match either of the two special cases we just studied: only a more detailed knowledge of how it affects the various kinds of faults would allow one to estimate the effect of diverse redundancy with the improved process. The most important conclusion is that the gain from diverse redundancy is not a constant. So, one cannot, after measuring the advantage obtained given a certain development process, assume that fault tolerance will produce a comparable advantage given a different process.

5. Bounds on unreliability, under the normal approximation

We now discuss upper bounds on the PFD (unreliability) achieved in 1-version or in 1-out-of-2, 2-version systems. We use the common informal phrase "x is a 99% confidence bound on Θ" to mean "$P(\Theta \leq x) = 0.99". In current practice, such formal statements about software are usually avoided. However, assessors routinely judge that if certain (usually
development process-related) evidence is given about a software product, then the product is suitable for use in a role in which the software is required to have a PFD lower than a given bound. Such is the spirit, for instance, of standards that map reliability requirements for software into "Safety Integrity Levels" (SILs), and SILs into recommended development and V&V practices. This must mean that the assessor believes that the evidence implies a certain confidence or probability that the software indeed satisfies the reliability requirements. It is thus reasonable to ask what this assessor should believe about a 2-version system produced by the same process.

5.1. Gain from diversity

The normal distribution is completely specified by its mean and variance, as given in the previous section. The inverse function of the normal cumulative distribution function is widely available, and it is thus easy to derive confidence statements in terms of the mean \(\mu \) and the standard deviation \(\sigma \) of the normal distribution, of the form: "The probability of the PFD being less than or equal to the required bound \(\Theta_R = \mu + k \sigma \) is \(\alpha \)". For instance, \(P(\Theta \leq \mu + 3\sigma) = 0.99865003 \). We can answer a question like "What is a value of \(\Theta \) such that \(P(\Theta \leq \Theta) = 0.99 \)" by observing from the published tables that the 99\% confidence level corresponds to \(\Theta = \mu + 2.33 \sigma \).

We therefore study the value given by our model to the expression \((\mu + k\sigma)\), where the factor \(k > 0 \), chosen according to the required confidence, appears as a constant parameter. Given a required confidence and thus a required \(k \), it is obviously desirable for the distribution of the PFD to be such that \(\mu + k\sigma \) to be as small as possible.

The first question is: given a certain bound on the PFD of a single-version system, \(\Theta_1 \), what can we say about a corresponding bound (same confidence) for a two-version system, \(\Theta_2 \)? This is easily derived. Applying (4) we obtain:

\[
\mu_2 + k \sigma_2 \leq p_{\text{max}} \mu_1 + k \sqrt{p_{\text{max}}(1 + p_{\text{max}})} \sigma_1
\]

(11)

If we do not know the values of \(\mu_1 \) and \(\sigma_1 \), but only a certain bound \((\mu_1 + k\sigma_1) \), we can further manipulate this expression to derive a slightly looser upper bound:

\[
\mu_2 + k \sigma_2 \leq p_{\text{max}} \mu_1 + k \sqrt{p_{\text{max}}(1 + p_{\text{max}})} \sigma_1 < \\
\sqrt{p_{\text{max}}(1 + p_{\text{max}})} \mu_1 + k \sqrt{p_{\text{max}}(1 + p_{\text{max}})} \sigma_1 = \\
\sqrt{p_{\text{max}}(1 + p_{\text{max}})} (\mu_1 + k \sigma_1)
\]

(12)
I.e., given any confidence bound for the PFD of a one-version system, the corresponding bound for the PFD of a two-version system is smaller by \textit{at least} the ratio \(\sqrt{p_{\max}(1 + p_{\max})} \). This assures us of a small but guaranteed gain from diversity (we must remember that we are talking about bounds; the actual gain may be much greater, but to know it we would need to know the values of the \(q_i \) and \(p_i \)). Considering these gains for a few values of \(p_{\max} \) we find:

\[
\begin{array}{c|c}
p_{\max} & \sqrt{p_{\max}(1 + p_{\max})} \\ \hline
0.5 & 0.866 \\ 0.1 & 0.332 \\ 0.01 & 0.100
\end{array}
\]

The last line gives us a 10-fold improvement, from using diversity, in any confidence bound on system PFD: being able to trust such a reduction factor ("\(\beta \)-factor" value) would already be a practical advantage in many safety assessments. For even lower values of \(p_{\max} \), clearly \(\sqrt{p_{\max}(1 + p_{\max})} \approx \sqrt{p_{\max}} \).

If assessors have estimates of \(\mu_1 \) and \(\sigma_1 \) rather than of a confidence bound \((\mu_1 + k\sigma_1) \), then upper bounds on \(\Theta_2 \) can be tighter, with greater advantage over a single-version system; especially so, if \(\sigma_1 \) is small and/or comparatively low confidence is accepted: the ratio reduces again to \(p_{\max} \) if either \(\sigma_1 \) tends to 0 (i.e., if the development process is very predictable, with low variance in the reliability of its products) or if we want a 50% confidence bound - the median of the distribution, which equals its mean. For instance, if we know that \(\mu_1 = 0.01 \) and \(\sigma_1 = 0.001 \), and we are interested in an 84% confidence bound \((k=1) \), this is 0.011 for one version; for a two-version system, even with \(p_{\max} \) as high as 0.1, our upper bound is 0.001 (an improvement by an order of magnitude) if we use our first formula above, but a more modest 0.004 if we use the second formula.

\textbf{5.2. Effects of an improved process}

We do not yet have theorems about the effects of process improvement on reliability bounds under the normal approximation. Based on numerical solutions of special cases we conjecture that:

- the reliability gain obtained from fault-tolerance (expressed as the ratio between upper bounds on \(\Theta_1 \) and \(\Theta_2 \)) improves with forms of process improvement that reduce the probability of all faults proportionally, as in 4.2.2;
• this gain may increase or decrease with a process improvement that affects only one of the p_i parameters.

If we measure the reliability gain as the *difference* between the upper bounds $(\mu_1+k\sigma_1) - (\mu_2+k\sigma_2)$, we find that it improves with any increase in any of the p_i.

6. Discussion, appropriateness of the assumptions

Our results in the last two sections yield some useful indications for practical decisions. However, these depend on the truth of the assumptions used in the modelling. All modelling is an exercise in abstraction, trying to achieve simplicity by discarding those aspects of reality that are indeed negligible. We now discuss the assumptions we have used and to what extent we can expect that their departures from reality have indeed negligible effects.

6.1. Non-independence between development errors on the same version

In reality, there is no clear evidence that the possible mistakes in the development of a program occur (or are avoided) independently. Results from any one experiment can only give weak evidence to support or refute this assumption. There are reasons for not believing in independence. If we try to speculate about why there may be correlation between the presence of different possible faults in a (randomly chosen) version, we can produce conflicting, plausible arguments:

- there are factors that would produce some positive correlation among the occurrences of certain mistakes in developing a program, e.g. those mistakes that are due to a common conceptual error;
- there are factors that would tend to produce negative correlation, e.g. if schedule and budget limits mean that extra effort can be dedicated to avoiding certain classes of faults only at the expense of others. For instance, the random discovery of some problems early in the project schedule might divert resources from dealing with any other potential problem.

We do not know the weights of these contrasting factors in practice. If the probabilities of individual mistakes are quite low and the probability of any set of them occurring together is much lower than their individual probabilities of occurrence, the models assuming independence should produce predictions that are not too far from reality.

If positive correlation is expected to be a very important factor, models to represent its effects would become much more complex than those used here. With positive correlation between two mistakes, the extreme case is that in which the two can only occur together:
then, they can be considered as one mistake, with a resulting failure region which is the union of those associated to the two mistakes. So, solving these models for higher values of the q_i parameters (and correspondingly lower values of n) gives a first approximation to modelling the effects of positive correlation. Studying the sensitivity of any predictions to higher values of the q_i parameters is a protection against this particular violation of the model assumptions.

In conclusion, the possibility of non-zero correlation between the presence of different faults in a version does not much reduce the usefulness of our model.

6.2. Possibility of failure regions that overlap in the demand space

In reality, the potential failure regions of different faults overlap in various ways. So, it is not true that $\sum_{i=1}^{n} q_i \leq 1$. Actually, removing this constraint seems desirable: it is a serious artificial constraint on the parameter values for our models; but it seems that we would not know how to substitute it and still be able to solve the models. Usually, when two faults with overlapping failure regions are both present, the resulting failure region is the union of the two; but other cases are possible, in which they "mask" each other over some subset of this union. Trying to model such minute details seems useless; the general case of interest is that if two or more faults are present, their contribution to the PFD is not necessarily equal to the sum of their individual contributions, but may be less. In some cases, this complication does not cause serious problems with our models, e.g., if the probability of a version containing multiple faults with large overlaps among their failure regions is so small that this event does not substantially affect the statistics of the PFD. Otherwise, assuming that failure regions do not overlap is a pessimistic assumption, usually well-accepted when we deal with safety and reliability. The model would then assign non-zero probability to PFD values greater than 1, but these non-zero probabilities would still be much smaller than the probabilities of reasonable values of PFD, so they can be ignored without serious error. Two drawbacks instead apply to substantially pessimistic predictions: we could no longer trust our estimates of the relative advantage of a two-version system (while still trusting the estimates of the achieved PFD as upper bounds for the actual achieved PFD); and if we used these predictions as prior probabilities for Bayesian inference from observed behaviour of a system, pessimistic priors might accidentally produce optimistic posteriors. So, a study of inference methods would require an auxiliary study of the effects of these errors in the priors.
In conclusion, the reality of overlap between possible failure regions does not affect the usefulness of our model for very reliable software, and of the model's use for absolute pessimistic prediction in general.

6.3 Unique 1-to-1 mapping between faults and failure regions

In practice, for any given failure region there will be multiple possible faults that could introduce it, and mistakes that could cause such faults. This increases an assessor's difficulty in choosing the \(p_i\) parameters, or \(p_{max}\) when only \(p_{max}\) is needed. Presumably, assessors will derive beliefs about these parameters from their own experience of faults found, or mistakes detected, in circumstances considered similar to those of the project being assessed. Let us stipulate that an assessor is indeed able to select from memory appropriate similar situations, and properly infer the probabilities of mistakes being made (or of faults being inserted) and not corrected. But if several possible faults would cause the same failure region, the probability of that failure region being present could be close to the sum of the probabilities of those faults: an assessor would be at risk of underestimating \(p_{max}\).

The other major problem is of course that if all the \(p_i\) are small, then the assessors' experience of these faults would be very limited; actually, the assessors' beliefs could be based on kinds of faults that are relatively easy to detect and eliminate (and thus would be noticed often) rather than on types that are more likely to remain in the finished products. But this problem is common to all approaches depending on the assessors' judgement, whether applied to diverse systems or non-diverse systems and whether using explicit mathematical representations or not.

In conclusion, when 1-to-1 mappings between fault, code defects and failure regions cannot be trusted, the only way of trusting the model's conclusions is to apply the model to the probabilities of failure regions being present rather than of code defects.

7. Conclusions

Compared to previous discussions of the advantages of diversity, this paper offers these elements of progress:

- our model is based on assumptions that refer more immediately to physical phenomena (like human errors in development) rather than to abstract aggregated measures (like a ratio of failure probabilities). A discussion of these assumptions can refer more to direct empirical experience and less to general intuition;
- in particular, the model's assumptions can be challenged by experiment. Those that are refuted can be altered, and we can hope to produce a model of reality that is
sufficiently accurate to support decisions, at least about how best to achieve reliability if not about accepting specific reliability claims;

- if this model turns out to be reasonably accurate, it can be a basis for analysing future statistical data and especially for drawing inference on the reliability of a design-diverse system from its behaviour in operation, i.e., to help in assessing the reliability of a specific system;

- we discuss measures of interest in practical decision-making, rather than the average reliability studied in previous literature.

Obviously, the results described here should be validated against empirical results. There are the usual difficulties that practical industrial projects only develop a few versions of any given application, so that validation of any general prediction about probability distributions would depend on sophisticated collation of data from many projects; and that these program versions are usually highly reliable, so that failure rates cannot be estimated with much accuracy. Turning to published experiments, we have observed for instance that in the Knight and Leveson experiment [2, 16, 17] diversity reduced not only the sample mean of the PFD of the 27 program versions produced, but also –greatly– its standard deviation. At this strictly qualitative level, our conclusions are supported. On the other hand, the data do not fit (nor would we expect them to fit, given the few faults observed) a normal approximation for the distribution of PFD, so that we cannot check the relationship predicted in section 5 to hold between distributions for cases in which the normal approximation applies. We plan to continue such checks of model predictions against previously published data, both exploiting more published data sets and looking for more sophisticated ways of using the data to challenge our conclusions.

Extending experimental knowledge of design diversity to the point that we can base practical recommendations, with high confidence, on empirical knowledge alone is infeasible. In practice, engineering decisions always need to use a combination of empirical knowledge and analytical extrapolation. The advantage of basing the extrapolation on rigorous mathematical reasoning is in the first place consistency: among the intuitive predictions without strong scientific bases, we can at least weed out those that would make our body of knowledge self-contradictory, and signal the important gaps in this body of knowledge. The practice of assessing software, diverse or otherwise, as compliant with quantitative reliability requirements is now a matter of mostly intuitive judgement by dedicated, experienced assessors, in the best case, and of verifying compliance with "software safety standards", with no proven value in reliability prediction, in the worst case. Assessors can use our results (e.g. formulas (9), (11), (12)) for comparison with their current practice in judging diversity: depending on how the
assumptions seem to fit their existing situation, and on the parameter values that their experience suggests or their current practice implies, they will find that either our results lend some extra confidence in current practice, or raise questions about it and specify some experimental tests to answer these questions.

As for decisions about whether and when diversity is worth using, our results are mostly warnings against oversimplification. Switching to a “better” process that produces fewer of all kinds of faults should make diversity even more useful; but for a generic improvement the gain given by diversity may increase or decrease, possibly to the point of making it useless.

An advantage of our results is that they depend on the effects of a development process on the probabilities of failure regions being created in the product, rather than directly on its effects on the failure behaviour of the products. So, the parameters we use are reasonably close to the experience of real-world assessors. Our discussion, though, confirms the need for more knowledge on human error in software development. Research in this area would require software-specific experimental work taking advantage of existing knowledge in cognitive psychology.

Desirable extensions of this work are: first, empirical checks on the assumptions made and the accuracy of predictions; further study of the cases of "forced" and "functional" diversity; and combining this kind of models with inference from observations during a specific project [14]: it would seem a good idea to apply a family of prior distributions for a product's reliability parameters that are based on this plausible physical model rather than chosen, as is frequently the case, for computational convenience only.

Acknowledgments

The work described in this paper was funded in part by project DISPO (DIverse Software PrOject), funded by Scottish Nuclear (later British Energy) and by project DISCS (Diversity In Safety Critical Software), funded by the Engineering and Physical Sciences Research Council.

References

Appendix A

We analyse how the ratio between the probability of having at least one common fault in an 1-out-of-2 system and the probability of having at least one fault in a single-version system changes when the improvement/decay of the development process affects only a single fault. This ratio indicates the superiority of a two-channel system over a single channel. Small values of the ratio (approaching 0) mean a high gain from fault-tolerance, while values of the ratio approaching 1 indicate limited gain. The process improvement is represented by decreasing the parameters \(\{p_i\} \). Thus if the derivative of the ratio wrt a particular \(p_i \) is negative, this implies that the process improvement increases the gain produced by fault tolerance, while a positive derivative implies that the process improvement reduces this gain.

Formally, we are interested in the following derivatives:

\[
\frac{\partial}{\partial p_i} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) = \frac{\partial}{\partial p_i} \left(\frac{1 - \prod_i (1 - p_i)}{1 - \prod_i (1 - p_i)} \right).
\]

The development is shown below:
\[
\frac{\partial}{\partial p_i} \left(P(N_2 > 0) \middle| P(N_1 > 0) \right) = \frac{\partial}{\partial p_i} \left(\frac{1 - \prod_i (1 - p_i^2)}{1 - \prod_i (1 - p_i)} \right) = \\
2p_i \left(\prod_{j \neq i} (1 - p_j^2) \right) \left[\prod_{i} (1 - p_i) - \prod_{i} (1 - p_i^2) \prod_{j \neq i} (1 - p_j) \right] \\
= \frac{2p_i \left(\prod_{j \neq i} (1 - p_j^2) \right) ^2}{\prod_{i} (1 - p_i)} \\
= \frac{\prod_{j \neq i} (1 - p_j) \left(2p_i \left(\prod_{j \neq i} (1 + p_j) \right) - 1 \right) - \prod_{j \neq i} (1 - p_j) \prod_{j \neq i} (1 - p_j) \left(2p_i (1 - p_i) - (1 - p_i^2) \right)}{\prod_{i} (1 - p_i)} \\
= 2p_i \left(\prod_{j \neq i} (1 + p_j) \right) - 1 - \prod_{j \neq i} (1 - p_j) \prod_{j \neq i} (1 - p_j) \left(2p_i - 2p_i^2 - 1 + p_i^2 \right) \\
= \frac{\prod_{j \neq i} (1 - p_j) \left(2p_i \left(\prod_{j \neq i} (1 + p_j) \right) - 1 \right) + \prod_{j \neq i} (1 - p_j) \prod_{j \neq i} (1 - p_j) \left(2p_i (1 - p_i) \right)}{\prod_{i} (1 - p_i)} \\
= \frac{\prod_{j \neq i} (1 - p_j) \left(2p_i \left(\prod_{j \neq i} (1 + p_j) \right) - 1 \right) + \prod_{j \neq i} (1 - p_j) \prod_{j \neq i} (1 - p_j) \left(2p_i + (1 - p_i) \right)}{\prod_{i} (1 - p_i)} \\
= \frac{\prod_{j \neq i} (1 + p_j) \left(2p_i (1 - p_i) \right)}{\prod_{i} (1 - p_i)} - 1.
\]

Clearly, the sign of the derivative depends on the term in the curly brackets:

\[
\prod_{j \neq i} (1 + p_j) \left(2p_i + (1 - p_i) \prod_{j \neq i} (1 - p_j) \right) - 1.
\]

A potential exists to have both positive and negative derivative which implies two opposite effects of the quality of the software development process on the benefits from diversity.
With positive derivative the gain increases while negative derivative implies the gain from diversity decreases, which is counterintuitive and not discussed in the literature before.

Here we do not go into details of finding out under which general conditions the partial derivatives become negative and under which they are positive. Below we demonstrate on a special example that both signs for the partial derivative are indeed possible.

Assume that we have only two classes of faults and their respective probabilities are \(p_1 \) and \(p_2 \). The partial derivatives are:

\[
\frac{\partial}{\partial p_1} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) \propto 2p_2 + (1 - p_1^2)(1 - p_1^2) - 1 =
\]

\[
= 2p_1 + 2p_1p_2 + (1 - p_2^2)(1 - p_1^2) - 1 = 2p_1 + 2p_1p_2 + (1 - p_1^2)(1 - p_2^2) - 1 =
\]

\[
= 2p_1 + 2p_1p_2 + 2p_1p_2 + 2p_1 - p_2^2 - (p_1p_2)^2 - 1 =
\]

\[
= 2p_1p_2 + p_1^2 - p_2^2 + 2p_1 + p_2^2 - (p_1p_2)^2 = p_1^2(1 - p_2^2) + 2p_1(p_2 + p_2^2) - p_2^2.
\]

We can solve the equation:

\[
p_1^2(1 - p_2^2) + 2p_1(p_2 + p_2^2) - p_2^2 = 0.
\]

The roots are:

\[
p_1 = \frac{2(p_2 + p_2^2)}{2(1 - p_2^2)} = \frac{2(1 + p_2)p_2 + 2p_2^2}{2(1 - p_2^2)} = \frac{2(p_2 + p_2^2)}{2(1 - p_2^2)} = \frac{2p_2(1 + p_2)}{2(1 - p_2^2)}.
\]

Now it can be seen that one of the roots is positive, \(p_1 = \frac{2p_2(1 + p_2)}{2(1 - p_2^2)} \). The second root is negative or zero and therefore is not of interest because \(p_1 \) is a probability. So, there is exactly one value \(p_{1z} \) of \(p_1 \) where the partial derivative becomes 0. One can see that \(p_{1z} > p_2 \). Moreover, the expression of the partial derivative above is clearly monotonically increasing with \(p_1 \) (the coefficients of the terms containing \(p_1 \) are positive, so the partial derivative is negative for \(p_{1z} < p_{1z} \) and positive for \(p_{1z} > p_{1z} \)).

The implications of this analysis are as follows: when we improve the process of software development by only affecting the probability of a single class of faults we are not guaranteed to increase the gain from the two-channel system as seen in the case of all faults being equally probable. There may exist reversals in the trend, when improving the
process actually results in the two-channel system becoming less superior compared to a single channel system than before the improvement of the process. Where the trend reversals take place depends on the parameters, \(\{p_i\} \).

Appendix B

Clearly, the process improvement is not likely to affect only a single fault. A more plausible assumption is that the process improvement affects the probability of all types of faults. We analyse a special case of such a scenario - when the process improvement is in the same proportion with respect to all faults. More formally, we model the quality of the process by a single variable, \(k \), and represent the probabilities of faults as:

\[
p_i = kb_i
\]

Now the effect of the process quality on the gain from the two-channel system can be seen by taking the partial derivative of the ratio \(\frac{P(N_2 > 0)}{P(N_1 > 0)} \) with respect to \(k \):

\[
\frac{\partial}{\partial k} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) = \frac{\partial}{\partial k} \left(\frac{1 - \prod_i \left(\frac{1}{(1 - kb_i)} \right)}{1 - \prod_i \left(\frac{1}{(1 - kb_i)} \right)} \right).
\]
\[\begin{align*}
\frac{\partial}{\partial k} \left(\frac{P(N_2 > 0)}{P(N_1 > 0)} \right) &= \frac{\partial}{\partial k} \left(\frac{1 - \prod_{i} \left[1 - (k b_i)^2 \right]}{1 - \prod_{i} \left(1 - k b_i \right)} \right) \\
&= \frac{\partial}{\partial k} \left[\prod_{i} \left[1 - (k b_i)^2 \right] \right] \left[\prod_{i} \left(1 - k b_i \right) \right]^{-1} - \prod_{i} \left[1 - (k b_i)^2 \right] \frac{\partial}{\partial k} \left[\prod_{i} \left(1 - k b_i \right) \right] \\
&= \left[1 - \prod_{i} \left(1 - k b_i \right) \right]^2 \\
&= \sum_{j \neq i} b_j \prod_{j \neq i} \left(1 - k b_j \right) \left(2 b_j k \prod_{j \neq i} (1 + k b_j) - 1 \right) - \prod_{i} \left(1 - k b_i \right) \sum_{j \neq i} b_j \prod_{j \neq i} \left[1 - (k b_j)^2 \right] \left(2 b_j k - (1 + k b_j) \right) \\
&= \left[1 - \prod_{i} \left(1 - k b_i \right) \right]^2 \\
&= \sum_{j \neq i} b_j \prod_{j \neq i} \left(1 - k b_j \right) \left(2 b_j k \prod_{j \neq i} (1 + k b_j) - 1 \right) - \prod_{i} \left(1 - k b_i \right) \sum_{j \neq i} b_j \prod_{j \neq i} \left[1 - (k b_j)^2 \right] \left(2 b_j k - (1 + k b_j) \right) \\
&= \left[1 - \prod_{i} \left(1 - k b_i \right) \right]^2 \\
&= \sum_{j \neq i} b_j \prod_{j \neq i} \left(1 - k b_j \right) \left(2 b_j k \prod_{j \neq i} (1 + k b_j) - 1 \right) + \prod_{i} \left(1 - k b_i \right) \sum_{j \neq i} b_j \prod_{j \neq i} \left[1 - (k b_j)^2 \right] (1 - b_j x) \\
&= \left[1 - \prod_{i} \left(1 - k b_i \right) \right]^2 \\
&= \sum_{j \neq i} b_j \prod_{j \neq i} \left(1 - k b_j \right) \left(2 b_j k \prod_{j \neq i} (1 + k b_j) - 1 \right) + \prod_{i} \left(1 - k b_i \right) \sum_{j \neq i} b_j (1 - b_j k) \prod_{j \neq i} \left[1 - (k b_j)^2 \right] \\
&= \left[1 - \prod_{i} \left(1 - k b_i \right) \right]^2 \\
\end{align*}\]

Clearly the denominator is non-negative. Therefore, we can only evaluate the numerator's sign:
\[
\sum b_i \prod_{j \neq i} \left(1 - k b_j \right) \left[2 h_j k \prod_{j \neq i} \left(1 + k b_j \right) - 1 \right] + \prod_{j \neq i} \left(1 - k b_j \right) \sum b_i \left(1 - h_i k \right) \prod_{j \neq i} \left[1 - \left(k b_j \right) \right] = \\
= \prod_{i} \left(1 - k b_i \right) \left[\sum b_i \frac{h_i}{1 - k b_i} \left[2 h_j k \prod_{j \neq i} \left(1 + k b_j \right) - 1 \right] + \sum b_i \left(1 - h_i k \right) \prod_{j \neq i} \left[1 - \left(k b_j \right) \right] \right] = \\
= \prod_{i} \left(1 - k b_i \right) \left[\sum b_i \frac{h_i}{1 - k b_i} \left[2 h_j k \prod_{j \neq i} \left(1 + k b_j \right) - 1 \right] + \left(1 - h_i k \right) \prod_{j \neq i} \left[1 - \left(k b_j \right) \right] \right].
\]

We can ignore in the further transformation the term \(\prod_{i} \left(1 - k b_i \right) \) since it is non-negative.

The expression above after the omission of \(\prod_{i} \left(1 - k b_i \right) \) is denoted \(\Delta \). In further transformations we use the inequality [15], p.53:

\[
\prod_{i=1}^{n} \left(1 - a_i \right) \geq 1 + \sum_{i=1}^{n} a_i.
\]

which is true for any \(a_i > -1 \). We apply this inequality twice, for the terms \(\prod_{j \neq i} \left(1 + k b_j \right) \) and \(\prod_{j \neq i} \left[1 - \left(k b_j \right) \right] \), which obviously satisfy the conditions of the inequality to be true (we have to assume that \(k b_j \leq 1 \), otherwise \(k b_j \) cannot represent probability). Notice that both terms with \(\prod_{j \neq i} \left(1 + k b_j \right) \) and \(\prod_{j \neq i} \left[1 - \left(k b_j \right) \right] \) appear with "+" in the above sum. Thus substituting them with expressions which are no greater will yield an expression which is no greater than the original expression. Therefore it is legitimate to write:

\[
\Delta \geq \sum b_i \frac{h_i}{1 - k b_i} \left[2 h_j k \left[1 + \sum_{j \neq i} k b_j \right] - 1 \right] + \left(1 - h_i k \right) \left[\sum_{j \neq i} \left(k b_j \right) \right] = \\
= \sum b_i \frac{h_i}{1 - k b_i} \left[2 h_j k + 2 h_j k \sum_{j \neq i} k b_j - 1 + 1 - \sum_{j \neq i} \left(k b_j \right) \right] + \left(1 - h_i k \right) \left[\sum_{j \neq i} \left(k b_j \right) \right] = \\
= \sum b_i \frac{h_i}{1 - k b_i} \left[2 h_j k \sum_{j \neq i} k b_j - \sum_{j \neq i} \left(k b_j \right) \right] + 2 h_j k \sum_{j \neq i} \left(k b_j \right) + \left(1 - k b_j \right) \left[\sum_{j \neq i} \left(k b_j \right) \right].
\]

Obviously,

\[
2 h_j k \sum_{j \neq i} \left(k b_j \right) \geq \left(h_j k \right) \sum_{j \neq i} \left(k b_j \right) \] for \(k b_j \leq 1 \). Thus, the inequality above can be strengthened:
\[
\Delta \geq \sum_i \frac{b_i}{1-k b_i} \left[2 h k \sum_j k b_j - \sum_j (k b_j) \sum_j (k b_j) \right] = \\
= \sum_i \frac{b_i}{1-k b_i} \left[2 h k \left(\sum_j k b_j + k b_j \right) - \sum_j (k b_j) (k b_j) \right] = \sum_i \frac{b_i}{1-k b_i} \left[2 h k \left(\sum_j k b_j \right) - \sum_j (k b_j) \right] = \\
= \left(\sum_i \frac{2 h k}{1-k b_i} \left[\sum_j k b_j \right] - \sum_j (k b_j) \right) = \sum_i \frac{b_i}{1-k b_i} \left[\sum_j (k b_j) \right] = \\
\]
Once again we use the assumption $0 \leq kb_i \leq 1$ under which $kb_i \geq (kb_i)^2$. Therefore, we can strengthen the above inequality:

$$
\Delta_{n+1} \geq \Delta_n + \frac{b^2 b_{n+1}}{1-kb_{n+1}} + \sum_{i=1}^{n} \frac{b_i b_{n+1} k}{(1-kb_i)(1-kb_{n+1})} (2k^2 b_i^2 - 4k^2 b_i b_{n+1} + 2k^2 b_{n+1}^2) \\
= \Delta_n + \frac{b^2 b_{n+1}}{1-kb_{n+1}} + \sum_{i=1}^{n} \frac{2b_i b_{n+1} k}{(1-kb_i)(1-kb_{n+1})} (k^2 b_i^2 - 2k^2 b_i b_{n+1} + k^2 b_{n+1}^2) \\
= \Delta_n + \frac{b^2 b_{n+1}}{1-kb_{n+1}} + \sum_{i=1}^{n} \frac{2b_i b_{n+1} k^2 (b_i - b_{n+1})^2}{(1-kb_i)(1-kb_{n+1})} \geq 0.
$$

Thus we have proved that increasing the number of faults does not affect the sign of the derivative: for any number of possible faults and any values of parameters such that $0 \leq kb \leq 1$, the derivative wrt k remains non-negative, hence the gain from a two-channel system increases.