Redundancy and Diversity in Security

Bev Littlewood and Lorenzo Strigini

Centre for Software Reliability, City University,
Northampton Square, London EC1V OHB, U.K.
{B.Littlewood,L.Strigini}@csr.city.ac.uk

Abstract. Redundancy and diversity are commonly applied principles
for fault tolerance against accidental faults. Their use in security, which
is attracting increasing interest, is less general and less of an accepted
principle. In particular, redundancy without diversity is often argued to
be useless against systematic attack, and diversity to be of dubious value.
This paper discusses their roles and limits, and to what extent lessons
from research on their use for reliability can be applied to security, in
areas such as intrusion detection. We take a probabilistic approach to the
problem, and argue its validity for security. We then discuss the various
roles of redundancy and diversity for security, and show that some basic
insights from probabilistic modelling in reliability and safety indeed ap-
ply to examples of design for security. We discuss the factors affecting the
efficacy of redundancy and diversity, the role of “independence” between
layers of defense, and some of the trade-offs facing designers.

1 Introduction

This paper is about the need for better understanding of how redundancy and
diversity are applicable in security. This involves different issues:

— the extent of their useful applicability;
— the ways of evaluating their advantages so as to drive design.

Redundancy as a general approach is clearly understood to be a valid de-
fense against physical faults. There is a rich set of understood design “tricks”
that use redundancy against various forms of faults and failures, and knowledge
about how to optimize them for different purposes, e.g. in terms of tradeoffs
between cost of the redundancy during normal operation and the effectiveness
and performance degradation in case of failure. When it comes to design faults,
it is commonly accepted that some form of diversity may be necessary to toler-
ate them. However, whether fault tolerance itself is an appropriate approach is
more controversial: many claim that for “systematic” failures the most effective

This work was supported in part by the U.K. Engineering and Physical Sciences Re-
search Council under projects DOTS (Diversity with Off-The-Shelf Component) and DIRC
(Interdisciplinary Research Collaboration on Dependability of computer-based systems).

©Springer-Verlag

2 Bev Littlewood and Lorenzo Strigini

and cost-effective procedure is simply to avoid them in the first place. We have
argued elsewhere that these claims are the result of misunderstandings about
terms like “systematic”. When it comes to intentional faults, the value of fault
tolerance in general is even less commonly accepted, although some authors have
long argued its benefits [1,2] and despite a recent increase of interest.’

In part, the disagreements are an effect of the historical separation between
the various technical sub-communities dealing with reliability/safety and with
security, leading to different attitudes (not least to the use of probabilistic ar-
guments), and some degree of reciprocal misunderstanding. A risk in cross-
community discussion is over-generalization. “Redundancy” or “diversity” are
just useful common names for generic design approaches, which have to be
adapted to the needs of a specific design. All considerations of applicability and
efficacy need to be referred to a specific situation, with its threats and depend-
ability requirements. When we move from general discussions of applicability
and intuitive desirability of these methods to deciding in which form (if any)
they should be applied in a particular context, more formal, rigorous reasoning
is needed. This has been provided, in reliability and safety, by probability mod-
els of diversity, giving some new, and sometimes surprising, insights (surveys of
these results are in [3,4]). We believe that these models are directly applicable to
the use of diversity in security. This is the main topic of this paper. The recent
resurgence of interest in diversity for security seems to include only limited in-
terest in probabilistic study. In fact, some misunderstandings that arose early on
about software fault tolerance seem to be occurring again, especially concerning
notions of “independence”. We will describe some aspects of the existing models
that seem directly applicable to security. An area of security research in which
there is interest in diversity and redundancy is intrusion tolerance, and we use
this example in our discussion.

In the rest of this paper, we first deal with the preliminary issues. We argue
the need for probabilistic reasoning about security (section 2). Then we discuss
the concepts of redundancy and diversity and the ways of pursuing them (Sect.
3); and, in Sect. 4, we consider examples of these in recent work on security. We
then proceed (section 5) to show how previous results about diversity can help
in directing its application to improve security attributes of systems.

2 Probability, Redundancy and Security

Discussion of redundancy and diversity, whether it be for reliability, safety or
security, must start from an understanding of uncertainty, and a recognition
that probability is the appropriate formalism for dealing with uncertainty. This
is accepted in the reliability area, because no redundant architecture determin-
istically prevents all system failures. One instead encounters frequent skepticism
in the security community about the use of probabilities. This is reminiscent of

! Represented for instance by the U.S. DARPA sponsored OASIS project
(http://www.tolerantsystems.org/) and the European MAFTIA project (e.g.
http://www.newcastle.research.ec.org/maftia/). More references are in Sect. 4.

Redundancy and Diversity in Security 3

similar debates twenty years ago about the use of probabilities for software reli-
ability. Then, it was said software failures were “systematic” and thus not open
to probabilistic modelling. Now, it is said that security failures are deliberate
and thus not open to probabilistic modelling. Both statements are, we believe,
based upon mistaken views of the nature of the uncertainty in the two areas.

The term “systematic failure” arose to distinguish software failures (and
other design fault-induced failures) from “random” hardware failures. The words
“random” and “systematic” here are misleading: they seem to suggest that in
the one case a probabilistic approach is inevitable, but that in the other we
might be able to get away with completely deterministic reasoning. This is not
so, and stochastic arguments seem inevitable in both cases.

When we use the word systematic here it refers to the fault mechanism,
the mechanism whereby a fault reveals itself as a failure, and not to the failure
process. In the case of software, the most widely recognized source of systematic
failures, it is correct to say that if a program failed once on a particular input
(and internal state), it would fail every time the same conditions occur again,
until the offending program fault had been successfully removed. This contrasts
with physical hardware failures, for which there is no such certainty. In this very
limited sense, software failures are deterministic, and it is from this determinism
that we obtain the terminology.

However, our interest really centers upon the failure process: what we see
when the system under study is used in its operational environment. In a real-
time system, for example, we would have a well-defined time variable (not neces-
sarily real clock time) and our interest would center upon the process of failures
embedded in time. We might wish to assure ourselves that the rate of occurrence
of failures was sufficiently small, or that there was a sufficiently high probability
of surviving some pre-assigned mission time. We would not instead be able to
predict with certainty whether the next mission will end in failure: this depends
on unknown details of the mission (the exact sequence of inputs to the system)
and of the system (the possibility of unknown bugs). The important point is
that this failure process is not deterministic for either “systematic” faults or for
random faults.

Similar reasoning applies to security. One frequently hears objections to prob-
abilistic measures of security because of the essentially unrepeatable nature of
the key events. People are happy with estimates of the probability of failure of a
hardware device because they can envisage testing a sufficient number of copies
for long enough, and computing the estimate from the resulting data. For se-
curity - as for non-intentional software failures - the uncertainty often concerns
one-off events. This requires a subjective, Bayesian interpretation of probability
as “strength of belief”.

Another objection to probabilistic reasoning about security stems from the
deliberate nature of attacks. The attacker knows what he is doing, so where is
the uncertainty? From the attacker viewpoint it lies, of course, in his uncertain
knowledge about the system. The system owner, on the other hand, may have
greater knowledge about the system, but is uncertain about the attackers’ be-

4 Bev Littlewood and Lorenzo Strigini

havior. He knows that he is dealing with deliberately malign attackers, rather
than merely randomly perverse nature, but this does not take away the intrinsic
uncertainty about what he will see, e.g. when the next successful attack will
occur.

So, like the notion of “systematic” failure, the notion of “deliberate” failure
concerns the failure mechanism, not the failure process. To a system owner,
observing the process of novel intrusions into his system, this will appear as a
stochastic process. The nature of this random process characterizes the security
of the system.

Of course, there are some ways in which the deliberate nature of (some) secu-
rity events is important [5]. For example, in the previous paragraph we referred
to movel intrusions: this is because once a security hole has been discovered,
the subsequent process of intrusions will be different - the intruders may try to
exploit the hole intensively - until the hole is fixed. Primary interest may be in
the first process, e.g. in the random variable “time to first successful intrusion”
- thus a simple example of a snapshot measure of security might be the mean
of this random variable (¢f mean time to failure). If holes are fixed as they are
found, we may also be interested in the stochastic process of successive events:
this is similar to the reliability growth processes for software reliability.

The important point here is that for security, as for reliability and safety,
we must take account of inherent uncertainty. Eliminating the uncertainty com-
pletely is almost never an option: no system is completely secure, just as no
system is completely safe, or completely reliable.

It follows that our discussion of the use of redundancy and diversity to in-
crease security must be carried out in probabilistic terms. This need not mean
that the probabilistic models will be the same as those used for reliability and
safety, because the nature of the uncertainty may be different for security (al-
though we believe that some models may carry across more-or-less unchanged).

By arguing for the necessity of a probabilistic approach, we do not intend to
suggest that it presents no practical difficulties. Measurement and estimation are
likely to be hard, and to depend upon a large element of expert judgement. But it
is worth asking how judgements about system security are made without such a
probabilistic formalism. What goes into the assertion “this system is sufficiently
secure”? Indeed, what does “sufficiently” mean here?

The most-cited difficulty is that of estimating parameters, e.g. the proba-
bility of a specific kind of attack occurring over a certain period of time. From
this viewpoint, security-relevant phenomena cover a range from recreational van-
dalism by large crowds, which allows extensive data collection and presumably
some ability to extrapolate to the future (forecasts of mass human behavior are
frequently successful in various areas, e.g. elections or buying preferences), to
one-off attacks by hostile governments, for which statistical extrapolation will
be close to impossible.

It is not necessary to have complete faith in the accuracy of numerical esti-
mates of security for a probabilistic approach to have value. Even for hardware
reliability, the numerical predictions obtained from “reliability models” are often

Redundancy and Diversity in Security 5

just educated guesses: useful, but far from infallible. The strength of probabilis-
tic methods is in allowing statements like: “with these components, design A will
give better reliability than design B over short mission times”, or “the crucial
parameter for this system is the probability of errors being correctly detected
in component C”, which are true for wide ranges of the values of the model
parameters. In more complex uses like safety cases, the main value of the use
of probabilities is often in the way that formal reasoning allows an expert’s
argument to be laid out for scrutiny and critique. It enables third parties to
question the contributions to the expert’s decision of his various information,
beliefs, assumptions and reasoning.

3 Redundancy, Diversity and Dependence

Redundancy and diversity are widely used to protect against mistakes and fail-
ures. Applications range from quite informal usage - e.g. having someone else
check your arithmetic - to engineered fault tolerant systems.

If we look at the simple case of parallel redundant systems, the term “redun-
dancy” usually indicates simple replication of a component in identical copies, as
adopted against “random” hardware failures. The term “diversity” has come to
be used especially for “multiple version software”, in which redundant software
“versions” are deliberately made to be different. This is because multiple copies
of a program, with exactly the same fault, may provide little protection against
software failures. With diverse versions, one hopes that any faults they contain
will be sufficiently different for the versions to show different failure behaviour.

The distinction between redundancy and diversity is not a hard and fast one,
but the notion of deliberate difference is the key to their use in computer systems
to protect against design faults. This difference can be achieved in several ways,
based on enforcing differences in the ways the versions are built. Thus different
design teams may be used, different software engineering practices, etc.

It is here that the word “independent” has been over-used. In the early
literature on software fault tolerance, it is possible to find people writing about
“independent” teams building “independent” versions, in the hope that these
would fail “independently”. It is really only the last of these uses of the word that
is formally defined - and this statistical independence of version failures would
indeed be a worthy goal. It would, for example, allow us to claim a probability of
failure on demand (pfd) of 1076 for a 1-out-of-2 system built from two versions
each having pfd 1073. Claims for independence of failure are, unfortunately,
hard to justify and rarely (if ever) correct. Indeed, experiments have shown that
real software versions had failure processes that are quite strongly correlated,
so that systems built from such versions would be much less reliable than an
independence assumption would suggest. Nevertheless, there was benefit in the
use of diversity: the multiple version systems were a lot more reliable on average
than individual versions. The lesson here is that the gain from the use of diversity
will depend on the degree of dependence between the failure processes of the
versions, not only on their individual reliabilities.

6 Bev Littlewood and Lorenzo Strigini

We would stress that much of what we say applies more widely than to multi-
version software. For example, work on diverse software fault-finding procedures
[6] has shown (admittedly in an experimental context) that “better than inde-
pendence” can actually be attained. In terms of system structure, there is no
need for the complete similarity of functionality, implicit in parallel-redundant
systems. One “version” may have a simple “get you home in an emergency” func-
tion, or a monitor/watchdog function, next to a “main” version of much greater
complexity and functionality. But in all applications of diversity the key lies in
dependence - we need to make this as low as we can to achieve dependability;
we need to evaluate it in order to assess dependability.

Failure independence itself is clearly not the optimum result. The best effect
of diversity would be a situation in which all the circumstances in which one
version fails are ones where another succeeds, and vice-versa, so that the prob-
ability of common failure is 0. In fact, looking at designers’ attitudes to seeking
diversity between redundant subsystems, we can identify different categories,
with different ideal best results (the names used below are tentative, just for use
in our discussion):

1. “separation”: designers simply seek to isolate redundant subsystems from
as many as possible common potential causes of failure. To tolerate physi-
cal faults, this implies physical separation, separate power supplies, etc. In
multiple-version software, one usually attempts to isolate the development
teams so that biases and misunderstandings do not propagate between them.
It is natural to see failure independence as the optimum that this approach
can aim for, though one would not expect to achieve it. The models of Eck-
hardt and Lee and Hughes (see [3,4]) show that any remaining common
influence on the failure processes of two subsystems, including the very fact
of receiing the same input sequences, will lead to positive correlation of
failures;

2. “forced diversity”: trying to diversify the way the unavoidable common influ-
ences affect the redundant subsystems. Using different, functionally equiva-
lent components in redundant subsystems eliminates the certainty that any
design faults will be identical among the subsystems. Forcing developers of
“diverse” software versions to use different algorithms for the same function
should reduce the risk that the common difficult areas in the requirements
will lead to common mistakes in the implementations [7]. There is no clear
guide to how much advantage this approach should produce, but the model
of Littlewood and Miller (see [3,4]) shows that, at least in some scenarios,
everything else being equal, it can only be an improvement (i.e., reduce corre-
lation between subsystem failures) and makes the goal of negative correlation
between failures and even zero failure rate at least theoretically achievable;

3. “tailored diversity”: if the designers know in some detail how their pre-
cautions affect susceptibility to causes of failure, this allows them to focus
“forced diversity” for lower correlation between the effects of common in-
fluences on the redundant subsystems. For instance, redundant hardware
subsystems could intentionally be selected so that they are most reliable in

Redundancy and Diversity in Security 7

different temperature ranges, within the range in which the redundant sys-
tem is to operate. For multiple-version software, instead, there is rarely any
attempt to “tailor” the versions to the particular kinds of faults that might
be anticipated [7]. In any form of “defense in depth” (including computer
security), this form of diversity demands that each successive layer of defense
be especially strong against those threats most likely to penetrate the other
layers. Again, the ideal system-level goal is 0 failure rate, though it may be
unattainable due to the inevitable “leakage” of each level.

In the next sections, we look at various possible applications of diversity for
security, and discuss them in light of these different possible approaches.

4 Redundancy and Diversity for Security

“Security” encompasses multiple attributes (confidentiality, availability, . ..) and
defending against multiple threats. Just as in other areas of dependability, differ-
ent security attributes may create conflicting demands on designers. Redundancy
and diversity, in their turn, come in many forms.

Voted redundancy, often seen as the stereotypical form of redundancy against
accidental faults, is comparatively rare in security. It may be used for decisions
on trust, when there is low enough probability that a majority of the parties
involved in voting has been compromised. A designer can adjust the degree of
majority required for the desired trade-off between the needs for a low probability
of the “bad guys” gaining a majority and determining the decision’s outcome,
and for a high enough probability of a decision being reached. The methods are
the same as in design for reliability.

More common is the case of redundancy of resources, in an (ideally) 1-out-
of-N configuration (i.e., in which the service can be provided, possibly in a de-
graded fashion, if at least 1 of the N redundant resources remains available). For
instance, if a server (for any kind of service) can be disabled by an attack, hav-
ing multiple servers is a defense. In general, whenever the goal of an attack is to
cause effects similar to those of a physical fault, e.g. unavailability of a resource,
it is natural for designers to consider the same defense. So, security benefits, in
terms of ability to guarantee a service even after an attacker has inflicted some
damage, are obtained from replication of communication lines, of messages, of
stored data; and from data redundancy, watchdog and audit programs for detect-
ing damage. Some security-oriented designs, like “secret sharing” [8,9], combine
resilience against partial damage with constraints on the loss of confidentiality
that a successful attack on a subset of the servers can achieve.

It is in the forms of error propagation and common-mode failures that the
analysis of a redundant scheme from a security viewpoint will differ from the
analysis from a reliability viewpoint. The main objection to trusting redundancy
for security is that if an attacker can defeat a certain system or defense, the
same attacker will have no trouble defeating two copies of the same. This kind
of objection cannot be discussed without reference to the multiplicity of security
attributes, threats and design possibility mentioned before.

8 Bev Littlewood and Lorenzo Strigini

For instance, suppose we have multiple servers in an 1-out-of-N configuration.
An example would be the Internet’s root Domain Name Servers, which were
repeatedly attacked recently [10]. They are meant to be a 1-out-of-13 parallel-
redundant system. Against certain threats, this set-up is clearly effective:

— accidental local faults (hardware faults, flood, fire) at different sites, without
a common cause, will be close to being independent events, giving vanishingly
small probabilities of common failure of all 13: these events can reasonably be
neglected in estimating the failure probability of the whole parallel system;

— physical attack to the premises of all the servers will require close to N times
the effort required to attack one of them. How much this reduces the prob-
ability of system failure would be complex to assess, requiring assumptions
about the attackers’ resources and cost-benefit trade-offs, but still redun-
dancy can be seen to be clearly effective.

Indeed [11] wrote before the attacks: “...root servers are extremely secure
... The protocols that govern the 13 root servers call for complete diversity. The
servers are geographically distributed, ... Those in the United States are almost
evenly divided between the East and West coasts”.

However, a common argument goes, attackers can easily steal resources around
the Internet to use in massive attacks, making the cost of attacking all servers
much lower. This makes it more likely that an attack that disabled one server
could disable them all. Failures of the redundant channels will have high posi-
tive correlation, and the parallel-redundant nature of the system would no longer
be a very useful defense. To continue the example, consider a different kind of
attacker, one who would try to penetrate, undetected, the host computers to
produce some subtler corruption of their data and software. How effective would
redundant defenses then be?

— suppose that the attacker needs to guess a key or password for each server
(and these have been chosen well to make the attack expensive). Then, the
attacker’s required effort is effectively multiplied by N;

— but if the attacker instead discovers a defect that creates a back door in
all servers, the extra effort due to the multiple servers will be minimal. To
avoid this risk, one would probably want some diversity of software among
the servers (which in this example probably exists, although it did not seem
important to the author of [11]), in addition to geographical separation;

— or the attacker could aim to penetrate just one server but to create local
damage there that will subtly subvert the whole redundant set. The multiple
servers become effectively a series system: compromising one will cause the
whole system to fail.

These complexities are often quoted to caution against expecting too much
help from redundancy. However, they are not specific to security. Designers in
other areas of dependable design are familiar with similar complexities; one
would not expect memory error-correcting codes to be a defense against ap-
plication software bugs, or replicated CPUs to defend against power failures; or
arrangements for safety to automatically benefit availability.

Redundancy and Diversity in Security 9

What can be generalized from these examples is perhaps obvious:

— different threats call for different kinds of redundancy, even in the same
system;

— whether a certain kind of redundancy is a cost-effective defense depends on
the detailed circumstances of the design problem;

— trade-offs may be required between various requirements, including secu-
rity requirements. These inevitably require quantitative (albeit approximate)
reasoning. Researchers have recently started publishing studies of security
scenarios using tools originally developed for studying design compromises
in fault-tolerant systems [12,13].

A subtler point concerns “diversity”. In which sense is the dispersion of
servers over the world “diversity”? What does it add to simple “redundancy”
(replication)?

This leads back to the various forms of “diversity” introduced in Sec. 3.
Creating two copies of a server is, against accidental faults, simple “separation”,
which can be increased by further physical isolation between the two. Making
the two servers use different software can be seen as further “separation”, against
accidental software faults. The different software for the two machines may be
intentionally developed in different ways to reduce the chance of common faults:
“forced diversity”, through “separation” of the fault-producing processes; and
the different ways may intentionally be chosen to have different known strengths
and weaknesses [7]. Geographical distance, as a defense against physical causes
of failure, is simply added “separation”. Against software faults, it is not even
that. Against physical attacks, it can be more than that: for an enemy with
limited resources, it would make it unlikely that both servers can be attacked
at once, and thus push towards negative correlation of attacks, and thus of the
failures they may cause. Against distributed attacks with stolen resources, again
it may not even confer “separation”.?

This discussion shows again that the meanings of words like “redundancy”
and “diversity” are somewhat ambiguous and ill-delimited. We do not advocate
more stringent definitions, which would contrast with common usage; rather, in
analyzing design solutions one needs to refer to the specific threats and mecha-
nisms employed and how they affect the correlation among failures.

There is currently renewed interest in using diversity for security. Many re-
cent papers invoke “diversity” as an aid for security. Without citing them all,
we can identify a few basic categories. Economic factors, with the increasing
common dependence on off-the-shelf products, naturally push towards greater
application of fault tolerance for all aspects of dependability [14, 15]. A category
of proposed designs for intrusion tolerance thus is meant to allow for diverse off-
the-shelf applications or platforms to coexist in a system. Another category of
proposals stems from the often repeated observation that lack of diversity in the

2 Similar reasoning applies to non-replication redundancy, e.g. error-
detecting/correcting codes, redundant data structures, watchdog, monitor or
audit processes.

10 Bev Littlewood and Lorenzo Strigini

computers on a network creates the potential for broad propagation of attacks,
as demonstrated by several Internet worm attacks. Authors have proposed e.g.:
random diversification of compilations to defeat buffer overflow attacks [16]; gen-
erating “variants of many OS modules, so some of the variants will be resistant
to new, previously unknown attacks” [17]; “randomizing” at installation time
the choice of COTS components (among different, equivalent implementations)
for forming a system [18]. HACQIT (Hierarchical Adaptive Control of Quality of
service for Intrusion Tolerance) [19] uses diverse off-the-shelf applications. The
Cactus architecture [20] and the SITAR architecture [21] are meant to support
diversity among application modules to enhance survivability; similar ideas are
proposed in [22]. Proposals for agent-based distributed intrusion detection [23]
cite support of diversity as one of their goals. Last, discussion papers argue the
general desirability of diversity; e.g., [24] proposes diversity among network ele-
ments, in along all possible dimensions of a design; [25] lists forms of diversity
available at different system levels.

Most of these examples can be seen as degrees of the “separation” or “forced
diversity” approaches: the hope is that “diversified” subsystems, though all hav-
ing unknown vulnerabilities, will not succumb to the same attacks. There is no
“tailoring” of diversity to threats. But, since general categories of attacks can be
identified and the efficacy of defenses varies between them, there is also a role
for “tailored diversity”. We will return to this after looking at some weaknesses
of the current debate about “diversity for security”.

5 Applying results from diversity research

The papers we cited demonstrate awareness, in the security community, of di-
versity as a potentially valuable tool. But, interestingly, none of these papers
discusses how to choose among different diverse designs, that use e.g. different
architectures or different selections of diverse components for the same archi-
tecture, or how to evaluate the effectiveness of the design once selected. The
rare statements about these issues are somewhat simplistic, and limited to de-
sign factors that a designer can control directly, without consideration of how to
evaluate their actual effect. For example:

— “The deployment environment is not susceptible to common-mode failures
since ITDOS supports implementation diversity in both language and plat-
form” [26]. This clearly refers to the intentions of the fault-tolerant design
rather than its effectiveness;

— “An important factor ...is the independence of the methods used, where
two methods A and B are independent if compromising A provides no in-
formation that makes it easier to compromise B, and vice versa. A simple
example of non-independence is when two encryption methods use the same
key ... While the independence of encryption methods is difficult to argue
rigorously, the risk of methods not being independent is likely to be mini-
mized if the methods are substantially different or if they encrypt data in

Redundancy and Diversity in Security 11

different size blocks” [27]. This emphasizes the need for “separation” against
faults affecting both components or propagating between them, but does not
address the other factors that may make common failures too likely.

Choosing among (diverse or non-diverse) solutions presents various difficul-
ties. Practitioners are familiar with some of these, e.g. the difficulty of evaluating
even a simple, non-redundant security system. We will discuss here some aspects
specific to diversity, hoping that this will contribute to insight for practitioners
and to selecting research directions.

An example of application of diversity is that of intrusion detection. Any
criterion, and any implemented system, for recognizing hostile activity has in-
complete coverage (less than 100% probability of recognizing such activity when
it happens): it appears natural to combine multiple criteria, and one design
solution is to deploy multiple intrusion detection systems (e.g., advertisements
for intrusion detection products claim as self-evident that combining “anomaly-
based” with “signature-based” intrusion detectors is desirable). The simplest
model for their use would be a 1l-out-of-N system: a threat is assessed to be
present provided that at least one of the intrusion detection systems (IDSs) de-
tects it. The problem would arise of deciding how effective the combined IDS
would be, so as to choose them appropriately. In this simple form of combi-
nation, increasing the number of diverse IDSs in the system can only increase
their combined coverage, but this may not be a feasible option: each added IDS
increases cost (false alarms, ownership costs, run-time overhead).

To choose a single IDS from those available, one would try to rank them by
performance, and choose the best one. Using the limited data known about com-
mercial or research systems [28-30], plus one’s opinions and anecdotal evidence,
a designer will be able to choose the “best” system in view of his constraints.

Suppose now that one is to choose two IDSs to deploy together. Should
one simply choose the two “best” IDSs from the previous ranking, supposing
that they satisfy one’s cost constraints? Not necessarily, since their combined
effectiveness will depend on both their individual effectiveness and the correlation
among their failures; any choice we make affects both.

Some help may come from a “tailored diversity” approach. Different IDSs
will be effective against different attacks. It would then seem that the correct
criterion for choosing is a deterministic coverage criterion: with the help of a
comparison of the various IDSs’ characteristics as in [31] and a knowledge of
which characteristics help to detect which attacks, one would enumerate the
attacks “covered” by each tool in isolation, and then by each pair of them in
combination. Ranking the sets of attacks covered by each pair, one would then
choose the “best” pair of IDSs, as proposed e.g. in [32]. This method, however,
neglects the uncertainty on the actual detection of each specific attack. Again,
we need to use probabilities. One clearly needs to combine the information about
the classes of attacks covered and about how well they are covered.

It is here that some results from previous research on diversity may help
(see [3,4]). A first-cut description of the problem runs as follows. If we choose
a specific attack x, a certain IDS, A, in the given operational conditions has a

12 Bev Littlewood and Lorenzo Strigini

probability 64 (x) of failing to detect it. Another IDS, B, will have a probabil-
ity () of failing to detect it. As the attacks arrive unexpectedly, according
to some probability distribution, the probabilities of A and B each missing the
next, unknown attack will be weighted averages (over attacks) of the functions
04(x) and 0p(x), say, Q4 and @p. A designer will try to protect the two IDSs
from causes of common failure, e.g. if they monitor a network will try to run
them on separate hosts, so that the activity of A will not affect the performance
of B, and vice versa. There will be still some common influences on both: e.g.,
the amount of network traffic to be monitored. To take account of these common
environmental conditions, we would include them in the description of the indi-
vidual attacks. An idealized model, then, will assume that, for a specific attack
x, the failures of the two IDSs are independent. But they will not be indepen-
dent in general, for the next, random attack X. A well-known equation from the
literature on diversity gives:

P (A and B both fail to detectX) = Z P(x)0a(x)0p(z) =
zeD

QaQB + covg (0a(x),0p(x)) (1)

where P(z) indicates the probability of the attack x in the environment of use, D
is the set of all possible attacks, and “cov” designates the covariance of the two
functions, roughly an indication of how similar the two “8” functions are. When
high, this indicates that attacks which are likely to be missed by A are also likely
to be missed by B. Zero covariance indicates independence. Negative covariance
is most desirable. Ideally, any attacks missed by A would be detected by B, and
vice versa. While this is unlikely to be achieved, nothing in principle prevents
the values of the covariance from being very low, especially if A and B were
“tailored” for different methods of attack. The modelling confirms, though, that
to evaluate the pair it is not sufficient to evaluate A and B separately. Somehow,
one must evaluate either the left hand term of the equation (the effectiveness of
the pair as a whole) or the separate terms of the right-hand side, which describe
each IDS separately plus, through the covariance, the effect of combining them.
In some experiments on software diversity against design faults, the covariance
part dwarfed the product that precedes it. A difference when applying equation
1 to IDSs’ failures to detect attacks is that “failure” encompasses not only the
effects of software bugs, but also the natural limits of the intrusion detection
algorithms. Thus, we will expect the terms Q4, @p to be greater than those
observed in software diversity experiments; but also, on the other hand, a better
chance for the designer of being able to rank the possible pairs of IDSs in terms of
covariance, by looking at which cues individual IDSs use and thus which attacks
they seem least able to detect. This possibility requires some more discussion.
The functions 64 (z) and 6p(x) are in practice unknowable: they describe the
effectiveness of an IDS with respect to every possible attack episode, specified in
minute detail. One can usually estimate (more or less accurately, by combining
statistical measures and educated guesses) probabilities of missing attacks by

Redundancy and Diversity in Security 13

type of attack. Given the attack types, C, Co, ..., we would thus have variables
Q1> Qaj2, -- indicating the probability of e.g. IDS A failing to detect an attack
of category 1, 2, etc. As shown in [33], equation 1 can be rewritten as:

P (A and B both fail to detectX) =

> P(X €C;) P(A and B both fail to detect X |X € C;) =)
i 2

Z P (X € Ci) (QaiQp)i + covaec, (a(x),05(x)))

This gives some practical improvements compared to (1). If we can choose
our classification of attacks so that within each type at least one between A
and B has practically constant value of its 6 function for all the attacks of
that type (a simple extreme case being that of deterministically detecting all,
or none, of the attacks of one type), the covariance terms will be zero. If we
can trust this conditional independence within each attack type, the problem
is reduced to evaluating A and B separately, albeit in somewhat greater detail
(i.e., for each attack type separately) than required if the covariance term were
zero in (1). A designer will try to make the sum), P(C;)Q4;Qp; as small as
possible, by choosing A and B so that their respective strengths and weaknesses
are complementary (low covariance between the average probabilities of missing
attacks of each type). One can also write this more modest inequality:

P (A and B both fail to detectX) =

> P(X €C;) P(A and B both fail to detectX|X € C;) < @)
i 3

ZP (X € Ci)min (Qayi, Qpli)

which, given the designer’s preference for IDSs with “complementary” weak-
nesses, may give low enough upper bounds to demonstrate the advantage of the
diverse system over either IDS alone. Of course, upper bounds are not sufficient
for an optimal choice of a pair of IDSs: for this, it is inevitable to refer to some
variation of equation 2, allowing for the large uncertainties on all its parameters.

Environmental conditions (e.g., network load) may influence the 6 functions.
It will then be advisable to use, in the categorization of attacks, not just qualities
like the kind of security weakness they exploit, but also these environmental
circumstances, e.g. the type “overflow exploit type X” would be divided into
subtypes “..with heavy load” and “..with light load”. In mathematical terms,
this attempts to reduce the covariance term within each attack type simply by
narrowing the range of variation of either 6 function.

The important point here is that it is necessary to evaluate IDSs by types
of attacks and of conditions of use. In practice, however, in the rare meritorious
efforts to report the detection efficacy of IDSs [29, 28], only average measures of

14 Bev Littlewood and Lorenzo Strigini

efficacy are often obtained. However, [30] classified test results by coarse cate-
gories of attack (8 categories); finer classifications may be needed. This greater
attention in data collection to the variations in IDS efficacy would be useful in
any case, irrespective of whether diversity is used, for system designers to gauge
the range of effectiveness they can expect depending on variations in the attack
population, which of course is under the control of attackers.

6 Conclusions

This is a very initial attempt to highlight important aspects of diversity for
security and the need for more of a formal mathematical approach to estimating
its effectiveness. Some immediate conclusions from applying earlier models are:

— the idea of “independence” must be treated with care, making sure not to
confuse its various meanings;

— in choosing diverse subsystems from a given set, attention is needed to the
trade-off between the goodness of the individual subsystems and their “di-
versity”;

— it is important to measure the performance of IDSs by category of attack,
rather than for some average mixture of attacks; to some extent, the equa-
tions help to combine one’s assessments of specific aspects of IDSs into guid-
ance for design.

We would be the first to admit that these results are rough and imprecise; for
some readers, they will undoubtedly just confirm common sense. But we have
seen in previous research that common sense about diversity is actually very
different for different people, and often leads to conclusions that turn out to be
demonstrably false. For example, the formal statement and proof of the elusive-
ness of failure independence has proven counterintuitive (and thus important)
in reliability and safety, and will apply to many security scenarios as well.

Important directions for developing these ideas include:

— clarifying the roles of the various forms of uncertainties affecting any predic-
tion, e.g. differentiating the effects of the unknown attack profiles from that
of the unknown defects of the defender’s system:;

— analyzing the complex real-life systems, where redundancy/diversity are de-
ployed in different guises, concurrently, against various threats.

We do not propose these approaches as a way for obtaining precise, demon-
strably correct predictions of e.g. how many attacks will go undetected on a
particular system. This is beyond the reach of probabilistic methods in most
field of dependability, and the more so the fewer statistical data are available.

Much of the chance for security system designers to make well-guided choices
depends on better empirical measurements of the actual effectiveness of their
various defense methods and components. However, these will never be very
accurate. Yet, design decisions should at least be consistent with the information
that one does have. Explicit probabilistic modelling seems the only way for
ensuring this consistency.

Redundancy and Diversity in Security 15

References

10.
11.
12.

13.

14.

15.

16.

17.

18.

Randell, B., Dobson, J.E.: Reliability and Security Issues in Distributed Com-
puting Systems. In Proc. 5th IEEE International Symposium Reliability in Dis-
tributed Software and Database Systems, Los Angeles (1986) 113-118.

Joseph, M.K., Avizienis, A.: A Fault-Tolerant Approach to Computer Viruses. In
Proc. 1988 Symposium on Security and Privacy, Oakland, CA (1988) .
Littlewood, B., Popov, P., Strigini, L.: Modelling software design diversity - a
review. ACM Computing Surveys 33 (2001) 177-208.

Littlewood, B.: The impact of diversity upon common mode failures. Reliability
Engineering and System Safety 51 (1996) 101-113.

Littlewood, B., Brocklehurst, S., Fenton, N.E., Mellor, P., Page, S., Wright, D.,
Dobson, J.E., McDermid, J.E., Gollmann, D.: Towards operational measures of
computer security. Journal of Computer Security 2 (1994) 211-229.

Littlewood, B., Popov, P., Strigini, L., Shryane, N.: Modelling the effects of com-
bining diverse software fault removal techniques. IEEE Transactions on Software
Engineering SE-26 (2000) 1157-1167.

Popov, P., Strigini, L., Romanovsky, A.: Choosing effective methods for design di-
versity - how to progress from intuition to science. In Proc. SAFECOMP ’99, 18th
International Conference on Computer Safety, Reliability and Security, Toulouse,
France (1999) 272-285.

Shamir, A.: How to share a secret. Comm. of the ACM 22 (1979) 612-613.
Deswarte, Y., Blain, L., Fabre, J.-C.: Intrusion tolerance in distributed systems.
In Proc. IEEE Symp. on Research in Security and Privacy, Oakland, USA (1991)
110-121.

Cherry, S.M.: Took a Licking, Kept on Ticking. IEEE Spectrum December (2002).
Cherry, S.M.: Striking at the Internet’s Heart. IEEE Spectrum December (2001).
Madan, B.B., Goseva-Popstojanova, et al : Modeling and Quantification of Secu-
rity Attributes of Software Systems. In Proc. DSN 2002, International Conference
on Dependable Systems and Networks - International Performance and Depend-
ability Symposium, Washington, D.C., USA (2002).

Singh, S., Cukier, M., Sanders, W.H.: Probabilistic Validation of an Intrusion-
Tolerant Replication System. In Proc. DSN 2003, International Conference on
Dependable Systems and Networks - Dependable Computing and Communica-
tions Symposium, San Francisco, U.S.A. (2003) 615-624.

Popov, P., Strigini, L., Romanovsky, A.: Diversity for off-the-Shelf Components. In
Proc. DSN 2000, International Conference on Dependable Systems and Networks
- Fast Abstracts supplement, New York, NY, USA (2000) B60-B61.

Cowan, C., Pu, C.: Survivability From a Sow’s Ear: The Retrofit Security Re-
quirement. In Proc. Information Survivability Workshop - ISW ’98, Orlando, USA
(1998).

Forrest, S., Somayaji, et al: Building Diverse Computer Systems. In Proc. 6th
Workshop on Hot Topics in Operating Systems (HotOS-VI), (1997) 67 -72.
Cowan, C., Pu, C.: Immunix: Survivability Through Specialization. In Proc. SEI
Information Survivability Workshop, San Diego (1997).

Casassa Mont, M., Baldwin, A., Beres, Y., Harrison, K., Sadler, M., Shiu, S.: To-
wards Diversity of COTS Software Applications: Reducing Risks of Widespread
Faults and Attacks. Trusted E-Services Laboratory, HP Laboratories Bristol, doc-
ument HPL-2002-178, June 26 (2002).

16

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bev Littlewood and Lorenzo Strigini

Reynolds, J., Just, J., Lawson, E., Clough, L., Maglich, R., Levitt, K.: The Design
and Implementation of an Intrusion Tolerant System. In Proc. DSN 2002, Inter-
national Conference on Dependable Systems and Networks, Washington, D.C.,
USA (2002) 285-292.

Hiltunen, M.A., Schlichting, R.D., Ugarte, C.A., Wong, G.T.: Survivability
through Customization and Adaptability: The Cactus Approach. In Proc.
DARPA Information Survivability Conference and Exposition, (2000).

Wang, F., Gong, F., Sargor, C., Goseva-Popstojanova, K., Trivedi, K., Jou, F.:
SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services. In
Proc. 2001 TEEE Workshop on Information Assurance and Security, West Point,
New York, U.S.A (2001).

Ellison, R., Fisher, D., Linger, R., Lipson, H., Longstaff, T., Mead, N.: Survivabil-
ity: Protecting your critical systems. IEEE Internet Computing 3 (1999) 55-63.
Dasgupta, D.: Immunity-Based Intrusion Detection System: A General Frame-
work. In Proc. 22nd National Information Systems Security Conference, NISS,
Arlington, USA (1999).

Zhang, Y., Vin, H., Alvisi, L., Lee, W., Dao, S.K.: Heterogeneous Networking: A
New Survivability Paradigm. In Proc. NSPW’01 , 2001 Workshop on new security
paradigms, Cloudcroft, New Mexico, USA. (2001) 33-39.

Deswarte, Y., Kanoun, K., Laprie, J.-C.: Diversity against Accidental and De-
liberate Faults. In Proc. Computer Security, Dependability and Assurance: From
Needs to Solutions, York, England and Washington, D.C., USA (1998).

Sames, D., Matt et al: Developing a Heterogeneous Intrusion Tolerant CORBA
System. In Proc. DSN 2002, International Conference on Dependable Systems
and Networks, Washington, D.C., USA (2002).

Hiltunen, M.A., Schlichting, R.D., Ugarte, C.A.: Using Redundancy to Increase
Survivability. In Proc. Third Information Survivability Workshop (ISW-2000),
Boston, Massachusetts, USA (2000).

Durst, R., Champion, et al: Testing and Evaluating Computer Intrusion Detection
Systems. Comm. of the ACM 42 (1999) 53-61.

Maxion, R.A., Tan, K.M.C.: Benchmarking Anomaly-Based Detection Systems.
In Proc. DSN 2000, International Conference on Dependable Systems and Net-
works, New York, New York, USA (2000) 623-630.

Lippmann, R.P., Fried, D.J., Graf, 1., Haines, J.W., Kendall, K.R., David Mc-
Clung, Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman,
M.A.: Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intru-
sion Detection Evaluation. In Proc. DARPA Information Survivability Conference
and Exposition (DISCEX ’00), Hilton Head, South Carolina, U.S.A. (1999) 12-26.
Jackson, K.A.: Intrusion detection system (IDS) product survey. Los Alamos Na-
tional Laboratory, document LA-UR-99-3883, June (1999).

Alessandri, D.: Using Rule-Based Activity Descriptions to Evaluate Intrusion-
Detection Systems. In Proc. 3rd International Workshop on Recent Advances in
Intrusion Detection (RAID 2000), Toulouse, France (2000) 183-196.

Popov, P.; Strigini, L. et al: Estimating Bounds on the Reliability of Diverse
Systems. IEEE Transactions on Software Engineering SE-29 (2003) 345-359.
Kennedy, C.M., Sloman, A.: Closed Reflective Networks: a Conceptual Framework
for Intrusion-Resistant Autonomous Systems. University of Birmingham, School
of Computer Science, Technical Report CSR-02-3, February (2002).

