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Abstract — The most popular forms of fault tolerance against 
design faults use "asymmetric" architectures in which a 
"primary" part performs the computation and a "secondary" 
part is in charge of detecting errors and performing some kind 
of error processing and recovery. In contrast, the most studied 
forms of software fault tolerance are "symmetric" ones, e.g. N-
version programming. The latter are often controversial, the 
former are not. We discuss how to assess the dependability 
gains achieved by these methods. Substantial difficulties have 
been shown to exist for symmetric schemes, but we show that 
the same difficulties affect asymmetric schemes. Indeed, the 
latter present somewhat subtler problems. In both cases, to 
predict the dependability of the fault-tolerant system it is not 
enough to know the dependability of the individual 
components. We extend to asymmetric architectures the style 
of probabilistic modeling that has been useful for describing 
the dependability of "symmetric" architectures, to highlight 
factors that complicate the assessment. In the light of these 
models, we finally discuss fault injection approaches to 
estimating coverage factors. We highlight the limits of what 
can be predicted and some useful research directions towards 
clarifying and extending the range of situations in which 
estimates of coverage of fault tolerance mechanisms can be 
trusted. 

Keywords-software fault tolerance; checker coverage; fault 
injection; dependability benchmarking 

I.  INTRODUCTION  
Fault tolerance against design flaws is widely recognized 

to be desirable, in particular in view of the increasing 
dependence on off-the-shelf software for even critical 
applications [1].  

We address here the problem of assessing the 
dependability gains achieved by these forms of fault 
tolerance. There has been a large amount of work on 
modelling the effectiveness of “software fault tolerance”1 
(see [2] for a review and www.csr.city.ac.uk/diversity for 
more recent research), to understand what advantages can in 
theory be expected from it and how these can be pursued 
through the development process. These models have 
helped the understanding of the factors that determine the 
probability of common mode failures between redundant 

                                                           
1  Most of the literature refers to software, although fault tolerance 

against hardware design faults is a recognised need. For instance, both 
main manufacturers of large fly-by-wire airliners, Airbus and Boeing, use 
redundant, diverse processors for flight-critical software. 

components in these systems. But this research has been 
mostly limited to “symmetric” architectures: “multiple 
version software” and similar schemes, in which two or 
more diverse, redundant components perform equivalent 
functions and their outputs are “adjudicated” (by voting or 
some other algorithm, built into the computer system or the 
physical controlled systems) to decide which values will be 
output to the controlled system. Such architectures are 
important for some highly critical applications, but also 
expensive and relatively rare. In most systems, fault 
tolerance against design faults takes the form of 
“asymmetric” architectures, in which a “primary” 
component (we will often use the term “primary” alone for 
brevity) performs the required computation, and other 
components perform error detection, trigger error correction 
and state recovery mechanisms, or steer the system to a safe 
state, and so on. These architectures are so commonplace 
that a list of examples could easily become endless. 
Asymmetric fault-tolerant schemes are found at all levels of 
details in designs, from run-time checks within any program 
or component thereof, to watchdog applications that monitor 
the whole visible behavior of a complex system for failures, 
or for  safety-relevant failures. Here we are interested in the 
probability of system failure (that is, a failure of the primary 
component that the fault-tolerant mechanisms fail to tolerate 
or mitigate as desired) in these architectures. Despite the 
huge variation in the details of these systems, we are 
interested at first in discussing them at a level of abstraction 
at which they are substantially similar.  

We consider the assessment of these systems. One can 
measure reliability of any system by long enough 
observation of operation or realistic testing. But for critical 
applications, there is normally a need to predict 
dependability before a long enough period of observation 
using reliability models and estimation of component 
reliability parameters. For symmetric systems, a major 
difficulty has been found, in that such shortcuts as assuming 
failure independence between redundant components are not 
justified  [2]. For asymmetric systems, the preferred models 
rely on coverage factors, which could be estimated from 
field measurements (but with some difficulties) or by fault 
injection.  

One of our concerns is that the difficulties in assessing 
the dependability of symmetric systems are widely 
recognised, but the methods for assessing asymmetric 
systems are not usually subjected to the same degree of 
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scrutiny. We develop here a model to help with this 
scrutiny, and apply it to practical scenarios with asymmetric 
systems. 

We emphasize that we do not argue for or against any 
specific architecture, symmetric or asymmetric. Our focus is 
on highlighting often ignored difficulties in the means for 
assessing asymmetric systems. 

For the sake of simplicity, we will refer our initial 
discussion of asymmetric systems to a single practical 
example: checkers, i.e., error detection mechanisms (which 
are common to almost all forms of asymmetric fault 
tolerance), although the necessary reasoning will be very 
similar for e.g. error recovery mechanisms. 

The rest of the paper is organized as follows. Section 2 
discusses primary-checker systems and introduces a basic 
model and some necessary notations. In section 3 we state 
the practical problems we would like to address in this 
paper. In section 4 we present probabilistic models of 
asymmetric fault tolerance. In section 5 we discuss the 
implications of the models for the problems stated in section 
3. In section 6 we summarize our findings, their limitations 
and outline directions for future research. 

II. PRIMARY-CHECKER SYSTEMS 

A. Checkers in software engineering 
While N-version programming has been hugely 

controversial, with both its cost-effectiveness and its 
effectiveness being questioned, the use of checkers is 
commonly accepted as self-evidently good practice. Many 
authors in software engineering do not even mention that 
checkers are a part of fault tolerance, and that knowledge 
from the fault tolerance literature applies to them, e.g., about 
the importance of coverage factors2 (the probability of the 
checker flagging a failure of the primary, conditional on the 
failure occurring), and the risk that adding fault-tolerant 
features to a system may reach a point of diminishing, or 
even negative, returns. A plausible reason for this general 
trust in checkers is a belief in simplicity. Checkers only 
need to verify the results of the primary’s computation, not 
to replicate them. So, they are often simpler than extra 
versions of the primary would be, and thus cheaper and 
easier to develop correctly. Also, the specification of a 
checker sometimes has little in common with that of the 
primary component, making it plausible that the two will 
not suffer from similar implementation flaws causing 
common failures. For instance, an important paper about 
innovative ways of building checkers [3] stated that 
requiring a checker to be computationally simple is 
important to achieve this diversity: “we claim (heuristically) 
that C must be doing something essentially different from 
what P does, and so, if buggy, may reasonably be expected 
to make different errors than P. […] we would expect few 
correlated errors; moreover, we would expect more 
uncorrelated than correlated errors”. 

Few would argue against pursuing diversity between 
primary and checker component; but when it comes to the 

                                                           
2  We often use the term “coverage” alone for brevity. 

more quantitative statements quoted, informal judgments 
like these, when applied to the merits of symmetric software 
fault-tolerance, have at times been found to be misleading. 
For instance, it seems reasonable to many that 
independently developed software channels are likely to fail 
independently in operation, but this has been shown to be 
unfounded both empirically [4] and theoretically [5]. We 
will apply to asymmetric software the modeling approach 
first applied by Eckhardt and Lee [5] to the critique of 
symmetric fault tolerance, hoping to clarify possible sources 
of fallacies in intuitive judgments. 

The questions to which designers or assessors may need 
answers include, for instance: how much of a dependability 
gain would I achieve for my system by adding a particular 
checker? How effective are checkers of a certain category, 
for applications in general? What is the effective 
dependability of a specific system, which uses checkers for 
fault tolerance? 

The problem of assessing the coverage of checker 
software has been attacked empirically, through fault 
injection [6], [7] and its application to so-called 
“dependability benchmarking” [8], [9]. Researchers are 
aware of the difficulties of selecting representative samples 
of faults and of extrapolating from measurements that are 
inevitably based on non-perfectly representative samples 
[8], [9], [10] , [11]. With respect to these efforts, we wish to 
define more formally the issues of prediction, and of 
sampling of faults and errors.  

B. Model of asymmetric faut tolerant systems 
We choose for analysis the simplest model of an 

asymmetric fault-tolerant system: a single asymmetric fault-
tolerant component (FTC) made up of two components, a 
primary and a checker (Figure 1). We assume that the 
operation of the primary and the checker is naturally 
described in a discrete time frame: the primary performs 
some operation, and succeeds or fails in it; the checker 
checks whether the primary succeeded or failed, and it in 
turn may succeed or fail; how exactly its output is used is 
not important at this stage. The dependability measures of 
interest are probabilities of failure per demand (pfd).  

 

Figure 1. Asymmetric fault-tolerant component (FTC). 



   

C. Specification of the primary component   
A program's specification describes a relation between 

the spaces of demands3 and of outputs, i.e. a subset of their 
Cartesian product: specifically the set of all those {demand, 
output} pairs formed by a demand value and an output that 
is correct (according to the specification) for that demand.  
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Figure 2. Specification of a single-input, memoryless program as a subset 
of the Cartesian plane. 

For instance, Figure 2 represents, limited to a subset of 
the {demand, output} space (“demand” to the system – x 
axis – and “output” of the primary – y axis), a specification 
requiring a program to calculate y=sin(x), for x in the 
interval [0,2], with a maximum error of 5% and satisfying 
the condition sin(x)!14. The behavior of a specific program 
! built to this specification is typically described by a 
single-valued function (for each demand value x it 
deterministically produces one output, " #x,!$ ), represented 
in the graph by a set of points, that we would like to lie 
within the shaded area. If a primary program ! produces an 
erroneous output on an input, then one of these points would 
lie outside the shaded area in the figure. The projections on 
the x axis of all such points defines the “failure set” of the 
program (the set of demands on which it fails). 

D. Specification of the checker component 
A checker typically has as its inputs the outputs of the 

primary together with the demands submitted to the primary 
(or parts of each demand: the checker is often built  so that it 
does not have visibility of the internal state of the primary, 
nor memory of previous inputs to it. Our arguments do not 
depend on whether the primary has state or whether this is 
visible to the checker, so we will only refer to our stateless 

                                                           
3  We refer to “demands”, not inputs, to avoid confusion when 

referring to stateful systems. “A demand” will mean “the set of values of 
all input variables and all internal state variables (for a program that 
preserves state from an invocation to the next) at an invocation of the 
program”.  

4  Specifying just “calculate sin(x)” would not make sense with real 
computer arithmetics: the allowable numerical errors must also be 
specified. We have allowed errors as large as 5% in this example just so 
that it can be visualized in the graphs. There may be some subtler 
requirements, e.g. that the function " #x,!$  approximates a continuous 
function and in other ways resemble the graph of a sine function. 

example to illustrate the modeling). The checker’s specified 
output is a Boolean value, where “1” stands for “alarm: the 
primary’s output is erroneous”. Its specification is a function 
whose domain is the set of all possible {demand, output} 
pairs and whose range is { “OK”, “alarm”}.  

That is, the checker’s specification identifies an “alarm 
set”, within the {demand, output} space, on which the 
checker is required to issue an “alarm” output. A specific 
checker % implements a specific “alarm” function A%(%,x,y). 
For instance, in Figure 3 the checker is specified as a logical 
OR among the violations of several assertions: 

C%(x,y)=NOT(assertion1(x,y)) & NOT(assertion2(x,y))…  
where x indicates the value of the demand, and y the output 
of the primary. The horizontal stripe at the top in the figure 
exemplifies the special kind of assertions that check for 
“illegal” outputs, i.e., outputs that must never be produced, 
for any demand. A specification may also define “illegal 
inputs”, which are not expected to be used in operation, but 
may occur, e.g. as a result of accidental failure or malicious 
activity. In the general case, checkers also check for outputs 
that are only erroneous for certain demands, but correct for 
other demands, and thus define more complex patterns, like 
the triangular wedge on the left in the figure.  

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5
x

undetected errors

undet.
err.

errors (illegal values) detected by the assertion "y ' 1"

errors detected by
the assertion
"y '  x(1+( )"

correct

 

Figure 3. Specification of a possible checker for the primary specified in 
Figure 2. The areas labelled “errors [..] detected by...” identify input-output 

pairs for which the specified checker would output “alarm”.  

On each demand, there are four possible system 
behaviors: correct behavior of the primary, with no alarm 
from the checker; detected failure (of the primary, flagged 
by the checker); undetected failure of the primary, which we 
will also call failure of the fault-tolerant component; and 
false alarm (the primary’s output is correct but flagged as 
wrong by the checker).  

Ideally, we would wish a checker to have 100% 
coverage, i.e., such that all errors of the primary will trigger 
an “alarm” output from the checker. The alarm set of such a 
checker would cover all the space of erroneous {demand, 
output} pairs, leaving no white space in the Cartesian plane 
in Figure 2 or 3. We would also usually wish a checker to 
produce no false alarms, i.e., its alarm set to have no 
overlap with the set of correct {demand, output} pairs. 
However, either or both goals may be infeasible or 
uneconomical, and they are often in contrast. 



   

It is convenient to identify the class of “complete 
checkers”, specified to detect all erroneous outputs from the 
primary and produce no false alarms, as opposed to “partial 
checkers”, specified to miss some failures, for the sake of 
simplicity, as in Figure 3. For instance, if the primary is 
specified to compute (exactly) a reversible function [12], a 
checker that computes the inverse function and compares it 
against the input to the primary is a complete checker. For a 
complete checker, the only reason why failures of the 
primary may go undetected is imperfect implementation of 
the checker. For a partial checker, some “gaps” in the 
coverage are mandated by the checker’s specification. The 
software engineering literature tends to deal with checkers 
specified to produce no false alarms; by contrast, checkers 
for safety and security may well be specified to produce 
even frequent false alarms for the sake of reducing the risk 
of undetected failures. In this paper, for reasons of space, we 
do not consider false alarms and the attendant design trade-
offs. 

E. The uncertainties affecting  assessment 
The benefits brought by a checker are naturally 

quantified through a coverage factor, i.e., the probability of 
it correctly flagging an incorrect output of the primary, on a 
randomly sampled demand to the system. This probability 
summarises the effects of three sources of uncertainty 
(Figure 4): which faults are present in the primary 
component, which faults are present in the checker 
component, and the value of the demand itself (and thus 
whether it will trigger one of the faults in the primary, and 
in such a way that the resulting error will or will not be 
flagged by the checker). 
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Figure 4.  Sources of uncertainty affecting whether a demand will cause 
failure of the primary component and whether this will be detected by the 

checker component.  

An elegant representation for uncertainty about faults is 
as follows [5]. Design faults, for instance in the primary,  
are created by the software development process. The 
development process can be seen as a process of random 
selection from a probabilistic distribution of all the possible 
primary components which could be created to the given 
specification. Each possible primary, !, is described by its 
demand-to-output mapping, O(!,x). We will designate the 
primary developed through this random selection by a 
random variable *; for a specific primary, e.g., !, saying 

that we do not know its faults means that we do not 
completely know the function O(!,x) that ! actually 
implements 5 . The same ideas apply to the faults of the 
checker. The creation of physical faults can also be seen as 
sampling, according to a specific probability distribution, 
from a population of possible components, which includes 
the non-faulty component, say !+, and all possible faulty 
ones !i, characterised by having different behaviours 
O(!i,x).  

Given a population !,  of the possible primaries, we 
will call M!(!) the probability of the particular primary ! 
being chosen at random from !,  by the development 
process. This probability distribution is normally unknown; 
the purpose of this notation is to highlight the effects of this 
form of “randomness” on the dependability measures of 
interest. Similarly, we can designate a probability M%(%# of 
a specific checker-% being selected by the development 
process from the population of the possible checkers, ,%. 
Last, the value of the demand is selected, by the 
environment in which our FTC operates, according to a 
probability distribution Q(x). 

In this paper, we will consider a restricted set of 
problems in which, given a specific checker, one wishes to 
assess the dependability gains that it would bring to a 
specific primary, or to a primary obtained from a given 
population !,  and distribution M!(!).  

It is worth pointing out that once a primary and a 
checker components have been assembled into a system 
(our “FTC”), the demand profile for the checker (i.e. the 
probability distribution of the <x, y> pairs submitted to it) 
depends on the primary. For a particular demand, x, and a 
particular primary, 1! , the checker will see the pair <x, 
" #xO ,1! >. Given a different primary, 2! , on the same 

demand, x, the checker would see a pair, <x, " #xO ,2! >, 
which may be different. In both cases the demand profile for 
the primaries is the same, Q(x), but the profiles for the 
checker will differ, having in common that the marginal 
distribution of the variable x, Q(x), is the same. 

III. PROBLEM STATEMENT  
We are interested in assessing the effectiveness of fault 

tolerance in asymmetric fault-tolerant systems, with a 
specific interest in (a) checkers as a concrete category of 
fault tolerance mechanisms and (b) fault tolerance against 
software (or generally design) faults. We consider the 
problem of assessing coverage factors experimentally, and 
the use of fault injection to this end. There is a range of 
scenarios of application of this approach to assessment, and 
to highlight the issues that affect its validity we will identify 
two concrete scenarios to represent opposite extremes of the 
range: 

                                                           
5  We will use uppercase letters to designate random variables, and 

lowercase letters to designate specific values. Note that if an argument of a 
function is a random variable, the value of the function becomes itself a 
random variable.  



   

1. estimating coverage with respect to transient faults 
caused by cosmic ray particles in a particular 
computer system (i.e. physical faults rather than 
design faults). For the estimation, faults are produced 
by fault injection. A specific primary software 
component is the target of the measurement, and the 
fault injection creates a population of alternative 
primaries. The failures of the primary are counted, 
and so are the successful detections of these failures 
by the checker. The ratio of the two is an estimate of 
coverage.  

2. “dependability benchmarking” with respect to 
software faults. This is a variation of the previous 
scenario. The purpose is typically to compare 
different products of similar functionality by 
subjecting each one to the same procedure of fault 
injection. The products can be seen as fault-tolerant 
components (in our terminology), and the observed 
effects of each injected fault can be classified as 
tolerated or not tolerated (leading to system failure), 
so that a coverage factor can be estimated. The goal is 
often to rank the “benchmarked” products according 
to how well they coped with the set of injected faults.  

In terms of our model, in both cases, fault injection (or 
the injection of errors in the state of the target systems to 
emulate the effects of faults) creates a distribution of 
alternative primary components. We will artificially 
simplify the models by assuming that checkers are not 
affected by fault injection and do not change between 
measurement and operation. 

We will look at these problems more formally and 
scrutinize the rationale behind the current and proposed 
practices for dealing with them. 

 

IV. MODEL OF ASYMMETRIC FAULT-TOLERANT 
SOFTWARE 

A. Score functions 
We start by modeling the behavior of the primary and 

the checker6. We first specify the primary via a function 
" #xO , whose value for each demand x is the set of 

acceptable outputs. The output value that an implementation 
of the primary produces on demand x must belong to the set 
" #xO . In the example in Figure 2, " #xO  is represented in the 

graph by the set of y values shown in grey for the given x.  
Let us denote as " #xO ,!  the value that a particular 

primary, ! , produces in response to demand x. " #xO ,!  will 
be an element of the set " #xO   iff the primary processes the 
demand correctly and will be outside the set " #xO  iff the 
primary fails. 

                                                           
6 This modeling is conceptually the same as that used in [13], which 

relies on defining the coverage conditional on a certain {activity, fault} 
pair. However, we describe the set of possible events with very fine 
granularity, to emphasize that the checker's coverage, which is a probability 
conditional on a class of events, is normally an average of a 'pointwise' 
coverage that is deterministically 0 or 1 for each {demand, fault} pair. 

Now let us define the score function " #x,!.  for a 
particular implementation, ! , of the primary as the 
following indicator function: 

" # " # " #
/
0
1 2

3
elsewhere

xOxOif
x

,1
,,,0

,
!

!.    (1) 

Its expected value, " #x4 , over !,  will give the 
probability that a randomly chosen primary will fail when 
processing demand x. Following Littlewood and Miller [14] 
we call this expected value difficulty of demand x. 

The value, " #xO ,! , which the primary produces when 
processing demand x varies between implementations of the 
primary. We capture this variability using another 
(indicator) function, " #yxl ,,!! : 

" # " #
/
0
1 3

3
elsewhere

yxOif
yxl

,0
,,1

,,
!

!!     (2) 

If there is a population of primaries, for instance created 
by faults, the expected value, " #yxL ,, , that this function 
takes over the population of primaries, !, , represents the 
probability that a randomly chosen primary, given the 
demand x, will produce y, and thus presents the checker 
with the pair " #yx, .  

" # " # " #5
,

, 3 !! !! MyxlyxL ,,,                             (3) 

Note that " #yxL ,,  is a conditional probability (of the 
“randomly chosen” primary producing output y given 
demand x) and indeed, " # 1, 35 ,

y

yxL .  

The function " #6, ,xL  is important because it defines the 
demand profile created for the checker by the primaries 
(when processing each specific demand x). It depends on the 
population !, and the distribution " #6!M  defined on !, . 
That is, any change in the process that produces  " #6!M  and 

!,  – the software development process, or a physical fault 
process – may change " #6, ,xL .  

Now we turn our attention to the checker. We define a 
“score function” for checker % as the indicator function: 

" #
" #

" #
7
/

7
0

1
8

2
3

elsewhere
xOythatcorrectlydetects

orxOyeitherif
yx

,1
.

,0
,, %%.%   (4) 

Note that we have defined this score function to flag the 
false negative failures of the checker (i.e. when the checker 
fails to detect a failure of the primary) as 1, but not to flag 
the false positives (false alarms), because we are not going 
to analyze the probability of false alarms. The definition of 
the score function is further illustrated by Figure 5. 
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Figure 5.  The %.  function for the checker specified in Figure 3, if 

implemented correctly. " #yx,,%.%  = 0 in the white area, and 

" #yx,,%.%  = 1 in the grey areas. 

B. Probability of undetected failure and coverage 
Given a specific primary ! , checker %  and demand x 

the following 3 combinations are possible for the pair of 
scores [ " #x,!. , " #yx,,%.% ]:  

- 00: the primary processes x correctly, and the 
checker outputs ‘OK’ or raises a false alarm;  

- 10: the checker detects a failure of the primary; 
- 11: the checker misses a failure of the primary (i.e. 

the fault-tolerant component fails). 
The fourth combination, 01 is impossible due to our 

definition (4).  
Each of these outcomes will have a probability (for a 

randomly chosen primary and a given checker). We will 
denote these as p00, p10 and p11, respectively (omitting the 
argument (x) for brevity). For the “difficulty” of the demand 
for the primary, " #x4 , defined earlier, the following holds: 
" # 001110 1 pppx 93:34 . 
1) Probability of undetected failure 

Using the indicator functions and probabilities, defined 
so far, we can express directly the probability of undetected 
failure as follows: 
" #

" # " # " #" # " # " #

" # " # " #.,,,

,,,,,,
,

5 5

5 5

;
;

<

=

>
>

?

@

3;
;

<

=

>
>

?

@

3

x y

x y

xQyxLyx

xQMxOxyxlx

failureundetectedP

%.

!!%.!!.

%

!
!%    (5) 

where the inner summation represents the probability of 
undetected failure given a specific demand x, and the outer 
summation averages this over the demands. The probability 
of failure of the primary (on average over our notional 
“population” with different faults) is: 

 

" #

" # " # " #

" # " # " #A B.

,

XxQx

xQMx

PprimaryoffailureP

Q
x

x

fp

44

!!.
!

!

C3

3;
;

<

=

>
>

?

@

3D

5
5 5    (6) 

 
where E designates the expected value.  

2) Checker coverage 
The coverage of the checker is then expressed using the 

ratio of the two expressions above: 

" # " # " #

" # " #
.

,,,

1
5

5 5 ;;
;

<

=

>>
>

?

@

93

x

x y

xQx

xQyxLyx

Coverage
4

%.%

 (7) 

This equation highlights how the coverage depends both 
on the frequencies of different demands, represented by 
Q(x), and on the frequency with which primaries produce 
the various possible outputs, represented by L(x,y). 

3) Variation of coverage over the demands 
One can actually define a coverage factor for each 

specific demand x, " #xC ,%% , and using it allows some 
useful observations. The probability of failure of the checker 
to detect a failure of a primary on a specific demand x, i.e. 
directly the probability of undetected failure of the fault-
tolerant component on x, is: 

" #" # " # " #yxLyxYx
y

y ,,,,, 53EC %.% %%                      (8) 

that is, the expected value of the score of the checker with 
respect to the measure " #6, ,xL . We can also state: 

" #
" #
" #

" #

.
1

,
|

,

00

10

1011

10

p
p

pp
p

xonfailedprimaryP
xonfailedprimaryflaggedfailureP
xonfailedprimaryflaggedfailureP

xC

9
3

:
3

3
D%%

           (9) 

From here we can express: 
" #" #0010 1, pxCp 93 %% , which trivially leads to 

expressing the probability of interest, p11, that the checker 
will miss a failure of the primary on x as follows: 

" #" #
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The expression above again highlights that the coverage 
is a function of the profile, " #6, ,xL , generated by the 
population of primaries. As discussed earlier, any change in 
the software development process, or a physical fault 
process, may thus change the coverage. 

All this was derived for a specific demand, x. The 
probability of system failure on a randomly chosen demand, 
X, for specific demand profile, " #6Q , becomes: 
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where " #A BXCCoverage Q ,%%% CD  is the expected value 
(over the demand space of the primaries) of the checker’s 
coverage with respect to the failures of a randomly chosen 
primary conditional on the individual demands. Note that 
Coverage%  is different from Coverage in equation (7), the 
true coverage of the checker with respect to the failures of a 
randomly chosen primary.  

This highlights a possible error in estimating the true 
coverage. For the purpose of testing and measurement, it is 
common to partition the demand space into non-overlapping 
subsets (thought to be equivalence classes). One may be 
tempted to estimate the checker coverage in each partition 
first, and then compute the sum of these estimates, weighted 
with the probabilities of demands from each partition. 
However, this process estimates Coverage%  , not Coverage. 
As shown by formula (11), multiplying Coverage%  by the 
estimated marginal probability of failure of the primary 
would not yield the probability of detected failure, due to 
the covariance term in (11).  

The sign of the covariance term is unknown, hence 
ignoring it may lead to an error with unknown sign (under- 
or overestimation): this method does not even yield a useful 
bound (either conservative or optimistic).  

V. DISCUSSION  
We now discuss important, negative implications of the 

models, and will then proceed to discuss the scope of these 
negative implications, and what new knowledge would be 
useful for reducing it. 

A. Effectiveness of checkers vs “symmetric” fault 
tolerance 
We started by considering how the use of checkers 

against software faults (asymmetric fault tolerance) tends to 
be less controversial than that of multiple-version 
(symmetric) fault tolerance. Depending on the system and 
project, the asymmetric solution may offer lower costs 
and/or higher coverage; whether this is true in a specific 
scenario can only be decided by empirical evidence. But for 
the purpose of assessing the achieved dependability, 
asymmetric solutions bring no advantage.  

A first observation about equation (11) is that its 
summation-of-products form is similar to those describing 
the probability of failure of a two-version, 1-out-of-2 system 
[2] and it carries the same message that: 

6 not only does the system pfd depend on how the 
system is used (the demand profile), and thus 
empirical estimates of reliability obtained under 
different profiles cannot be trusted 

6 but assessing each subsystem in isolation (the pfds 
of the two versions, or the pfd of the primary plus 

coverage of the checker), even using the correct 
demand profile, does not seriously help to estimate 
the probability of system failure, due to the 
covariance term in (11). Actually, the coverage of 
the checker cannot even be defined without 
assuming a primary or a distribution of primaries. 

An aspect of this for symmetric systems is that if a change 
in one of the two versions improves its pfd, this does not 
guarantee improvement of the system pfd, but might even 
make it worse, if the increase in version reliability has 
reduced diversity between the two: the improved version 
has more failure points that coincide with failure points of 
the other version. Likewise, in an asymmetric system, 
improving the pfd of the primary does not necessarily 
improve the probability of undetected failure. The only 
component improvements that are guaranteed a priori to 
improve the probability of system failure are those that 
make a component correct on some demand on which it 
previously failed, but do not cause it to fail on any demand 
on which it was previously correct. An example of 
component improvement that may make the probability of 
system failure worse is a fix of a bug in the primary – which 
caused failures detected by the checker – which leads to 
introducing another bug, against which instead the checker 
is ineffective. 

B. Experimental estimation 
 We wish especially to discuss to what extent one can 

depend on estimates of coverage, or of probability of 
undetected failure, obtained experimentally via fault 
injection. 

At this point, we note that none of the discussion that 
follows is actually specific to error detection: the issues 
concern the prediction of the probability of any fault 
tolerance mechanism failing to tolerate some fault or error 
condition, conditional on the latter occurring (prediction of 
coverage factors) or unconditionally (prediction of 
probability of certain system failures).   

In the previous section, we started with recognizing that 
whether an undetected error occurred would depend on how 
an injected fault altered the primary component (turning it 
into another primary within our “population” of possible 
primaries) and on which demand was submitted to it. This 
shows how both the distributions of the demands and of the 
faults affect the resulting probability of undetected failure 
and thus coverage of the fault-tolerant mechanisms; on the 
other hand, it is not necessarily a convenient way of 
estimating the measures of interest. 

In an experimental approach to estimating these 
quantities, one samples the distributions of demands and 
faults by applying what are often called a “work load” and a 
“fault load”. What exactly these terms mean depends on 
which kind of system and fault-tolerant mechanisms are 
being measured. For instance, the system under 
consideration could be a hardware platform, the fault load a 
mechanism for producing hardware faults and the work load 
a certain software configuration with a mechanism for 
generating demands to it. The fault load is typically 
produced through some form of fault injection, so as to 



   

reduce component reliability and compress the amount of 
time required (to observe enough faults to get narrow 
enough confidence intervals for coverage estimations). If 
these coverage estimates could be extrapolated to different 
environments, the rate of system failure in the latter would 
be just the estimated coverage (specific to the fault tolerance 
mechanisms) times the rate of occurrence of faults in the 
specific environment.  

However, this extrapolation is generally invalid. As our 
equations (7, 10, 11) show, if the fault load and/or work 
load change – for instance, the system just outlined is 
moved to an operational environment with a different 
distribution of demands, or used with different software, 
thus changing Q(x) and/or " #!!M  – all the measures of 
interest can in principle change.  

Extrapolating estimates to a new environment requires 
judgment about how the new environment changes the 
terms in equation (11), which may be difficult. Simply 
assuming that the coverage will remain unchanged in the 
new environment (an implicit assumption made whenever a 
coverage factor is considered as an intrinsic feature of a 
fault-tolerant mechanism) is a very strong assumption. It 
assumes that in equations (10) and (11), despite changes in 
the weights used in the various weighted averages, averages 
or ratios of averages remain the same. 

In principle, instead, a change in either the fault load 
(the distribution of primaries, in our model) or the demand 
profile may change the coverage to any value between 0 and 
1. These two extreme values are taken if the only {demand, 
fault} pairs possible in the new environment are, 
unfortunately, pairs that produce errors that are not covered 
(for which " #yx,,%.%  function is 1), or, fortunately, pairs 
that are covered ( " #yx,,%.% =0). These extreme cases seem 
unlikely, but they make it useless to have an estimate of 
coverage in an artificial environment unless one can build 
some argument about the likely magnitude of the errors 
made by extrapolating the estimate to a different 
environment. But these arguments are usually absent in 
reports of experimental assessment of coverage. 

All that precedes does not mean that estimates obtained 
experimentally are always completely untrustworthy for a 
different environment. To discuss the factors that should 
enter a judgment about extrapolability, we discuss two 
extreme scenarios as outlined in section III.  

C. Transient faults due to radiation 
In this scenario, the target system is a complete 

computer (hardware and software configuration) and we are 
interested in its behavior when affected by radiation (cosmic 
rays) . We can informally think of the life of the fault-
tolerant target system (or of multiple, identical copies of it) 
as a sequence of time frames. In some of these, the primary 
is fault-free; in others, it has been turned by a particle 
impact into one of a “population” of possible “mutant” 
primaries. Over time, the probabilities of these various 
alternative scenarios define a probability distribution for the 
population of possible primaries.  

A specific checker is used with this population of 
primaries. (If desired, one can also consider the possibility 
of faults changing the checker. We have omitted this 
possibility in section IV for reasons of space.) 

Fault injection can take the form of exposing the primary 
to more intense radiation than expected in real operation, 
but with the same spatial distribution and the same mix of 
radiation types. This increases the relative frequency of the 
time frames in which a fault occurs, but there is no reason 
for suspecting that the distribution of faults covered or not 
covered by checkers will also change. 

In this ideal scenario, it seems right to expect that a 
coverage estimate obtained with fault injection will be 
accurate enough for predictions about real operation. There 
are bounds to the validity of this argument; for instance, if 
the artificially intense radiation increases the frequency with 
which further faults occur before the fault tolerance 
mechanisms have finished responding to a previous fault, 
this would change the distribution of faults (that is, of 
“possible primaries”). However, one can assess whether a 
substantial estimation error is likely by measuring the fault 
frequency and response times in question 

D. Dependability benchmarking for software faults 
Research into dependability benchmarking is inspired by 

the goal of achieving objective methods for assessing 
aspects of software quality, or at least for ranking competing 
products or solution (with similar functionality) from the 
viewpoint of dependability or of robustness (that is, of 
coverage of their defensive mechanisms against the 
expected faults, or more generally threats or disturbances) 
[15]. This goal is clearly desirable, but we now scrutinize its 
feasibility.  

In the ideal scenario, a set of competing software 
products (workloads) could be “benchmarked” by 
experiments of fault/error injection. The experiments apply 
the same “fault load”, as far as possible. For instance, a set 
of common types of software faults is identified and then 
injected into the run-time images of the various software 
products to be compared [11]. Statistics are collected on 
how well the different workloads cope with the same fault 
load, and used to rank the products.  

The measured frequency (estimate of probability) of 
system failure for each population of mutants derived from 
the same product is used to rank the competing products. If 
the estimates of failure probability are correct, given the 
same fault load they are also proportional to the coverage 
factors for the various products. 

The fault load may address different concerns. For 
instance [16] it might include operator mistakes (e.g. 
deleting individual files, dropping tables from a databases, 
etc.), software faults, hardware faults, etc. We focus here on 
software faults. 

Mapping this scenario on the model of section IV, each 
one of the products being assessed is a single primary-
checker pair (that is, the distribution of primaries is a 
degenerate one with a single primary). The “checker” is the 
composition of all the mechanisms that contribute to 
tolerating errors. The fault injection experiment substitutes 



   

the degenerate distribution – the single, real primary – with 
a different distribution, in which, instead of the real product, 
“mutant” ones are possible, each one having the faults of the 
real product, plus one fault injected from the chosen fault 
load.  

Apart from increasing the primary’s probability of 
failure, the effect of fault injection on the parameters in 
equation (7) and (11) is difficult to foresee. The probability 
of an injected fault causing an undetected (system) failure 
(or of it being instead “covered”) may be totally unrelated to 
the same probability for any one of the true faults. 
Furthermore, the error between the experimental estimate 
and the true value of coverage may differ between the 
products being evaluated, in unpredictable ways, since each 
product has its own specific faults, which may or may not 
resemble what the experimenter considers a representative 
sample. If via “benchmarking” one tries to compare 
products A, B, C, ..., it is far from obvious whether the 
ranking produced, based on the mutants of A, the mutants of 
B, etc, will be the same as the correct ranking that could be 
obtained among A, B, C, ..., e.g. by long operational testing 
or long operational exposure. This concern applies both to 
statements about dependability and statements about 
coverage. 

There is no a priori reason why the best product cannot 
end up with the worst population of mutants and vice versa. 
This problem seems inherent to dependability benchmarking 
targeting design (software) faults.  

Fault injection is certainly useful for debugging fault 
tolerance mechanisms. But in terms of assessment, all that 
can be certainly said is that injecting a standard set of faults 
can be a simple test of development competence: an 
assessor may think that defensive design is an important 
aspect of quality, and thus any product that does not tolerate 
a certain subset of injected faults should be considered 
inadequate. The “dependability benchmark” would then be 
used as a true “benchmark” in its older meaning, of a single 
reference point rather than a measurement protocol. But in 
terms of ranking of products, there is a dearth of convincing 
arguments to demonstrate that the ranking between the real 
products will carry through fault/error injection, and thus the 
trust in dependability benchmarking seems excessive.  

VI. CONCLUSIONS AND FUTURE RESEARCH  
We have discussed the difficulties in assessing the 

effectiveness of “asymmetric” schemes, e.g. of the primary-
checker type, for tolerating design faults, and we have 
presented a model to assist with this analysis. We used a 
style of conceptual modeling similar to that previously 
applied to symmetric systems (e.g., N-version 
programming) [2], which focuses on the deterministic 
success or failure of the fault tolerance mechanisms with 
respect to each specific fault-demand combination.  

This modeling is not substantially new, but helps to 
illustrate important points that are often neglected in current 
literature. 

About the general problem of assessing “asymmetric” 
fault tolerance, like defensive programming, watchdog 
components, etc, we have pointed out that it is no less 

difficult than for “symmetric” fault tolerance; in neither 
case can one evaluate the redundant components in 
isolation and then combine measures thus obtained to obtain 
a measure for system-level dependability. Indeed, the very 
concept of measuring a checker in isolation is suspect or 
meaningless, since any coverage measure depends on the 
distribution of “demands’” coming to the checker from the 
checked (“primary”) component. The coverage of the 
checker, which is often attributed to the checker alone, is in 
fact a characteristic of the checker and the particular 
primary (for design faults, present in the primary), i.e. the 
checker performance may (and typically will) vary with the 
primary. This observation is not particularly new. The 
model presented, however, shows in detail the mechanisms 
of this dependence and thus the fallacies of arguments in 
which this dependence is ignored. 

We emphasize again that we are not advocating 
symmetric systems over asymmetric systems, or vice versa. 
The choice of a fault-tolerant architecture must take into 
account many factors. We have, however, pointed out that 
the difficulty of assessing asymmetric systems is often 
underestimated. 

We have then turned to methods for assessing coverage 
factors, and argued that the goal of assessing them via fault 
injection and dependability benchmarking may be 
unfeasible. Trusting these assessment methods too often 
ignores their recognized limits as dependability assessment 
tools (as opposed to the obvious usefulness of fault injection 
for achieving dependability, by debugging fault tolerance 
mechanisms). “Without knowledge about [the probability 
distribution of faults and activities] one cannot make any 
meaningful statement about the coverage factor of a system” 
[13]. The problem is simply the degree to which 
measurements in one environment can be extrapolated to 
others.  

A gap in current practice is highlighted by the fact that 
many papers reporting fault injection results acknowledge 
that the validity of the results hinges on the appropriateness 
of the "fault load" and "work load" used, but decline to 
discuss the degree of general usefulness of the measures 
obtained: which results will probably be useful predictions, 
in what range of situations, with what expected error - and 
why? But surely this is what matters. Real operation will 
always be different from the experimental set-up, but if this 
implied that the measures were of no consequence outside 
the lab where they were obtained, why report them at all? 
The important point here is that any extrapolation of the 
measures to different environments, any claim on how small 
the resulting error should be expected to be, should be 
justified by arguments specific to the scenario in question, 
rather than trusted a priori. We have pointed out that there 
is a range of scenarios, from ones in which extrapolation 
seems obviously correct, to ones in which it seems 
completely untrustworthy. The latter include the scenario of 
interest for this paper: assessing the coverage factor of 
means for detecting or tolerating software design faults.  

While frequently acknowledging in general terms the 
limitations to the validity of the measures obtained, 
researchers and practitioners seem often to adopt, without 



   

explicit justification, two simplificatory heuristics: 
6 injecting “representative sets” of faults, in the sense 

of faults that appear to be reasonably common in 
practice, without regard to whether they are a 
representative sample of the true probability 
distribution that will occur in real operation; 

6 mistrusting measures obtained with fault injection 
as estimates of the corresponding “true” measures in 
operation, but trusting them as valid indications of 
ranking between the “true” measures. 

It seems thus important to have repeated that neither is 
correct in general, and whether predictions thus obtained 
should be trusted, and which magnitude of error should be 
expected, ought to be justified by explicit arguments, based 
on knowledge of the system and fault mechanisms and/or 
statistical evidence. 

There is certainly scope for useful research (some 
directions are discussed in [17], Appendix A1). First, the 
community needs predictions obtained from fault injection 
(about values of coverage factors, reliability measures) to be 
cross-checked against the corresponding measures in real 
operation. Publishing this kind of results would help to 
refute or corroborate the trustworthiness of these assessment 
methods. It is normal in engineering that methods based on 
wrong assumptions turn out to be accurate enough at least 
for some classes of problems. But only experimental 
evidence can indicate the area of validity of these 
“theoretically wrong” methods. Research comparing 
empirically the measures produced by different fault 
injection methods [18-20] is also an indirect contribution in 
this direction. 

A second kind of research that is needed concerns 
making explicit the reasoning, evidence and hidden 
assumptions behind trust in “theoretically wrong” coverage 
estimation methods, or ranking methods. We have cited the 
example of fault injection by intensified radiation as one in 
which the validity of the method can be demonstrated by 
reasoning about the physics of the fault process. In other 
cases in which estimation by fault injection is indeed 
appropriate, an argument for believing it to be so may be 
much more complex. It might involve experimental 
evidence about types of faults, their frequency and effects, 
as well as deductive reasoning from design characteristics. It 
may rely on bounds on the terms of our equations, on 
evidence for the appropriateness of specific stratification 
methods for the fault injection, etcetera.  

Methods for structuring complex arguments (“cases”) 
have proven very useful in an increasing range of areas 
requiring complex judgments (“safety cases”, “assurance 
cases”) [21] and may prove useful here to decide in which 
situations trust in fault injection is misplaced, or can be 
justified, or could be justified if specific additional evidence 
were produced. 
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