

Assessing asymmetric fault-tolerant software
Peter Popov, Lorenzo Strigini
Centre for Software Reliability

City University London
United Kingdom

ptp@csr.city.ac.uk, strigini@csr.city.ac.uk

Abstract — The most popular forms of fault tolerance against
design faults use "asymmetric" architectures in which a
"primary" part performs the computation and a "secondary"
part is in charge of detecting errors and performing some kind
of error processing and recovery. In contrast, the most studied
forms of software fault tolerance are "symmetric" ones, e.g. N-
version programming. The latter are often controversial, the
former are not. We discuss how to assess the dependability
gains achieved by these methods. Substantial difficulties have
been shown to exist for symmetric schemes, but we show that
the same difficulties affect asymmetric schemes. Indeed, the
latter present somewhat subtler problems. In both cases, to
predict the dependability of the fault-tolerant system it is not
enough to know the dependability of the individual
components. We extend to asymmetric architectures the style
of probabilistic modeling that has been useful for describing
the dependability of "symmetric" architectures, to highlight
factors that complicate the assessment. In the light of these
models, we finally discuss fault injection approaches to
estimating coverage factors. We highlight the limits of what
can be predicted and some useful research directions towards
clarifying and extending the range of situations in which
estimates of coverage of fault tolerance mechanisms can be
trusted.

Keywords-software fault tolerance; checker coverage; fault
injection; dependability benchmarking

I. INTRODUCTION
Fault tolerance against design flaws is widely recognized

to be desirable, in particular in view of the increasing
dependence on off-the-shelf software for even critical
applications [1].

We address here the problem of assessing the
dependability gains achieved by these forms of fault
tolerance. There has been a large amount of work on
modelling the effectiveness of “software fault tolerance”1
(see [2] for a review and www.csr.city.ac.uk/diversity for
more recent research), to understand what advantages can in
theory be expected from it and how these can be pursued
through the development process. These models have
helped the understanding of the factors that determine the
probability of common mode failures between redundant

1 Most of the literature refers to software, although fault tolerance

against hardware design faults is a recognised need. For instance, both
main manufacturers of large fly-by-wire airliners, Airbus and Boeing, use
redundant, diverse processors for flight-critical software.

components in these systems. But this research has been
mostly limited to “symmetric” architectures: “multiple
version software” and similar schemes, in which two or
more diverse, redundant components perform equivalent
functions and their outputs are “adjudicated” (by voting or
some other algorithm, built into the computer system or the
physical controlled systems) to decide which values will be
output to the controlled system. Such architectures are
important for some highly critical applications, but also
expensive and relatively rare. In most systems, fault
tolerance against design faults takes the form of
“asymmetric” architectures, in which a “primary”
component (we will often use the term “primary” alone for
brevity) performs the required computation, and other
components perform error detection, trigger error correction
and state recovery mechanisms, or steer the system to a safe
state, and so on. These architectures are so commonplace
that a list of examples could easily become endless.
Asymmetric fault-tolerant schemes are found at all levels of
details in designs, from run-time checks within any program
or component thereof, to watchdog applications that monitor
the whole visible behavior of a complex system for failures,
or for safety-relevant failures. Here we are interested in the
probability of system failure (that is, a failure of the primary
component that the fault-tolerant mechanisms fail to tolerate
or mitigate as desired) in these architectures. Despite the
huge variation in the details of these systems, we are
interested at first in discussing them at a level of abstraction
at which they are substantially similar.

We consider the assessment of these systems. One can
measure reliability of any system by long enough
observation of operation or realistic testing. But for critical
applications, there is normally a need to predict
dependability before a long enough period of observation
using reliability models and estimation of component
reliability parameters. For symmetric systems, a major
difficulty has been found, in that such shortcuts as assuming
failure independence between redundant components are not
justified [2]. For asymmetric systems, the preferred models
rely on coverage factors, which could be estimated from
field measurements (but with some difficulties) or by fault
injection.

One of our concerns is that the difficulties in assessing
the dependability of symmetric systems are widely
recognised, but the methods for assessing asymmetric
systems are not usually subjected to the same degree of

Lorenzo Strigini
Text Box
 © 2010 IEEE
 21st International Symposium on Software Reliability Engineering (ISSRE 2010)

scrutiny. We develop here a model to help with this
scrutiny, and apply it to practical scenarios with asymmetric
systems.

We emphasize that we do not argue for or against any
specific architecture, symmetric or asymmetric. Our focus is
on highlighting often ignored difficulties in the means for
assessing asymmetric systems.

For the sake of simplicity, we will refer our initial
discussion of asymmetric systems to a single practical
example: checkers, i.e., error detection mechanisms (which
are common to almost all forms of asymmetric fault
tolerance), although the necessary reasoning will be very
similar for e.g. error recovery mechanisms.

The rest of the paper is organized as follows. Section 2
discusses primary-checker systems and introduces a basic
model and some necessary notations. In section 3 we state
the practical problems we would like to address in this
paper. In section 4 we present probabilistic models of
asymmetric fault tolerance. In section 5 we discuss the
implications of the models for the problems stated in section
3. In section 6 we summarize our findings, their limitations
and outline directions for future research.

II. PRIMARY-CHECKER SYSTEMS

A. Checkers in software engineering
While N-version programming has been hugely

controversial, with both its cost-effectiveness and its
effectiveness being questioned, the use of checkers is
commonly accepted as self-evidently good practice. Many
authors in software engineering do not even mention that
checkers are a part of fault tolerance, and that knowledge
from the fault tolerance literature applies to them, e.g., about
the importance of coverage factors2 (the probability of the
checker flagging a failure of the primary, conditional on the
failure occurring), and the risk that adding fault-tolerant
features to a system may reach a point of diminishing, or
even negative, returns. A plausible reason for this general
trust in checkers is a belief in simplicity. Checkers only
need to verify the results of the primary’s computation, not
to replicate them. So, they are often simpler than extra
versions of the primary would be, and thus cheaper and
easier to develop correctly. Also, the specification of a
checker sometimes has little in common with that of the
primary component, making it plausible that the two will
not suffer from similar implementation flaws causing
common failures. For instance, an important paper about
innovative ways of building checkers [3] stated that
requiring a checker to be computationally simple is
important to achieve this diversity: “we claim (heuristically)
that C must be doing something essentially different from
what P does, and so, if buggy, may reasonably be expected
to make different errors than P. […] we would expect few
correlated errors; moreover, we would expect more
uncorrelated than correlated errors”.

Few would argue against pursuing diversity between
primary and checker component; but when it comes to the

2 We often use the term “coverage” alone for brevity.

more quantitative statements quoted, informal judgments
like these, when applied to the merits of symmetric software
fault-tolerance, have at times been found to be misleading.
For instance, it seems reasonable to many that
independently developed software channels are likely to fail
independently in operation, but this has been shown to be
unfounded both empirically [4] and theoretically [5]. We
will apply to asymmetric software the modeling approach
first applied by Eckhardt and Lee [5] to the critique of
symmetric fault tolerance, hoping to clarify possible sources
of fallacies in intuitive judgments.

The questions to which designers or assessors may need
answers include, for instance: how much of a dependability
gain would I achieve for my system by adding a particular
checker? How effective are checkers of a certain category,
for applications in general? What is the effective
dependability of a specific system, which uses checkers for
fault tolerance?

The problem of assessing the coverage of checker
software has been attacked empirically, through fault
injection [6], [7] and its application to so-called
“dependability benchmarking” [8], [9]. Researchers are
aware of the difficulties of selecting representative samples
of faults and of extrapolating from measurements that are
inevitably based on non-perfectly representative samples
[8], [9], [10] , [11]. With respect to these efforts, we wish to
define more formally the issues of prediction, and of
sampling of faults and errors.

B. Model of asymmetric faut tolerant systems
We choose for analysis the simplest model of an

asymmetric fault-tolerant system: a single asymmetric fault-
tolerant component (FTC) made up of two components, a
primary and a checker (Figure 1). We assume that the
operation of the primary and the checker is naturally
described in a discrete time frame: the primary performs
some operation, and succeeds or fails in it; the checker
checks whether the primary succeeded or failed, and it in
turn may succeed or fail; how exactly its output is used is
not important at this stage. The dependability measures of
interest are probabilities of failure per demand (pfd).

Figure 1. Asymmetric fault-tolerant component (FTC).

C. Specification of the primary component
A program's specification describes a relation between

the spaces of demands3 and of outputs, i.e. a subset of their
Cartesian product: specifically the set of all those {demand,
output} pairs formed by a demand value and an output that
is correct (according to the specification) for that demand.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5
x

incorrect behaviour
(errors)

correct
incorrect behaviour

(errors)

Figure 2. Specification of a single-input, memoryless program as a subset
of the Cartesian plane.

For instance, Figure 2 represents, limited to a subset of
the {demand, output} space (“demand” to the system – x
axis – and “output” of the primary – y axis), a specification
requiring a program to calculate y=sin(x), for x in the
interval [0,2], with a maximum error of 5% and satisfying
the condition sin(x)!14. The behavior of a specific program
! built to this specification is typically described by a
single-valued function (for each demand value x it
deterministically produces one output, " #x,!$), represented
in the graph by a set of points, that we would like to lie
within the shaded area. If a primary program ! produces an
erroneous output on an input, then one of these points would
lie outside the shaded area in the figure. The projections on
the x axis of all such points defines the “failure set” of the
program (the set of demands on which it fails).

D. Specification of the checker component
A checker typically has as its inputs the outputs of the

primary together with the demands submitted to the primary
(or parts of each demand: the checker is often built so that it
does not have visibility of the internal state of the primary,
nor memory of previous inputs to it. Our arguments do not
depend on whether the primary has state or whether this is
visible to the checker, so we will only refer to our stateless

3 We refer to “demands”, not inputs, to avoid confusion when

referring to stateful systems. “A demand” will mean “the set of values of
all input variables and all internal state variables (for a program that
preserves state from an invocation to the next) at an invocation of the
program”.

4 Specifying just “calculate sin(x)” would not make sense with real
computer arithmetics: the allowable numerical errors must also be
specified. We have allowed errors as large as 5% in this example just so
that it can be visualized in the graphs. There may be some subtler
requirements, e.g. that the function " #x,!$ approximates a continuous
function and in other ways resemble the graph of a sine function.

example to illustrate the modeling). The checker’s specified
output is a Boolean value, where “1” stands for “alarm: the
primary’s output is erroneous”. Its specification is a function
whose domain is the set of all possible {demand, output}
pairs and whose range is { “OK”, “alarm”}.

That is, the checker’s specification identifies an “alarm
set”, within the {demand, output} space, on which the
checker is required to issue an “alarm” output. A specific
checker % implements a specific “alarm” function A%(%,x,y).
For instance, in Figure 3 the checker is specified as a logical
OR among the violations of several assertions:

C%(x,y)=NOT(assertion1(x,y)) & NOT(assertion2(x,y))…
where x indicates the value of the demand, and y the output
of the primary. The horizontal stripe at the top in the figure
exemplifies the special kind of assertions that check for
“illegal” outputs, i.e., outputs that must never be produced,
for any demand. A specification may also define “illegal
inputs”, which are not expected to be used in operation, but
may occur, e.g. as a result of accidental failure or malicious
activity. In the general case, checkers also check for outputs
that are only erroneous for certain demands, but correct for
other demands, and thus define more complex patterns, like
the triangular wedge on the left in the figure.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5
x

undetected errors

undet.
err.

errors (illegal values) detected by the assertion "y ' 1"

errors detected by
the assertion
"y ' x(1+()"

correct

Figure 3. Specification of a possible checker for the primary specified in
Figure 2. The areas labelled “errors [..] detected by...” identify input-output

pairs for which the specified checker would output “alarm”.

On each demand, there are four possible system
behaviors: correct behavior of the primary, with no alarm
from the checker; detected failure (of the primary, flagged
by the checker); undetected failure of the primary, which we
will also call failure of the fault-tolerant component; and
false alarm (the primary’s output is correct but flagged as
wrong by the checker).

Ideally, we would wish a checker to have 100%
coverage, i.e., such that all errors of the primary will trigger
an “alarm” output from the checker. The alarm set of such a
checker would cover all the space of erroneous {demand,
output} pairs, leaving no white space in the Cartesian plane
in Figure 2 or 3. We would also usually wish a checker to
produce no false alarms, i.e., its alarm set to have no
overlap with the set of correct {demand, output} pairs.
However, either or both goals may be infeasible or
uneconomical, and they are often in contrast.

It is convenient to identify the class of “complete
checkers”, specified to detect all erroneous outputs from the
primary and produce no false alarms, as opposed to “partial
checkers”, specified to miss some failures, for the sake of
simplicity, as in Figure 3. For instance, if the primary is
specified to compute (exactly) a reversible function [12], a
checker that computes the inverse function and compares it
against the input to the primary is a complete checker. For a
complete checker, the only reason why failures of the
primary may go undetected is imperfect implementation of
the checker. For a partial checker, some “gaps” in the
coverage are mandated by the checker’s specification. The
software engineering literature tends to deal with checkers
specified to produce no false alarms; by contrast, checkers
for safety and security may well be specified to produce
even frequent false alarms for the sake of reducing the risk
of undetected failures. In this paper, for reasons of space, we
do not consider false alarms and the attendant design trade-
offs.

E. The uncertainties affecting assessment
The benefits brought by a checker are naturally

quantified through a coverage factor, i.e., the probability of
it correctly flagging an incorrect output of the primary, on a
randomly sampled demand to the system. This probability
summarises the effects of three sources of uncertainty
(Figure 4): which faults are present in the primary
component, which faults are present in the checker
component, and the value of the demand itself (and thus
whether it will trigger one of the faults in the primary, and
in such a way that the resulting error will or will not be
flagged by the checker).

Primary
component

! Checker
component

%

Development process selects
primary component ! from

distribution M !

O(!) x)

Development process selects
checker component % from

distribution M %
Execution
environment
selects demand x
from distribution
Q(x)

x
A(% ,x,O(!) x))

Figure 4. Sources of uncertainty affecting whether a demand will cause
failure of the primary component and whether this will be detected by the

checker component.

An elegant representation for uncertainty about faults is
as follows [5]. Design faults, for instance in the primary,
are created by the software development process. The
development process can be seen as a process of random
selection from a probabilistic distribution of all the possible
primary components which could be created to the given
specification. Each possible primary, !, is described by its
demand-to-output mapping, O(!,x). We will designate the
primary developed through this random selection by a
random variable *; for a specific primary, e.g., !, saying

that we do not know its faults means that we do not
completely know the function O(!,x) that ! actually
implements 5 . The same ideas apply to the faults of the
checker. The creation of physical faults can also be seen as
sampling, according to a specific probability distribution,
from a population of possible components, which includes
the non-faulty component, say !+, and all possible faulty
ones !i, characterised by having different behaviours
O(!i,x).

Given a population !, of the possible primaries, we
will call M!(!) the probability of the particular primary !
being chosen at random from !, by the development
process. This probability distribution is normally unknown;
the purpose of this notation is to highlight the effects of this
form of “randomness” on the dependability measures of
interest. Similarly, we can designate a probability M%(%# of
a specific checker-% being selected by the development
process from the population of the possible checkers, ,%.
Last, the value of the demand is selected, by the
environment in which our FTC operates, according to a
probability distribution Q(x).

In this paper, we will consider a restricted set of
problems in which, given a specific checker, one wishes to
assess the dependability gains that it would bring to a
specific primary, or to a primary obtained from a given
population !, and distribution M!(!).

It is worth pointing out that once a primary and a
checker components have been assembled into a system
(our “FTC”), the demand profile for the checker (i.e. the
probability distribution of the <x, y> pairs submitted to it)
depends on the primary. For a particular demand, x, and a
particular primary, 1! , the checker will see the pair <x,
" #xO ,1! >. Given a different primary, 2! , on the same

demand, x, the checker would see a pair, <x, " #xO ,2! >,
which may be different. In both cases the demand profile for
the primaries is the same, Q(x), but the profiles for the
checker will differ, having in common that the marginal
distribution of the variable x, Q(x), is the same.

III. PROBLEM STATEMENT
We are interested in assessing the effectiveness of fault

tolerance in asymmetric fault-tolerant systems, with a
specific interest in (a) checkers as a concrete category of
fault tolerance mechanisms and (b) fault tolerance against
software (or generally design) faults. We consider the
problem of assessing coverage factors experimentally, and
the use of fault injection to this end. There is a range of
scenarios of application of this approach to assessment, and
to highlight the issues that affect its validity we will identify
two concrete scenarios to represent opposite extremes of the
range:

5 We will use uppercase letters to designate random variables, and

lowercase letters to designate specific values. Note that if an argument of a
function is a random variable, the value of the function becomes itself a
random variable.

1. estimating coverage with respect to transient faults
caused by cosmic ray particles in a particular
computer system (i.e. physical faults rather than
design faults). For the estimation, faults are produced
by fault injection. A specific primary software
component is the target of the measurement, and the
fault injection creates a population of alternative
primaries. The failures of the primary are counted,
and so are the successful detections of these failures
by the checker. The ratio of the two is an estimate of
coverage.

2. “dependability benchmarking” with respect to
software faults. This is a variation of the previous
scenario. The purpose is typically to compare
different products of similar functionality by
subjecting each one to the same procedure of fault
injection. The products can be seen as fault-tolerant
components (in our terminology), and the observed
effects of each injected fault can be classified as
tolerated or not tolerated (leading to system failure),
so that a coverage factor can be estimated. The goal is
often to rank the “benchmarked” products according
to how well they coped with the set of injected faults.

In terms of our model, in both cases, fault injection (or
the injection of errors in the state of the target systems to
emulate the effects of faults) creates a distribution of
alternative primary components. We will artificially
simplify the models by assuming that checkers are not
affected by fault injection and do not change between
measurement and operation.

We will look at these problems more formally and
scrutinize the rationale behind the current and proposed
practices for dealing with them.

IV. MODEL OF ASYMMETRIC FAULT-TOLERANT
SOFTWARE

A. Score functions
We start by modeling the behavior of the primary and

the checker6. We first specify the primary via a function
" #xO , whose value for each demand x is the set of

acceptable outputs. The output value that an implementation
of the primary produces on demand x must belong to the set
" #xO . In the example in Figure 2, " #xO is represented in the

graph by the set of y values shown in grey for the given x.
Let us denote as " #xO ,! the value that a particular

primary, ! , produces in response to demand x. " #xO ,! will
be an element of the set " #xO iff the primary processes the
demand correctly and will be outside the set " #xO iff the
primary fails.

6 This modeling is conceptually the same as that used in [13], which

relies on defining the coverage conditional on a certain {activity, fault}
pair. However, we describe the set of possible events with very fine
granularity, to emphasize that the checker's coverage, which is a probability
conditional on a class of events, is normally an average of a 'pointwise'
coverage that is deterministically 0 or 1 for each {demand, fault} pair.

Now let us define the score function " #x,!. for a
particular implementation, ! , of the primary as the
following indicator function:

" # " # " #
/
0
1 2

3
elsewhere

xOxOif
x

,1
,,,0

,
!

!. (1)

Its expected value, " #x4 , over !, will give the
probability that a randomly chosen primary will fail when
processing demand x. Following Littlewood and Miller [14]
we call this expected value difficulty of demand x.

The value, " #xO ,! , which the primary produces when
processing demand x varies between implementations of the
primary. We capture this variability using another
(indicator) function, " #yxl ,,!! :

" # " #
/
0
1 3

3
elsewhere

yxOif
yxl

,0
,,1

,,
!

!! (2)

If there is a population of primaries, for instance created
by faults, the expected value, " #yxL ,, , that this function
takes over the population of primaries, !, , represents the
probability that a randomly chosen primary, given the
demand x, will produce y, and thus presents the checker
with the pair " #yx, .

" # " # " #5
,

, 3 !! !! MyxlyxL ,,, (3)

Note that " #yxL ,, is a conditional probability (of the
“randomly chosen” primary producing output y given
demand x) and indeed, " # 1, 35 ,

y

yxL .

The function " #6, ,xL is important because it defines the
demand profile created for the checker by the primaries
(when processing each specific demand x). It depends on the
population !, and the distribution " #6!M defined on !, .
That is, any change in the process that produces " #6!M and

!, – the software development process, or a physical fault
process – may change " #6, ,xL .

Now we turn our attention to the checker. We define a
“score function” for checker % as the indicator function:

" #
" #

" #
7
/

7
0

1
8

2
3

elsewhere
xOythatcorrectlydetects

orxOyeitherif
yx

,1
.

,0
,, %%.% (4)

Note that we have defined this score function to flag the
false negative failures of the checker (i.e. when the checker
fails to detect a failure of the primary) as 1, but not to flag
the false positives (false alarms), because we are not going
to analyze the probability of false alarms. The definition of
the score function is further illustrated by Figure 5.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 x

Figure 5. The %. function for the checker specified in Figure 3, if

implemented correctly. " #yx,,%.% = 0 in the white area, and

" #yx,,%.% = 1 in the grey areas.

B. Probability of undetected failure and coverage
Given a specific primary ! , checker % and demand x

the following 3 combinations are possible for the pair of
scores [" #x,!. , " #yx,,%.%]:

- 00: the primary processes x correctly, and the
checker outputs ‘OK’ or raises a false alarm;

- 10: the checker detects a failure of the primary;
- 11: the checker misses a failure of the primary (i.e.

the fault-tolerant component fails).
The fourth combination, 01 is impossible due to our

definition (4).
Each of these outcomes will have a probability (for a

randomly chosen primary and a given checker). We will
denote these as p00, p10 and p11, respectively (omitting the
argument (x) for brevity). For the “difficulty” of the demand
for the primary, " #x4 , defined earlier, the following holds:
" # 001110 1 pppx 93:34 .
1) Probability of undetected failure

Using the indicator functions and probabilities, defined
so far, we can express directly the probability of undetected
failure as follows:
" #

" # " # " #" # " # " #

" # " # " #.,,,

,,,,,,
,

5 5

5 5

;
;

<

=

>
>

?

@

3;
;

<

=

>
>

?

@

3

x y

x y

xQyxLyx

xQMxOxyxlx

failureundetectedP

%.

!!%.!!.

%

!
!% (5)

where the inner summation represents the probability of
undetected failure given a specific demand x, and the outer
summation averages this over the demands. The probability
of failure of the primary (on average over our notional
“population” with different faults) is:

" #

" # " # " #

" # " # " #A B.

,

XxQx

xQMx

PprimaryoffailureP

Q
x

x

fp

44

!!.
!

!

C3

3;
;

<

=

>
>

?

@

3D

5
5 5 (6)

where E designates the expected value.

2) Checker coverage
The coverage of the checker is then expressed using the

ratio of the two expressions above:

" # " # " #

" # " #
.

,,,

1
5

5 5 ;;
;

<

=

>>
>

?

@

93

x

x y

xQx

xQyxLyx

Coverage
4

%.%

 (7)

This equation highlights how the coverage depends both
on the frequencies of different demands, represented by
Q(x), and on the frequency with which primaries produce
the various possible outputs, represented by L(x,y).

3) Variation of coverage over the demands
One can actually define a coverage factor for each

specific demand x, " #xC ,%% , and using it allows some
useful observations. The probability of failure of the checker
to detect a failure of a primary on a specific demand x, i.e.
directly the probability of undetected failure of the fault-
tolerant component on x, is:

" #" # " # " #yxLyxYx
y

y ,,,,, 53EC %.% %% (8)

that is, the expected value of the score of the checker with
respect to the measure " #6, ,xL . We can also state:

" #
" #
" #

" #

.
1

,
|

,

00

10

1011

10

p
p

pp
p

xonfailedprimaryP
xonfailedprimaryflaggedfailureP
xonfailedprimaryflaggedfailureP

xC

9
3

:
3

3
D%%

 (9)

From here we can express:
" #" #0010 1, pxCp 93 %% , which trivially leads to

expressing the probability of interest, p11, that the checker
will miss a failure of the primary on x as follows:

" #" #
" # " #" # " # " #" #xCxxCp

pxCpppp
,1,11

1,11

00

0000100011

%4%
%

%%

%

9399
39993993

 (10)

The expression above again highlights that the coverage
is a function of the profile, " #6, ,xL , generated by the
population of primaries. As discussed earlier, any change in
the software development process, or a physical fault
process, may thus change the coverage.

All this was derived for a specific demand, x. The
probability of system failure on a randomly chosen demand,
X, for specific demand profile, " #6Q , becomes:

" # " #" # " #

" #A B " #A B " #A B
" # " #" #

" # " # " #" #.,,1

,,

,

,1

XCXcovarianceCoverageP

XCXcovariance

XCXX

xQxCx

Qfp

Q

QQQ

x

%4

%4

%44

%4

%%

%

%

%

99

3

9CC9C

395
 (11)

where " #A BXCCoverage Q ,%%% CD is the expected value
(over the demand space of the primaries) of the checker’s
coverage with respect to the failures of a randomly chosen
primary conditional on the individual demands. Note that
Coverage% is different from Coverage in equation (7), the
true coverage of the checker with respect to the failures of a
randomly chosen primary.

This highlights a possible error in estimating the true
coverage. For the purpose of testing and measurement, it is
common to partition the demand space into non-overlapping
subsets (thought to be equivalence classes). One may be
tempted to estimate the checker coverage in each partition
first, and then compute the sum of these estimates, weighted
with the probabilities of demands from each partition.
However, this process estimates Coverage% , not Coverage.
As shown by formula (11), multiplying Coverage% by the
estimated marginal probability of failure of the primary
would not yield the probability of detected failure, due to
the covariance term in (11).

The sign of the covariance term is unknown, hence
ignoring it may lead to an error with unknown sign (under-
or overestimation): this method does not even yield a useful
bound (either conservative or optimistic).

V. DISCUSSION
We now discuss important, negative implications of the

models, and will then proceed to discuss the scope of these
negative implications, and what new knowledge would be
useful for reducing it.

A. Effectiveness of checkers vs “symmetric” fault
tolerance
We started by considering how the use of checkers

against software faults (asymmetric fault tolerance) tends to
be less controversial than that of multiple-version
(symmetric) fault tolerance. Depending on the system and
project, the asymmetric solution may offer lower costs
and/or higher coverage; whether this is true in a specific
scenario can only be decided by empirical evidence. But for
the purpose of assessing the achieved dependability,
asymmetric solutions bring no advantage.

A first observation about equation (11) is that its
summation-of-products form is similar to those describing
the probability of failure of a two-version, 1-out-of-2 system
[2] and it carries the same message that:

6 not only does the system pfd depend on how the
system is used (the demand profile), and thus
empirical estimates of reliability obtained under
different profiles cannot be trusted

6 but assessing each subsystem in isolation (the pfds
of the two versions, or the pfd of the primary plus

coverage of the checker), even using the correct
demand profile, does not seriously help to estimate
the probability of system failure, due to the
covariance term in (11). Actually, the coverage of
the checker cannot even be defined without
assuming a primary or a distribution of primaries.

An aspect of this for symmetric systems is that if a change
in one of the two versions improves its pfd, this does not
guarantee improvement of the system pfd, but might even
make it worse, if the increase in version reliability has
reduced diversity between the two: the improved version
has more failure points that coincide with failure points of
the other version. Likewise, in an asymmetric system,
improving the pfd of the primary does not necessarily
improve the probability of undetected failure. The only
component improvements that are guaranteed a priori to
improve the probability of system failure are those that
make a component correct on some demand on which it
previously failed, but do not cause it to fail on any demand
on which it was previously correct. An example of
component improvement that may make the probability of
system failure worse is a fix of a bug in the primary – which
caused failures detected by the checker – which leads to
introducing another bug, against which instead the checker
is ineffective.

B. Experimental estimation
 We wish especially to discuss to what extent one can

depend on estimates of coverage, or of probability of
undetected failure, obtained experimentally via fault
injection.

At this point, we note that none of the discussion that
follows is actually specific to error detection: the issues
concern the prediction of the probability of any fault
tolerance mechanism failing to tolerate some fault or error
condition, conditional on the latter occurring (prediction of
coverage factors) or unconditionally (prediction of
probability of certain system failures).

In the previous section, we started with recognizing that
whether an undetected error occurred would depend on how
an injected fault altered the primary component (turning it
into another primary within our “population” of possible
primaries) and on which demand was submitted to it. This
shows how both the distributions of the demands and of the
faults affect the resulting probability of undetected failure
and thus coverage of the fault-tolerant mechanisms; on the
other hand, it is not necessarily a convenient way of
estimating the measures of interest.

In an experimental approach to estimating these
quantities, one samples the distributions of demands and
faults by applying what are often called a “work load” and a
“fault load”. What exactly these terms mean depends on
which kind of system and fault-tolerant mechanisms are
being measured. For instance, the system under
consideration could be a hardware platform, the fault load a
mechanism for producing hardware faults and the work load
a certain software configuration with a mechanism for
generating demands to it. The fault load is typically
produced through some form of fault injection, so as to

reduce component reliability and compress the amount of
time required (to observe enough faults to get narrow
enough confidence intervals for coverage estimations). If
these coverage estimates could be extrapolated to different
environments, the rate of system failure in the latter would
be just the estimated coverage (specific to the fault tolerance
mechanisms) times the rate of occurrence of faults in the
specific environment.

However, this extrapolation is generally invalid. As our
equations (7, 10, 11) show, if the fault load and/or work
load change – for instance, the system just outlined is
moved to an operational environment with a different
distribution of demands, or used with different software,
thus changing Q(x) and/or " #!!M – all the measures of
interest can in principle change.

Extrapolating estimates to a new environment requires
judgment about how the new environment changes the
terms in equation (11), which may be difficult. Simply
assuming that the coverage will remain unchanged in the
new environment (an implicit assumption made whenever a
coverage factor is considered as an intrinsic feature of a
fault-tolerant mechanism) is a very strong assumption. It
assumes that in equations (10) and (11), despite changes in
the weights used in the various weighted averages, averages
or ratios of averages remain the same.

In principle, instead, a change in either the fault load
(the distribution of primaries, in our model) or the demand
profile may change the coverage to any value between 0 and
1. These two extreme values are taken if the only {demand,
fault} pairs possible in the new environment are,
unfortunately, pairs that produce errors that are not covered
(for which " #yx,,%.% function is 1), or, fortunately, pairs
that are covered (" #yx,,%.% =0). These extreme cases seem
unlikely, but they make it useless to have an estimate of
coverage in an artificial environment unless one can build
some argument about the likely magnitude of the errors
made by extrapolating the estimate to a different
environment. But these arguments are usually absent in
reports of experimental assessment of coverage.

All that precedes does not mean that estimates obtained
experimentally are always completely untrustworthy for a
different environment. To discuss the factors that should
enter a judgment about extrapolability, we discuss two
extreme scenarios as outlined in section III.

C. Transient faults due to radiation
In this scenario, the target system is a complete

computer (hardware and software configuration) and we are
interested in its behavior when affected by radiation (cosmic
rays) . We can informally think of the life of the fault-
tolerant target system (or of multiple, identical copies of it)
as a sequence of time frames. In some of these, the primary
is fault-free; in others, it has been turned by a particle
impact into one of a “population” of possible “mutant”
primaries. Over time, the probabilities of these various
alternative scenarios define a probability distribution for the
population of possible primaries.

A specific checker is used with this population of
primaries. (If desired, one can also consider the possibility
of faults changing the checker. We have omitted this
possibility in section IV for reasons of space.)

Fault injection can take the form of exposing the primary
to more intense radiation than expected in real operation,
but with the same spatial distribution and the same mix of
radiation types. This increases the relative frequency of the
time frames in which a fault occurs, but there is no reason
for suspecting that the distribution of faults covered or not
covered by checkers will also change.

In this ideal scenario, it seems right to expect that a
coverage estimate obtained with fault injection will be
accurate enough for predictions about real operation. There
are bounds to the validity of this argument; for instance, if
the artificially intense radiation increases the frequency with
which further faults occur before the fault tolerance
mechanisms have finished responding to a previous fault,
this would change the distribution of faults (that is, of
“possible primaries”). However, one can assess whether a
substantial estimation error is likely by measuring the fault
frequency and response times in question

D. Dependability benchmarking for software faults
Research into dependability benchmarking is inspired by

the goal of achieving objective methods for assessing
aspects of software quality, or at least for ranking competing
products or solution (with similar functionality) from the
viewpoint of dependability or of robustness (that is, of
coverage of their defensive mechanisms against the
expected faults, or more generally threats or disturbances)
[15]. This goal is clearly desirable, but we now scrutinize its
feasibility.

In the ideal scenario, a set of competing software
products (workloads) could be “benchmarked” by
experiments of fault/error injection. The experiments apply
the same “fault load”, as far as possible. For instance, a set
of common types of software faults is identified and then
injected into the run-time images of the various software
products to be compared [11]. Statistics are collected on
how well the different workloads cope with the same fault
load, and used to rank the products.

The measured frequency (estimate of probability) of
system failure for each population of mutants derived from
the same product is used to rank the competing products. If
the estimates of failure probability are correct, given the
same fault load they are also proportional to the coverage
factors for the various products.

The fault load may address different concerns. For
instance [16] it might include operator mistakes (e.g.
deleting individual files, dropping tables from a databases,
etc.), software faults, hardware faults, etc. We focus here on
software faults.

Mapping this scenario on the model of section IV, each
one of the products being assessed is a single primary-
checker pair (that is, the distribution of primaries is a
degenerate one with a single primary). The “checker” is the
composition of all the mechanisms that contribute to
tolerating errors. The fault injection experiment substitutes

the degenerate distribution – the single, real primary – with
a different distribution, in which, instead of the real product,
“mutant” ones are possible, each one having the faults of the
real product, plus one fault injected from the chosen fault
load.

Apart from increasing the primary’s probability of
failure, the effect of fault injection on the parameters in
equation (7) and (11) is difficult to foresee. The probability
of an injected fault causing an undetected (system) failure
(or of it being instead “covered”) may be totally unrelated to
the same probability for any one of the true faults.
Furthermore, the error between the experimental estimate
and the true value of coverage may differ between the
products being evaluated, in unpredictable ways, since each
product has its own specific faults, which may or may not
resemble what the experimenter considers a representative
sample. If via “benchmarking” one tries to compare
products A, B, C, ..., it is far from obvious whether the
ranking produced, based on the mutants of A, the mutants of
B, etc, will be the same as the correct ranking that could be
obtained among A, B, C, ..., e.g. by long operational testing
or long operational exposure. This concern applies both to
statements about dependability and statements about
coverage.

There is no a priori reason why the best product cannot
end up with the worst population of mutants and vice versa.
This problem seems inherent to dependability benchmarking
targeting design (software) faults.

Fault injection is certainly useful for debugging fault
tolerance mechanisms. But in terms of assessment, all that
can be certainly said is that injecting a standard set of faults
can be a simple test of development competence: an
assessor may think that defensive design is an important
aspect of quality, and thus any product that does not tolerate
a certain subset of injected faults should be considered
inadequate. The “dependability benchmark” would then be
used as a true “benchmark” in its older meaning, of a single
reference point rather than a measurement protocol. But in
terms of ranking of products, there is a dearth of convincing
arguments to demonstrate that the ranking between the real
products will carry through fault/error injection, and thus the
trust in dependability benchmarking seems excessive.

VI. CONCLUSIONS AND FUTURE RESEARCH
We have discussed the difficulties in assessing the

effectiveness of “asymmetric” schemes, e.g. of the primary-
checker type, for tolerating design faults, and we have
presented a model to assist with this analysis. We used a
style of conceptual modeling similar to that previously
applied to symmetric systems (e.g., N-version
programming) [2], which focuses on the deterministic
success or failure of the fault tolerance mechanisms with
respect to each specific fault-demand combination.

This modeling is not substantially new, but helps to
illustrate important points that are often neglected in current
literature.

About the general problem of assessing “asymmetric”
fault tolerance, like defensive programming, watchdog
components, etc, we have pointed out that it is no less

difficult than for “symmetric” fault tolerance; in neither
case can one evaluate the redundant components in
isolation and then combine measures thus obtained to obtain
a measure for system-level dependability. Indeed, the very
concept of measuring a checker in isolation is suspect or
meaningless, since any coverage measure depends on the
distribution of “demands’” coming to the checker from the
checked (“primary”) component. The coverage of the
checker, which is often attributed to the checker alone, is in
fact a characteristic of the checker and the particular
primary (for design faults, present in the primary), i.e. the
checker performance may (and typically will) vary with the
primary. This observation is not particularly new. The
model presented, however, shows in detail the mechanisms
of this dependence and thus the fallacies of arguments in
which this dependence is ignored.

We emphasize again that we are not advocating
symmetric systems over asymmetric systems, or vice versa.
The choice of a fault-tolerant architecture must take into
account many factors. We have, however, pointed out that
the difficulty of assessing asymmetric systems is often
underestimated.

We have then turned to methods for assessing coverage
factors, and argued that the goal of assessing them via fault
injection and dependability benchmarking may be
unfeasible. Trusting these assessment methods too often
ignores their recognized limits as dependability assessment
tools (as opposed to the obvious usefulness of fault injection
for achieving dependability, by debugging fault tolerance
mechanisms). “Without knowledge about [the probability
distribution of faults and activities] one cannot make any
meaningful statement about the coverage factor of a system”
[13]. The problem is simply the degree to which
measurements in one environment can be extrapolated to
others.

A gap in current practice is highlighted by the fact that
many papers reporting fault injection results acknowledge
that the validity of the results hinges on the appropriateness
of the "fault load" and "work load" used, but decline to
discuss the degree of general usefulness of the measures
obtained: which results will probably be useful predictions,
in what range of situations, with what expected error - and
why? But surely this is what matters. Real operation will
always be different from the experimental set-up, but if this
implied that the measures were of no consequence outside
the lab where they were obtained, why report them at all?
The important point here is that any extrapolation of the
measures to different environments, any claim on how small
the resulting error should be expected to be, should be
justified by arguments specific to the scenario in question,
rather than trusted a priori. We have pointed out that there
is a range of scenarios, from ones in which extrapolation
seems obviously correct, to ones in which it seems
completely untrustworthy. The latter include the scenario of
interest for this paper: assessing the coverage factor of
means for detecting or tolerating software design faults.

While frequently acknowledging in general terms the
limitations to the validity of the measures obtained,
researchers and practitioners seem often to adopt, without

explicit justification, two simplificatory heuristics:
6 injecting “representative sets” of faults, in the sense

of faults that appear to be reasonably common in
practice, without regard to whether they are a
representative sample of the true probability
distribution that will occur in real operation;

6 mistrusting measures obtained with fault injection
as estimates of the corresponding “true” measures in
operation, but trusting them as valid indications of
ranking between the “true” measures.

It seems thus important to have repeated that neither is
correct in general, and whether predictions thus obtained
should be trusted, and which magnitude of error should be
expected, ought to be justified by explicit arguments, based
on knowledge of the system and fault mechanisms and/or
statistical evidence.

There is certainly scope for useful research (some
directions are discussed in [17], Appendix A1). First, the
community needs predictions obtained from fault injection
(about values of coverage factors, reliability measures) to be
cross-checked against the corresponding measures in real
operation. Publishing this kind of results would help to
refute or corroborate the trustworthiness of these assessment
methods. It is normal in engineering that methods based on
wrong assumptions turn out to be accurate enough at least
for some classes of problems. But only experimental
evidence can indicate the area of validity of these
“theoretically wrong” methods. Research comparing
empirically the measures produced by different fault
injection methods [18-20] is also an indirect contribution in
this direction.

A second kind of research that is needed concerns
making explicit the reasoning, evidence and hidden
assumptions behind trust in “theoretically wrong” coverage
estimation methods, or ranking methods. We have cited the
example of fault injection by intensified radiation as one in
which the validity of the method can be demonstrated by
reasoning about the physics of the fault process. In other
cases in which estimation by fault injection is indeed
appropriate, an argument for believing it to be so may be
much more complex. It might involve experimental
evidence about types of faults, their frequency and effects,
as well as deductive reasoning from design characteristics. It
may rely on bounds on the terms of our equations, on
evidence for the appropriateness of specific stratification
methods for the fault injection, etcetera.

Methods for structuring complex arguments (“cases”)
have proven very useful in an increasing range of areas
requiring complex judgments (“safety cases”, “assurance
cases”) [21] and may prove useful here to decide in which
situations trust in fault injection is misplaced, or can be
justified, or could be justified if specific additional evidence
were produced.

ACKNOWLEDGMENT
This work has been partially supported by the following

projects: DOTS (Diversity with Off-the-Shelf Software),
and INDEED (INterdisciplinary DEsign and Evaluation of
Dependability) both funded by the U.K. Engineering and

Physical Sciences Research Council, grant GR/N23912 and
EP/E001580/1, respectively, and FP7 Coordination Action
AMBER (Assessing, Measuring and Benchmarking
Resilience), funded by the European Commission (FP7 -
Project 216295).

REFERENCES
[1] Popov, P., L. Strigini, and A. Romanovsky. Diversity for off-the-

Shelf Components, in DSN 2000 - Fast Abstracts supplement. 2000.
New York, NY, USA: IEEE Computer Society Press.

[2] Littlewood, B., P. Popov, and L. Strigini, Modelling software design
diversity - a review, ACM Computing Surveys, 2001. 33(2): p. 177-
208.

[3] Wasserman, H. and M. Blum, Software Reliability via Run-Time
Result-Checking, Journal of the ACM, 1997. 44(6): p. 826-849.

[4] Knight, J.C. and N.G. Leveson, An Experimental Evaluation of the
Assumption of Independence in Multi-Version Programming, IEEE
Transactions on Software Engineering, 1986. SE-12(1): p. 96-109.

[5] Eckhardt, D.E. and L.D. Lee, A theoretical basis for the analysis of
multiversion software subject to coincident errors, IEEE Transactions
on Software Engineering, 1985. SE-11(12): p. 1511-1517.

[6] Arlat, J., et al., Fault Injection for Dependability Validation - A
Methodology and Some Applications, IEEE Transactions on Software
Engineering, 1990. 16(2): p. 166-182.

[7] Hsueh, M.-C., T.K.a. Tsai, and R.K. Iyer, Fault Injection Techniques
and Tools, Computer, 1997. 30(4): p. 75-82.

[8] Kanoun, K., et al. DBench Dependability Benchmarks, 2004 [cited
11 September 2009]; http://www.laas.fr/DBench/.

[9] Kanoun, K. and L. Spainhower, eds. Dependability Benchmarking for
Computer Systems. 2008, Wiley - IEEE Compute Society Press
Hoboken, New Jersey. 362 p.

[10] Durães, J. and H. Madeira, Emulation of Software Faults: A Field
Data Study and a Practical Approach, IEEE Transactions on
Software Engineering, 2006. 32(11): p. 849-867.

[11] Durães, J. and H. Madeira. Definition of Software Fault Emulation
Operators: A Field Data Study, in DSN - 2003. San Francisco, CA,
USA: IEEE Computer Society.

[12] Bishop, P.G. Using reversible computing to achieve fail-safety, in
ISSRE'97 Int. Simposium on Software Reliability Engineering. 1997.

[13] Cukier, M., D. Powell, and J. Arlat, Coverage Estimation Methods for
Stratified Fault-Injection, IEEE TC, 1999. 48(7): p. 707-723.

[14] Littlewood, B. and D.R. Miller, Conceptual Modelling of Coincident
Failures in Multi-Version Software, IEEE Transactions on Software
Engineering, 1989. SE-15(12): p. 1596-1614.

[15] Kanoun, K., et al., Prologue: Dependability Benchmarking: A Reality
or a Dream, in [9], p. xiii-xviii.

[16] Viera, M., J. Durães, and H. Madeira, Dependability Benchmarking
for OLTP Systems, in [9], p. 63-90.

[17] Bondavalli, A. and P. Lollini, eds. Assessing, Measuring, and
Benchmarking Resilience ," Final Research Roadmap". 2009, EU
FP7 project No 216295 , AMBER:Assessing, Measuring, and
Benchmarking Resilience p.

[18] Arlat, J., et al., Comparison of Physical and Software-Implemented
Fault Injection Techniques, IEEE Transactions on Computers, 2003.
52(9): p. 1115-1133.

[19] Jarboui, T., et al. Analysis of the Effects of Real and Injected
Software Faults: Linux as a Case Study, in Pacific Rim International
Symposium on Dependable Computing. 2002: IEEE Computer
Society.

[20] Christmansson, J., M. Hiller, and , and M. Rimen. An Experimental
Comparison of Fault and Error Injection, in 9th International
Symposium on Software Reliability Engineering (ISSRE-9) 1998.

[21] Bloomfield, R.E., et al., International Working Group on Assurance
Cases (for Security), IEEE Security & Privacy, 2006. 4(3): p. 66-68.

