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Abstract

We introduce the study of the visual perception of longitudinal travelling wave motion,
which as a physical phenomenon forms the basis of acoustics and some forms of seismic
transmission. A theoretical analysis of physical longitudinal wave motion reveals that it
exhibits profound nonlinearities that have been almost entirely neglected by the physics
community. We simulated longitudinal motion in visual form with a random-dot field in
which each dot particle oscillates sinusoidally about a fixed position at the same
frequency but with a phase advance proportional to its distance from the origin. The
resultant longitudinal density wave is essentially sinusoidal at very low oscillation
amplitudes, becoming progressively distorted as oscillation amplitude increases.
Perceptually, the motion splits into a combination of forward motion of the crests and
backward for the troughs, rather than a uniform travelling wave. When the maximum
velocity of each dot particle equals that of the propagation, the density function
approximates a narrow spike, which splits into a double spike at even greater
amplitudes. Adding a single (‘rigid’) velocity component can eliminate either the forward
or backward percept. Remarkably, the speed needed for perceptual cancellation scales
with oscillation amplitude, but nonlinearly so for the forward crest motion. Longitudinal
waves evoked no motion aftereffect at any amplitude unless the contrast of the forward
crest motion was reduced, revealing a motion aftereffect from the now-dominant
retrograde trough motion. These unexpected results underline the emergent, or higher-
order, nature of the perception of longitudinal travelling wave motion.



Introduction

Any travelling wave can be decomposed into longitudinal and transverse oscillations. In
mechanical waves, those oscillations are applied to the positions of particles within the solid,
liquid, and/or gaseous medium through which the wave travels. (Electromagnetic waves, on the
other hand, can travel through a vacuum.) Sound waves in gases are wholly longitudinal. Particles
are displaced away from and back toward the origin of the sound. These oscillations can be
illustrated with a matrix of horizontal moving dots, as in Movie 1a (diagrammed in Fig. 1a).
Transverse waves can also be illustrated with a matrix of moving dots (Movie 1b; diagrammed in
Fig. 1b). Note that the longitudinal wave and the transverse wave depicted in Movie 1 in both
propagate rightward, but whereas each individual dot in Movie 1a oscillates horizontally, each
individual dot in Movie 1b oscillates vertically. In both cases, what is propagating is not the local
elements per se but the phase of the oscillations, which advances from left to right.
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Fig. 1. Static illustrations of (a) longitudinal and (b) transverse waves, propagating rightward through a grid of dots.
(See Movie 1 for a dynamic version of this figure.) For illustrative purposes, equilibrium positions of the dots are
equally spaced. In all subsequent movies, equilibrium positions were selected at random from a uniform
distribution.) In each panel, 10 successive temporal samples of the wave have been arranged vertically. Each dot has
been replaced by an arrow indicating the direction and speed of its motion.

Whereas some perceptual qualities of transverse waves travelling through visual texture (Zanker
1994; Lu & Sperling 1995) have been studied using psychophysical paradigms like those used with
drifting luminance (e.g. Graham, 1972) and chromatic (e.g. Cavanagh, Tyler & Favreau, 1984)
gratings, our focus here is on the properties of longitudinal waves, in which local oscillations are
parallel to the wave propagation.
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Movie 1. Animation of Fig. 1. Here and for subsequent movies, double-click to activate.

Analysis of physical longitudinal wave motion reveals that it exhibits profound nonlinearities that
are largely neglected in the physics community. Longitudinal motion is almost universally treated
with the small amplitude approximation, where a sinusoidal driving function is assumed to
generate an essentially sinusoidal travelling wave, in the longitudinal wave case just as in the
transverse wave case. Our visualizations of the molecular behavior of the sound wave in a
gaseous medium clarified the extent of the physical deviations from this approximation and led
to a series of explorations of the unexpected perceptual properties of the visualized. Longitudinal
wave motion.

Historically, a form of high amplitude nonlinearity for pressure shock waves was recognized early
in the C19th by Poisson (1808) and elaborated by Challis (1848) and Stokes (1848). Visualizations
of longitudinal wave motion proliferate in textbooks on sound waves and on the internet.
Particles comprising a longitudinal wave in an idealized gas are typically represented by dots,
whose positions often oscillate sinusoidally, as though perturbed by a pure tone input. Such
dynamic illustrations have undeniable value as teaching tools, but problems arise when they are
accompanied by a graph of the density function. In every example we have found, this graph
depicts the density is also sinusoidal. In actuality, the density of particles in a longitudinal wave
is not sinusoidal but steepens as an accelerating function of the amplitude of the driving function
(e.g. Blackstock et al., 2020) to produce the narrow peaks and broad troughs that are evident in
the travelling-wave simulations. We first provide the theoretical analysis of these ‘ideal’
nonlinearities and then explore their perceptual effects when the longitudinal waves are
rendered as dynamic visual displays.



Formal specification
Following Zeleny et al. (2011), we assume that each particle in a longitudinal wave oscillates
around a fixed position x, called its equilibrium position. At any time ¢, its position x can be
described as

X = xg + asin [a) (Xc_o — t)], (Eq. 1)

where a is the amplitude, w is the angular frequency, and c is the propagation speed. (Note that
longitudinal waves in a 3D medium propagate three-dimensionally (though anisotropically) from
the (1D) source of vibration, whereas transverse waves can only propagate two-dimensionally in
a 3D world. For convenience, we will assume that the fixed positions are randomly sampled from
a 1D uniform distribution. Wavelength is defined as
2nc
A= o (Eq.2)

Each panel in Fig. 2 shows the density function of the travelling wave over space for 2
wavelengths. There seems to be no closed-form solution for this function. Instead, we fixed ¢ =
w, t =0, and used numerical methods (Mathematica’s NIntegrate) to compute the cumulative
distribution function over 1 wavelength of x, (normalized by its maximum value as specified in
the denominator of the fractional term), differentiated with respect to x, and plotted the
resulting density function, i.e.,

o d fOAH[X — xo — a sin(x,)] dx,
x\X) =—=
dx fOAH[/l — xo — a sin(xy)] dx,

: (Eq.3)
where H denotes the Heaviside step function.

The behavior of Eq. 3 is that increasing the oscillation amplitude does not merely increase the
amplitude of the density modulation, it also changes the shape of the modulation from quasi-
sinusoidal at low amplitudes (e.g., a = 0.0031) to spiky at moderate amplitudes (e.g., a = 0.164)
to a waveform with two peaks per wavelength (e.g., when a = 0.31), as seen in Fig. 2. The
maximum and minimum values of these function vary as nonlinear functions of the oscillation
amplitude (Fig. 3A). Nevertheless, using the Michelson ratio [(maximum — minimum)/(maximum
+ minimum)] to index the density modulation, we find that modulation increases linearly with
oscillation amplitudes up to 0.164, where it hits a nonlinearity at a Michelson ratio of 0.95 (see
Fig. 3). From this point, the amplitude appears to drift down slightly, although this portion of the
curve is not defined to high accuracy due to the sampling limitations of the numerical methods
used for this assessment. We note that these nonlinear relationships between oscillation
amplitude and the density and contrast measures seem largely absent from the literature on the
physics of sound.

Note that the ratio between each particle’s maximum speed and the propagation speed of the
medium is 2rma/A. Thus, an individual particle will briefly move faster than the longitudinal wave
that it forms whenever a > A\/(2r). We suggest that the resultant distortion can be considered the



cyclic equivalent of shockwaves, such as the sonic boom created when a jet moves faster than

the speed of sound.
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Fig. 2. Longitudinal-wave density functions (blue curves) with wavelength 4 = 2w and oscillation amplitudes ranging
from a = 0.0031 to a = 0.31. The green curve at 0.031 is a true sinusoid whose peak-to-peak amplitude equals
that of the density. Note that the waveform at higher amplitudes resembles the double-peaked form at 0.34 but
with wider spiked bars.

From the viewpoint of the usual sinusoidal approximation to this nonlinear function, it is
important to know the levels at which it is applicable. A distortion criterion of < 1% root mean
square deviation is exceeded at the 0.0034 amplitude and the criterion of < 10% is exceeded at
the 0.034 amplitude, the latter being depicted in Fig. 2 for visual reference. For comparison,
these levels correspond to acoustic vibrations of about 0.1 and 1 mm in amplitude, respectively,
for sound at 10 kHz travelling in air, which are well within the range of high-volume audio
loudspeakers.

'V
10 1
0.5- 105
P
g § o
£ £ k=)
% £ =
s s S _ 0.50r
0.1+ 101 EQ
c 8
25
0.05 40.05 L2
S Q
o <
s
==
% 0.10f
=
]
a b
0.01 0.01 0.05
0.01 0.05 0.10 050 1 0.01 0.05 0.10 050 1

Oscillation amplitude (fraction of wavelength)

Oscillation amplitude (fraction of wavelength)

Fig. 3. A. Nonlinear relationship between oscillation amplitude (a/A) and a density maxima and minima, plotted on
double-logarithmic coordinates. B. Travelling wave Michelson amplitude given by the expression
([max fx (x) — min fy (x)]/[max fy (x) + min fy (x)]). The jagged appearance beyond amplitude of 0.15 is an
artifact of the numerical methods used to compute these densities.



Methods
The stimuli are presented as movies throughout the text. Mathematica or MATLAB was used to
create each movie. The code for each movie can be downloaded from the website
http://www.staff.city.ac.uk/~solomon/LongitudinalWaves.zip.

The phase-advancing sinusoidal oscillations of the longitudinal wave motion were overlaid on a
field of random-dot particles representing an ideal gas. While a < A1/(2m), Eq. 3 places local
maxima and minima at odd and even multiples of 7 radians, respectively. When a > 1/(2m), the
peaks double and odd multiples of  radians become local minima. In that case, local maxima
were found using Mathematica's FindMaximum routine, which necessarily fails at the singular
point when a = A/(2m). For all other oscillation amplitudes, sampling density was as close to as
possible to 1024 phases per wavelength, subject to the constraints that all local maxima and local
minima should be sampled, and all samples would be equally spaced. Note that derivative d/dx
in Eg. 3 can be written }li_I}(l) [r(x + h) —r(x) ]/h, where r(x) is the ratio of that equation’s two

integrals, expressed as a function of x. This derivative was approximated using
[r(x + h) —r(x)]/h, with h = 10710,

Results
Unipolar dot travelling waves
Stimuli
Inspired by the on-line resource created by Zeleny et al. (2011), we created visual renditions of
annular longitudinal waves from Eqn. 1, using a substrate of 600 oscillating random-dot samples
whose equilibrium positions were randomly sampled from a uniform distribution over an annular
region of a 2:1 radial extent. Movie 2 contains 6 annular wave motions of increasing amplitude
corresponding to the 6 panels in Fig. 2. The amplitudes are specified as its proportion of a
wavelength.

Whereas rectangular dot arrays with horizontal or vertical oscillations like those illustrated in Fig.
1 tend to encourage eye movements in the direction of propagation (or possibly in the opposite
direction), we opted to make perceptual judgments with annular dot arrays, because fixation at
the center of an annulus discourages eye-movement tracking in any particular direction, keeping
the dot array rotating at a fixed retinal eccentricity.

Observations

1. With fixation at the annulus center to avoid foveal tracking, it is difficult to appreciate
that each dot is merely oscillating around a stationary position in the annulus. This
oscillation can, however, be verified by foveating any individual dot within the annular
band.

2. With central fixation, wave propagation isimmediately apparent as the clockwise rotation
of the eight compression regions (“crests”) around each of the annuli with sufficient
amplitude.

3. The rarefaction regions (“troughs”) between crests appear to cohere into a uniform
texture that rotates backwards (here, counterclockwise), even though the phase
propagation direction is clockwise. This reverse motion thus represents the intrusion of



the local motion of the individual dots for half the phase of the local oscillations, though
perceived as a coherent reverse motion of the half-phase patches.

4. Attheintermediate amplitudes, most observers can discern a subtle impression of depth,
in which the compression regions appear closer to the viewer than the rarefaction
regions.

5. With focal attention, the relative salience of individual crests and troughs may fluctuate,
but the opposing directions of motion they convey can be experienced simultaneously.

6. The perceived speeds of rotation of the crests and troughs appear to increase with
oscillation amplitude. This percept is robust, but it is an illusion because each crest (and
trough) requires exactly 8.53 s to complete a full revolution around the annulus center.

Movie 2. Dynamic illustrations of longitudinal waves, propagating clockwise through annuli of randomly placed dots.
The annular format is designed to allow fixation at the center of each annulus to eliminate tracking eye movements.
The angle of each dot oscillates sinusoidally in place with an amplitude ranging from 0.003A (top left) to a = 0.31
(bottom right), as labeled. The red dot near the top is designed to aid verification that each dot is oscillation in place.
The motion conditions match those diagrammed in Fig. 2. In all panels, the phase propagation speed is 42 polar
deg/s. Wave motion is visible for oscillation amplitudes above ~0.01A.

Density-luminance reciprocity

Stimuli

The high-density peak regions of our black-dot stimuli necessarily have a lower average
luminance than the low-density trough regions. To determine if and how the visual perception of
longitudinal motion was contingent upon this “reciprocity” between density and average
luminance (Mulligan & Macleod, 1988), we created stimuli in which dot luminance was
proportional to the average density of dots in each phase of the longitudinal wave. This

manipulation eliminates the (expected) luminance contrast between crests and troughs, virtually



eliminating their ability to stimulate standard motion-energy mechanisms, including the
Reichardt detector (Reichardt, 1987; van Santen & Sperling, 1985).

Observations
1. With luminance equated, the crests still appear to rotate forwards (clockwise) and the
troughs backwards (counterclockwise), as in the original version.
2. The wave motion is fully visible for levels of 0.03A and above.
3. The depth impression is similar to that for the original version with uncompensated
luminance modulation.

This luminance-balanced control makes clear that the percept of the bidirectional wave motion
is undiminished from the level of 0.03A and above, suggesting that it can be conveyed by
something other than standard, luminance-based motion-energy mechanisms.

Movie 3. Luminance-balanced version of Movie 2, in which dot luminance varies in proportion to dot density. Wave
motion is easily visible from about 0.03A.

Polarity-randomized dots

Stimuli

Randomly selecting the polarity (black or white) of each dot is guaranteed to reduce any contrast
between the average luminances of crest and trough, consequently minimizing the contribution



from standard, luminance-based motion-energy mechanisms to the wave-motion percept.
Examples of these “drift-balanced” stimuli (Chubb & Sperling, 1988) are provided in Movie 4.
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Movie 4. Drift-balanced version of Movie 2, in which dot polarity has been randomized. Wave motion is easily visible
from about 0.034.

Observations

All the observations made with black-dot stimuli (discussed in the section on unipolar dot
travelling waves) apply equally to the polarity-randomized stimuli. Evidently, luminance contrast
is not required for the perception of longitudinal wave motion, or for the visual segregation of
the clockwise-propagating crests from the troughs, which again appear to rotate in the
counterclockwise direction.

Density-contrast reciprocity

Stimuli

The high-density peaks of our polarity-randomized stimuli necessarily have a more contrast
energy than the low-density troughs. To determine if and how the visual perception of
longitudinal motion was contingent upon this “reciprocity” between density and contrast energy
(Morgan et al. 2022), we created stimuli in which the absolute value of each dot’s Weber contrast
was inversely proportional to the average density of dots in each phase of the longitudinal wave.
This manipulation reduces the angular modulation of contrast energy around each annulus,
consequently reducing its ability to stimulate the “2"%-order” motion system, putatively
responsible for computing the direction of spatiotemporal amplitude modulations (Chubb &
Sperling, 1989).



Observations
1. Contrast balancing weakens both clockwise and counterclockwise apparent motions, but
both motions remain visible at moderate oscillation amplitudes (0.034 — 0.14).
2. At high amplitudes (> 0.1641), clockwise propagation of the crests becomes very hard to
see, and the counterclockwise rotation of the trough regions dominate perception.
3. Anticipating the section on the motion aftereffect, the panels in the bottom row produce
a weak motion aftereffect if observed when they stop after rotating for a while.

0.003 0.01 0.03

0.1 0.16 0.3
Movie 5. Contrast-balanced version of Movie 2, in which dot contrast varies inversely with dot density. Wave motion
is easily visible for 0.031 — 0.11 but not for higher amplitudes.

Luminance gratings may appear to drift transparently when their spatial frequency contents are
very different. The crests and troughs of some longitudinal waves, on the other hand, appear to
drift transparently even when their spatial frequency contents are similar, such as when the
oscillation amplitude is 0.01A or 0.3A. This suggests that qualitatively different computations
underlie the two directions of apparent motion. The fact that transparency can survive both
luminance and contrast balancing further suggests that spatiotemporal modulations of contrast
energy alone do not adequately describe either computation. Note however, that the clockwise
motion of the contrast-balanced crests does eventually disappear when the oscillation amplitude
becomes sufficiently large. This too is unlikely to be a by-product of amplitude’s effect on the
relative widths of crests and troughs, because similarly wide crests are obtained with oscillation
amplitudes of 0.01A, where both directions of motion are visible, and 0.3\, where clockwise
motion is not visible. Thus, the disappearance of the clockwise crest motion with survival of the
counterclockwise trough motion disqualifies the possibility that the disappearance is for crests
that are narrow relative to some spatial integration area, because the crests at 0.3A are as wide
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as those perceived at 0.1A. The implication is that the crests and troughs are processed
independently, and the reduced crest contrast weakens it as a stimulus for the crest motion but
does not affect the strength of the trough motion. The motion aftereffect resulting from the
residual counterclockwise motion is considered in the Motion aftereffect section and the
Discussion.

What about spatiotemporal modulations of dot density? Note that several lines of evidence (e.g.,
Morgan et al., 2014; Morgan et al., 2022; Zeljic et al., 2024) suggest that texture density is
computed locally, early in the hierarchy of visual computations.

Density waves

Stimuli

One inescapable feature of longitudinal waves is the periodic pile-up of particles in the direction
of propagation. We test its ability to convey propagation when other features of the longitudinal
wave have been removed. Although our contrast-balanced stimuli (described in the section on
density-contrast reciprocity) have spatiotemporal modulations of neither luminance nor contrast
energy, they still contain spatiotemporal modulations of motion: the average motion of crest
dots is clockwise, while the average motion of trough dots is counterclockwise. Next, we virtually
eliminated this local motion without changing the overall structure of our annuli by randomly re-
assigning the radial position of each dot within the annulus on each frame, thus removing the
local oscillatory dot motion but retaining the density modulation waves. The version of this
stimulus in Movie 6. tests whether waves of dot density in the absence of coordinated local
motions of the dots provides a motion cue when compensated for the ancillary contrast
modulation.

0.1 0.16 0.3

Movie 6. Contrast-balanced density waves as in Movie 5 but modified to eliminate local dot motions by randomizing
the radial position of each dot. Propagation of individual crests can be seen with effort at high amplitudes.

11



Observations

1. Having disrupted each dot’s trajectory, counterclockwise motion remains at neither the
local level nor the global level.

2. No dot moves clockwise either, but the relatively dense, low-contrast crests continue to
rotate physically in a clockwise direction around the annulus. That motion is very hard to
see, but it does seem possible to track the motion of any individual crest with local
attention.

3. There is a lot of flicker due to resampling the radial location of each dot in the annular
region, including content at high temporal frequencies.

We conclude that waves of pure dot density with nulling of the consequent contrast modulation
are almost invisible. The slight residual motion is likely attributable to an imperfect match of the
dot density and compensatory contrast modulation functions.

Flickering particles

Did the high temporal frequency content in our density waves simply mask their density
modulation, or was the local motion of individual dots (absent from our density waves in previous
sections) important for the appearance of contrast-balanced longitudinal waves?

Stimuli

To assess the impact of flicker on the visibility of contrast-balanced longitudinal waves, we
created a new version of Movie 5 in which dot polarity was reassigned randomly on each frame.
Note that this manipulation doesn’t necessarily produce the same amount of flicker inherent in

the density waves, but it does produce equally high temporal frequencies.

0.003 0.01 0.03

0.1 0.16 0.3

Movie 7. Flickering version of Movie 5, in which dot polarity is randomly reassigned on each frame.
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Observations

1. Flicker eliminates any appearance of coherent motion from the low amplitude (< 0.11)
annuli.

2. Flicker all but eliminates the appearance of propagation from the high-amplitude (>
0.11) stimuli, but individual crests can be seen to rotate clockwise with effort.

3. When the oscillation amplitude a = 0.14, all 8 crests can be seen to rotate coherently,
but the counterclockwise rotation of the troughs dominates (as it does with higher
oscillation amplitudes).

The introduction of random polarity reassignment unquestionably served to mask the apparent
propagation of some of the contrast-balanced stimuli. It is conceivable that the apparent
propagation of all our contrast-balanced stimuli could have been masked with more flicker.
Consequently, it is uncertain whether the spatiotemporal modulation of dot density is sufficient
to convey the impression of propagation amongst longitudinal waves, or whether a contribution
from each dot’s oscillating trajectory is required. A contribution from those oscillations seems to
be required for the impression of coherent, retrograde motion from the troughs.

Cancellation of wave motion by opposing directions of rigid motion

The question arises how the apparent motions of crests and troughs are related to the local
motions of the dots throughout the waveform. Clearly, neither direction of apparent motion
corresponds to the average dot motion, because each dot is merely oscillating in place. Its motion
is neither forward (clockwise) nor backward (counterclockwise) on average. We addressed this
guestion by adding a rigid rotation to the travelling wave stimuli to determine at what speed it
would be perceived to cancel either the clockwise crest motion or the counterclockwise trough
motion. The default hypothesis is that the apparent speed is controlled by the rate of phase
propagation, which is held constant in the following cancellation tests. Another possibility is that
the apparent forward and backward motions correspond to the dots’ fastest forward and
backward motions (with velocities +2mac/A), respectively. Alternatively, the apparent velocities
could correspond to the dots’ average forward or backward motions, respectively (with velocities
+4ac/A). (Note that, here and subsequently, we use the term ‘velocity’ to specify angular
velocity relative to the center of the annular stimuli.)

Stimuli

To test between these alternatives, stimuli were generated with a range of rigid motions added
to all the dots in the annular longitudinal waves. Movies 8A-C illustrates a consensus when the
oscillation amplitude had the high amplitude 0.254 (i.e., beyond the linear range of Fig. 3B) In
this case we judged the crests to be static when a rigid counterclockwise motion having a speed
equal to 105% of the wave’s propagation (i.e. 1.05c¢) was added to each dot. The troughs were
judged to be static when a rigid clockwise motion having a speed equal to 150% of the wave’s
propagation was added to each dot. The longitudinal wave in the central annulus has no
additional rigid motion.

13



Movie 8. Different levels of rigid rotational motion added to each dot of high-amplitude (0.25A) longitudinal waves.
Motion of the frames is keyed to the added motion to give a clear indication of its angular velocity. A: With matching
reverse added motion (clockwise velocity —1.05c). B,E: No added motion. C: Matching forward added motion
(clockwise velocity +1.50c). D,F: Equal but non-matching intermediate speed (clockwise velocity +1.30c). Note that
the crests appear stationary in panel A and the trough regions appear stationary in panel C. In panels D and F, neither
the crests nor the troughs appear stationary (both appear to rotate counterclockwise) but the frames rotate at the
same speed.

Panels 8D and F illustrate the same high-amplitude longitudinal wave with equal but opposite
rigid velocities of +1.3c. This intermediate velocity proves too fast to cancel the crests’ motion
(they appear to rotate counterclockwise in 8D) and too slow to cancel the troughs’ (they appear
to rotate counterclockwise in 8F). Quantitative cancellation speeds for lower-velocity waves are
plotted in Fig. 4.

Movie 9 contains the same longitudinal waves shown in Movie 2, with the wave’s actual
propagation velocity subtracted from each dot. This is approximately the correct speed for
cancelling the apparent propagation of the crests only when the oscillation amplitude a = 0.2A.
For larger amplitudes, it is insufficient, and the crests appear to rotate clockwise. For smaller
amplitudes, it is overkill, and any discernible crests appear to rotate counterclockwise.

These speed-cancellation observations reveal the remarkable result that the perceived

propagation speed is some form of local average that lies between the particles’ average speed
in that direction and their maximum speed. This is also true for the transparent, retrograde
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motion of the troughs, which seem to move a little faster. This difference in apparent speed
increases with oscillation amplitudes > 0.14, whereas the difference between the apparent
widths of crest and trough is maximal when a = 0.16A4.

Movie 9. Identical levels of counterclockwise motion with propagation speed c added to Movie 2 modified by adding
identical levels of counterclockwise motion at its phase propagation speed of ¢ = 42 deg/s. This is too slow to cancel
the apparent clockwise propagation when a = 0.3 (bottom right) but too fast to cancel apparent propagation when
a < 0.24.
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Fig. 4. Cancellation speeds for the crest maxima and the trough minima of rotating longitudinal waves at a constant
propagation speed of ¢ = 42 deg/s. The only variable is the oscillation amplitude. The solid line plots the maximum
dot speed without any additional rigid motion, while the dashed line plots their average speed. In each case, the
physical clockwise and counterclockwise oscillation speeds of each dot are equal.
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Observations (see Fig. 4)

1. The cancellation speeds are not constant but scale monotonically with the oscillation
amplitudes.

2. Setting the cancellation velocity to the average velocity of the crest or trough regions,
respectively fails to cancel the perceived motion (except in one incidental case of the crest
velocity at 0.3A), invalidating the averaging hypothesis that the dot motion in whole of
each half-cycle contributes to the perceived velocity. Effective cancellation requires
added velocities closer to the maxima within each crest or trough.

3. For higher-amplitude waves, the substantially exceeds the
crest-cancellation speed.

These speed-cancellation observations reveal the remarkable result that the perceived wave
motion depends on a property of the local dot motions whose oscillation is essentially invisible
without guided scrutiny. This property is some form of local average that lies between their
average speed and their maximum speed, separately and differently within the crest regions and
trough regions.

Motion aftereffect

Stimuli

A guestion that does not seem to have been previously addressed in the perceptual literature is
whether travelling wave motion generates a motion aftereffect. This may be viewed in a cyclic
adaptation paradigm of 10-s adapting and 2-s test periods, as seen in Movie 10. Note here that
the high-amplitude longitudinal wave in panel B is identical to the one in Movie 8B. The rotating
texture in panel A has a velocity equal to the sum of the rigid velocities required to cancel the
apparent motions of crests and troughs, as described in the previous section.
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Movie 10. Motion aftereffect and lack thereof. A 2.13-s static test period follows 10.67 s of motion adaptation with
a uniform texture rotating at 6.3 deg/s (panel A) and a high-amplitude (0.251) longitudinal wave propagating at 42
deg/s (panel B). The uniform angular velocity in panel A is set to the sum of the rigid velocities required to cancel
the two directions of transparent motion in panel B (see Movies 8A—C). A strong motion aftereffect is seen during
the static test period with centered adaptation in panel A, but not for the same in panel B.
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Observations

1. Even though the sum of (oppositely signed) velocities required to cancel the longitudinal
wave’s opposite directions of apparent motion is small, that sum nonetheless elicits a
strong motion aftereffect (Movie 10A).

2. The longitudinal wave itself does not elicit any motion aftereffect (Movie 10B).

3. Note also that the contrast-balanced wave of Movie 5, which does not support the
clockwise motion percept of the crests, does produce a weak motion aftereffect, which is
stronger in peripheral vision.

These observations are consistent with evidence (Kohn & Movshon, 2003) that the adaptation
underlying the motion aftereffect occurs primarily in the directionally selective neurons of
cortical area V1, where receptive fields are relatively small. Such neurons favoring clockwise
motion would not be expected to receive any stronger stimulation than similarly positioned
neurons favoring counterclockwise motion when individual dots are merely oscillating back and
forth in their receptive fields. On the other hand, such neurons would receive stronger
stimulation from rigid, clockwise motion. Consequently, the rigid motion should produce a
significant aftereffect whereas the longitudinal motion should not. Indeed, this is what we found.

The motion aftereffect in the contrast-balanced conditions (Movie 5) implies that the contrast-
balanced reduction in the clockwise motion reduces the motion specific to the crest regions
without affecting the counterclockwise trough motion, resulting in a counterclockwise bias that
produces the clockwise motion aftereffect when the motion stops. This result in turn implies that
the lack of motion aftereffect in the original stimulus is not because the local oscillations do not
produce local motion aftereffects, but because these local aftereffects from the crest and trough
motions cancel each other in the net effect.

Discussion
Longitudinal waves are created from ensembles of locally oscillating dots with a progressive
phase advance as a function of position. These oscillations create regions of compression and
rarefaction whose propagation and retrograde motions so dominate perception that the local
motion of individual dots is all but impossible to discern. These global, transparent motions thus
arise by some process of motion integration.

We show that, even for locally linear transmission through the medium at constant speed, the
density of the longitudinal wave motion becomes notably non-sinusoidal at oscillation
amplitudes beyond about 2% of the wavelength, and progressively piles up into a narrow cyclic
density spike around 16% of the wavelength, beyond which the peak splits into a double spike as
the density accretion overtakes the maximum velocity of the local medium being perturbed. This
nonlinearity is of entirely different character than the adiabatic shock wave nonlinearities that
were the subject of contentious analyses in the C19th. Those turned out to be time-asymmetric
in the direction of a sawtooth wave, whereas our analysis applies to speed-invariant Boylean
gases, in which the density singularity for a sinusoidal input remains time-symmetric but becomes
a double singularity at higher oscillation amplitudes.
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Having established the full nature of longitudinal waves, we then turned to the perceptual
appreciation of visual depictions of wave motion, such as are often used in acoustics courses.
Instead of the usual linear wave of Fig. 1, however, we use rotating ring configurations of
travelling wave motion to control eye movements. These show that the local dot motion in the
wave is virtually invisible, but is subsumed under the global impression of motion, in which each
cycle splits into two opposing regions: a dominant forward motion of the crest regions and a
residual backward motion of the trough regions. This percept is obtained even when the
oscillation amplitude is small enough that the wave motion remained sinusoidal. At higher
amplitudes, the forward motion of the crests is enhanced by the nonlinear pile-up of the dot
density there, which results in their being perceived as narrow ‘walls’ between broad ‘fields’ of
opposing motion. In the rotating ring configuration, the individual cycles then integrated into
transparent counterrotating motion fields. Perceptual binding of all 8 crests (or all 8 troughs), see
Movie 2 into a single coherent texture necessarily requires neurons having receptive fields large
enough to be stimulated by them.

We then asked whether the appearance of the forward component of the longitudinal wave
motion was attributable to the difference between the average luminances of the crests and
troughs. This hypothesis was tested in two ways. First, we reduced the crests’ average luminance
to match that of the troughs (Movie 3). Second, we randomized dot polarity so that the expected
luminance within each phase of the wave was equal to that of the mid-gray background (Movie
4). Neither of these manipulations eliminated the impression of transparent, global rotations in
opposite directions.

The impression of global motion in either direction can be eliminated by the addition of a uniform
velocity to each particle. This cancelling velocity is close to the peak oscillation velocity (Movie
8), but we have found that it varies with oscillation amplitude and direction (i.e., consistent with
or opposite to that of propagation). While the cancellation of the trough motion was close, to
proportional with the maximum trough velocity, the cancellation of the crest motion
progressively declined below proportionality until it matched the average, rather than the
maximum, of the crest velocity half-cycle of the waveform.

The distinction between a global property and the local components from which it is formed was
highlighted by the Gestalt psychologists at the beginning of the twentieth century. The visual
system’s ability to integrate local motion signals into a global percept has been recognized (e.g.
by Smith et al., 1994) since the end of the twentieth century. Just as the Smith group sought to
eliminate spatial frequency components from their random-dot stimulus that could potentially
excite motion-energy detectors on a global scale, we too examined various “drift-balanced”
(Chubb & Sperling, 1988) modifications of our black-dot stimuli that were designed to hide their
emergent properties from “1%t-order” motion detectors (Cavanagh & Mather, 1989; Chubb &
Sperling, 1989).

As previously noted, the mere elimination of global-scale motion energy (via luminance
cancellation or polarity randomization) proved ineffective at eliminating the impression of
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transparent, global motion in opposite directions. However, reduction of the crests’ contrast did
make them harder to see (Movie 5). In this case, the retrograde motion of the troughs was
perceptually dominant, which we interpret to imply that the opposite directions of crest and
trough motions are processed locally by separate local motion mechanisms, which are then each
integrated separately around the circle to provide opposing transparent motion percepts. (In
terms of the conventional understanding of motion processing, the local motion processing
would be by neurons in the cortical motion area hMT, while the global integration would be by
cortical optic flow area hMST.) One manipulation that did succeed in eliminating the impression
of retrograde motion was the cancellation of the local motion from the troughs (Movie 6). The
propagation of high-density crests in these latter movies was just perceptible.

The perceptual results were extended by testing for a motion aftereffect generated by
longitudinal wave motion. In fact, motion aftereffects are essentially non-existent for the
uncompensated longitudinal wave motion (Movie 10B), even though strong motion aftereffects
are seen for rigidly moving textures of the same format (Movie 10A). Given our contention that
the impression of transparent global motions arises from large-scale mechanisms that integrate
local motion information from individual dots, this negative result may not seem surprising. After
all, the inability of other non-Fourier motion stimuli to elicit an aftereffect in static test stimuli
has been well established (Anstis, 1980; Derrington & Badcock, 1985; Nishida & Sato, 1995). That
being said, it is important to remember that black-dot longitudinal waves would indeed be
expected to stimulate motion-energy detectors sensitive to the difference between the average
luminances of crest and trough. It is therefore surprising to find that the basic longitudinal waves
elicit no motion aftereffect, although it can emerge when the contrasts of the components in the
two opposing directions are unbalanced. We interpret this result to imply that there are, in fact,
aftereffects of the local motion processing units for the opposing directions of the crests and
troughs, but that these local aftereffects cancel to produce no net global aftereffect when
equated, and that the trough motion aftereffect can be revealed by the manipulation of reducing
the contrast of the crest component.
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