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Abstract 

We introduce the study of the visual perception of longitudinal travelling wave motion, 
which as a physical phenomenon forms the basis of acoustics and some forms of seismic 
transmission. A theoretical analysis of physical longitudinal wave motion reveals that it 
exhibits profound nonlinearities that have been almost entirely neglected by the physics 
community. We simulated longitudinal motion in visual form with a random-dot field in 
which each dot particle oscillates sinusoidally about a fixed position at the same 
frequency but with a phase advance proportional to its distance from the origin. The 
resultant longitudinal density wave is essentially sinusoidal at very low oscillation 
amplitudes, becoming progressively distorted as oscillation amplitude increases.  
Perceptually, the motion splits into a combination of forward motion of the crests and 
backward for the troughs, rather than a uniform travelling wave. When the maximum 
velocity of each dot particle equals that of the propagation, the density function 
approximates a narrow spike, which splits into a double spike at even greater 
amplitudes. Adding a single (‘rigid’) velocity component can eliminate either the forward 
or backward percept. Remarkably, the speed needed for perceptual cancellation scales 
with oscillation amplitude, but nonlinearly so for the forward crest motion. Longitudinal 
waves evoked no motion aftereffect at any amplitude unless the contrast of the forward 
crest motion was reduced, revealing a motion aftereffect from the now-dominant 
retrograde trough motion. These unexpected results underline the emergent, or higher-
order, nature of the perception of longitudinal travelling wave motion. 
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Introduction 
 
Any travelling wave can be decomposed into longitudinal and transverse oscillations. In 
mechanical waves, those oscillations are applied to the positions of particles within the solid, 
liquid, and/or gaseous medium through which the wave travels. (Electromagnetic waves, on the 
other hand, can travel through a vacuum.) Sound waves in gases are wholly longitudinal. Particles 
are displaced away from and back toward the origin of the sound. These oscillations can be 
illustrated with a matrix of horizontal moving dots, as in Movie 1a (diagrammed in Fig. 1a). 
Transverse waves can also be illustrated with a matrix of moving dots (Movie 1b; diagrammed in 
Fig. 1b). Note that the longitudinal wave and the transverse wave depicted in Movie 1 in both 
propagate rightward, but whereas each individual dot in Movie 1a oscillates horizontally, each 
individual dot in Movie 1b oscillates vertically. In both cases, what is propagating is not the local 
elements per se but the phase of the oscillations, which advances from left to right. 

 
 

Fig. 1. Static illustrations of (a) longitudinal and (b) transverse waves, propagating rightward through a grid of dots. 
(See Movie 1 for a dynamic version of this figure.) For illustrative purposes, equilibrium positions of the dots are 
equally spaced. In all subsequent movies, equilibrium positions were selected at random from a uniform 
distribution.) In each panel, 10 successive temporal samples of the wave have been arranged vertically. Each dot has 
been replaced by an arrow indicating the direction and speed of its motion. 
 
Whereas some perceptual qualities of transverse waves travelling through visual texture (Zanker 
1994; Lu & Sperling 1995) have been studied using psychophysical paradigms like those used with 
drifting luminance (e.g. Graham, 1972) and chromatic (e.g. Cavanagh, Tyler & Favreau, 1984) 
gratings, our focus here is on the properties of longitudinal waves, in which local oscillations are 
parallel to the wave propagation.   
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Movie 1. Animation of Fig. 1. Here and for subsequent movies, double-click to activate. 
 

Analysis of physical longitudinal wave motion reveals that it exhibits profound nonlinearities that 
are largely neglected in the physics community. Longitudinal motion is almost universally treated 
with the small amplitude approximation, where a sinusoidal driving function is assumed to 
generate an essentially sinusoidal travelling wave, in the longitudinal wave case just as in the 
transverse wave case.  Our visualizations of the molecular behavior of the sound wave in a 
gaseous medium clarified the extent of the physical deviations from this approximation and led 
to a series of explorations of the unexpected perceptual properties of the visualized. Longitudinal 
wave motion. 
 
Historically, a form of high amplitude nonlinearity for pressure shock waves was recognized early 
in the C19th by Poisson (1808) and elaborated by Challis (1848) and Stokes (1848). Visualizations 
of longitudinal wave motion proliferate in textbooks on sound waves and on the internet. 
Particles comprising a longitudinal wave in an idealized gas are typically represented by dots, 
whose positions often oscillate sinusoidally, as though perturbed by a pure tone input. Such 
dynamic illustrations have undeniable value as teaching tools, but problems arise when they are 
accompanied by a graph of the density function. In every example we have found, this graph 
depicts the density is also sinusoidal. In actuality, the density of particles in a longitudinal wave 
is not sinusoidal but steepens as an accelerating function of the amplitude of the driving function 
(e.g. Blackstock et al., 2020) to produce the narrow peaks and broad troughs that are evident in 
the travelling-wave simulations. We first provide the theoretical analysis of these ‘ideal’ 
nonlinearities and then explore their perceptual effects when the longitudinal waves are 
rendered as dynamic visual displays. 
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Formal specification 
Following Zeleny et al. (2011), we assume that each particle in a longitudinal wave oscillates 
around a fixed position 𝑥!, called its equilibrium position. At any time 𝑡, its position 𝑥 can be 
described as 

𝑥 = 𝑥! + 𝑎	sin *𝜔 ,
𝑥!
𝑐 − 𝑡/0,										(Eq. 1) 

 

where 𝑎 is the amplitude, 𝜔 is the angular frequency, and 𝑐 is the propagation speed. (Note that 
longitudinal waves in a 3D medium propagate three-dimensionally (though anisotropically) from 
the (1D) source of vibration, whereas transverse waves can only propagate two-dimensionally in 
a 3D world. For convenience, we will assume that the fixed positions are randomly sampled from 
a 1D uniform distribution. Wavelength is defined as 
 

𝜆 =
2𝜋𝑐
𝜔 .										(Eq. 2) 

Each panel in Fig. 2 shows the density function of the travelling wave over space for 2 
wavelengths. There seems to be no closed-form solution for this function. Instead, we fixed 𝑐 =
𝜔,  𝑡 = 0, and used numerical methods (Mathematica’s NIntegrate) to compute the cumulative 
distribution function over 1 wavelength of 𝑥! (normalized by its maximum value as specified in 
the denominator of the fractional term), differentiated with respect to 𝑥, and plotted the 
resulting density function, i.e., 
 

𝑓"(𝑥) =
𝑑
𝑑𝑥	

∫ 𝐻[𝑥 − 𝑥! − 𝑎	sin(𝑥!)]	𝑑𝑥!
#
!

∫ 𝐻[𝜆 − 𝑥! − 𝑎	sin(𝑥!)]	𝑑𝑥!
#
!

,										(Eq. 3) 

 

where 𝐻 denotes the Heaviside step function. 
 
The behavior of Eq. 3 is that increasing the oscillation amplitude does not merely increase the 
amplitude of the density modulation, it also changes the shape of the modulation from quasi-
sinusoidal at low amplitudes (e.g., 𝑎 = 0.003𝜆) to spiky at moderate amplitudes (e.g., 𝑎 = 0.16𝜆) 
to a waveform with two peaks per wavelength (e.g., when 𝑎 = 0.3𝜆), as seen in Fig. 2. The 
maximum and minimum values of these function vary as nonlinear functions of the oscillation 
amplitude (Fig. 3A).  Nevertheless, using the Michelson ratio [(maximum – minimum)/(maximum 
+ minimum)] to index the density modulation, we find that modulation increases linearly with 
oscillation amplitudes up to	0.16𝜆,	where	it	hits	a	nonlinearity	at	a	Michelson	ratio	of	0.95	(see 
Fig. 3). From this point, the amplitude appears to drift down slightly, although this portion of the 
curve is not defined to high accuracy due to the sampling limitations of the numerical methods 
used for this assessment. We note that these nonlinear relationships between oscillation 
amplitude and the density and contrast measures seem largely absent from the literature on the 
physics of sound.  
 
Note that the ratio between each particle’s maximum speed and the propagation speed of the 
medium is 2πa⁄λ. Thus, an individual particle will briefly move faster than the longitudinal wave 
that it forms whenever a > λ/(2π). We suggest that the resultant distortion can be considered the 
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cyclic equivalent of shockwaves, such as the sonic boom created when a jet moves faster than 
the speed of sound. 
 

   
 

Fig. 2. Longitudinal-wave density functions (blue curves) with wavelength 𝜆 = 2𝜋 and oscillation amplitudes ranging 
from 𝑎 = 0.003𝜆 to 𝑎 = 0.3𝜆. The green curve at 0.03𝜆 is a true sinusoid whose peak-to-peak amplitude equals 
that of the density.  Note that the waveform at higher amplitudes resembles the double-peaked form at	0.3𝜆 but 
with wider spiked bars. 
 
From the viewpoint of the usual sinusoidal approximation to this nonlinear function, it is 
important to know the levels at which it is applicable. A distortion criterion of < 1% root mean 
square deviation is exceeded at the 0.003l amplitude and the criterion of < 10% is exceeded at 
the 0.03l amplitude, the latter being depicted in Fig. 2 for visual reference. For comparison, 
these levels correspond to acoustic vibrations of about 0.1 and 1 mm in amplitude, respectively, 
for sound at 10 kHz travelling in air, which are well within the range of high-volume audio 
loudspeakers.  
 

 
 
Fig. 3. A. Nonlinear relationship between oscillation amplitude (𝑎 𝜆⁄ ) and a density maxima and minima, plotted on 
double-logarithmic coordinates.  B. Travelling wave Michelson amplitude given by the expression        
([max 𝑓! (𝑥) − min𝑓! (𝑥)] [max 𝑓! (𝑥) + min𝑓! (𝑥)]⁄ ). The jagged appearance beyond amplitude of 0.15 is an 
artifact of the numerical methods used to compute these densities. 
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Methods 
The stimuli are presented as movies throughout the text. Mathematica or MATLAB was used to 
create each movie. The code for each movie can be downloaded from the website 
http://www.staff.city.ac.uk/~solomon/LongitudinalWaves.zip.  
 
The phase-advancing sinusoidal oscillations of the longitudinal wave motion were overlaid on a 
field of random-dot particles representing an ideal gas. While 𝑎 < 𝜆 (2𝜋)⁄ , Eq. 3 places local 
maxima and minima at odd and even multiples of 𝜋 radians, respectively. When 𝑎 > 𝜆 (2𝜋)⁄ , the 
peaks double and odd multiples of 𝜋 radians become local minima. In that case, local maxima 
were found using Mathematica's FindMaximum routine, which necessarily fails at the singular 
point when 𝑎 = 𝜆 (2𝜋)⁄ . For all other oscillation amplitudes, sampling density was as close to as 
possible to 1024 phases per wavelength, subject to the constraints that all local maxima and local 
minima should be sampled, and all samples would be equally spaced. Note that derivative d/dx 
in Eq. 3 can be written lim

$→!
[𝑟(𝑥 + ℎ) − 𝑟(𝑥)	] ℎ⁄ , where 𝑟(𝑥) is the ratio of that equation’s two 

integrals, expressed as a function of 𝑥. This derivative was approximated using 
[𝑟(𝑥 + ℎ) − 𝑟(𝑥)] ℎ⁄ , with ℎ = 10&'!. 
 

Results 
Unipolar dot travelling waves 
Stimuli  
Inspired by the on-line resource created by Zeleny et al. (2011), we created visual renditions of 
annular longitudinal waves from Eqn. 1, using a substrate of 600 oscillating random-dot samples 
whose equilibrium positions were randomly sampled from a uniform distribution over an annular 
region of a 2:1 radial extent. Movie 2 contains 6 annular wave motions of increasing amplitude 
corresponding to the 6 panels in Fig. 2. The amplitudes are specified as its proportion of a 
wavelength. 
 
Whereas rectangular dot arrays with horizontal or vertical oscillations like those illustrated in Fig. 
1 tend to encourage eye movements in the direction of propagation (or possibly in the opposite 
direction), we opted to make perceptual judgments with annular dot arrays, because fixation at 
the center of an annulus discourages eye-movement tracking in any particular direction, keeping 
the dot array rotating at a fixed retinal eccentricity.   
 
Observations 

1. With fixation at the annulus center to avoid foveal tracking, it is difficult to appreciate 
that each dot is merely oscillating around a stationary position in the annulus. This 
oscillation can, however, be verified by foveating any individual dot within the annular 
band. 

2. With central fixation, wave propagation is immediately apparent as the clockwise rotation 
of the eight compression regions (“crests”) around each of the annuli with sufficient 
amplitude. 

3. The rarefaction regions (“troughs”) between crests appear to cohere into a uniform 
texture that rotates backwards (here, counterclockwise), even though the phase 
propagation direction is clockwise. This reverse motion thus represents the intrusion of 
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the local motion of the individual dots for half the phase of the local oscillations, though 
perceived as a coherent reverse motion of the half-phase patches.  

4. At the intermediate amplitudes, most observers can discern a subtle impression of depth, 
in which the compression regions appear closer to the viewer than the rarefaction 
regions.  

5. With focal attention, the relative salience of individual crests and troughs may fluctuate, 
but the opposing directions of motion they convey can be experienced simultaneously.  

6. The perceived speeds of rotation of the crests and troughs appear to increase with 
oscillation amplitude. This percept is robust, but it is an illusion because each crest (and 
trough) requires exactly 8.53 s to complete a full revolution around the annulus center. 

Movie 2. Dynamic illustrations of longitudinal waves, propagating clockwise through annuli of randomly placed dots. 
The annular format is designed to allow fixation at the center of each annulus to eliminate tracking eye movements. 
The angle of each dot oscillates sinusoidally in place with an amplitude ranging from 0.003𝜆 (top left) to 𝑎 = 0.3𝜆 
(bottom right), as labeled. The red dot near the top is designed to aid verification that each dot is oscillation in place. 
The motion conditions match those diagrammed in Fig. 2. In all panels, the phase propagation speed is 42 polar 
deg/s. Wave motion is visible for oscillation amplitudes above ~0.01𝜆.   
 
 
Density-luminance reciprocity 
Stimuli 
The high-density peak regions of our black-dot stimuli necessarily have a lower average 
luminance than the low-density trough regions. To determine if and how the visual perception of 
longitudinal motion was contingent upon this “reciprocity” between density and average 
luminance (Mulligan & MacLeod, 1988), we created stimuli in which dot luminance was 
proportional to the average density of dots in each phase of the longitudinal wave. This 
manipulation eliminates the (expected) luminance contrast between crests and troughs, virtually 



 8 

eliminating their ability to stimulate standard motion-energy mechanisms, including the 
Reichardt detector (Reichardt, 1987; van Santen & Sperling, 1985). 

 
Observations 

1. With luminance equated, the crests still appear to rotate forwards (clockwise) and the 
troughs backwards (counterclockwise), as in the original version.   

2. The wave motion is fully visible for levels of 0.03λ and above. 
3. The depth impression is similar to that for the original version with uncompensated 

luminance modulation. 
 

This luminance-balanced control makes clear that the percept of the bidirectional wave motion 
is undiminished from the level of 0.03λ and above, suggesting that it can be conveyed by 
something other than standard, luminance-based motion-energy mechanisms.  

 
Movie 3. Luminance-balanced version of Movie 2, in which dot luminance varies in proportion to dot density. Wave 
motion is easily visible from about	0.03𝜆. 
 
Polarity-randomized dots 
Stimuli 
Randomly selecting the polarity (black or white) of each dot is guaranteed to reduce any contrast 
between the average luminances of crest and trough, consequently minimizing the contribution 
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from standard, luminance-based motion-energy mechanisms to the wave-motion percept. 
Examples of these “drift-balanced” stimuli (Chubb & Sperling, 1988) are provided in Movie 4. 

Movie 4. Drift-balanced version of Movie 2, in which dot polarity has been randomized. Wave motion is easily visible 
from about	0.03𝜆. 
 
Observations 
All the observations made with black-dot stimuli (discussed in the section on unipolar dot 
travelling waves) apply equally to the polarity-randomized stimuli. Evidently, luminance contrast 
is not required for the perception of longitudinal wave motion, or for the visual segregation of 
the clockwise-propagating crests from the troughs, which again appear to rotate in the 
counterclockwise direction. 
 
Density-contrast reciprocity 
Stimuli 
The high-density peaks of our polarity-randomized stimuli necessarily have a more contrast 
energy than the low-density troughs. To determine if and how the visual perception of 
longitudinal motion was contingent upon this “reciprocity” between density and contrast energy 
(Morgan et al. 2022), we created stimuli in which the absolute value of each dot’s Weber contrast 
was inversely proportional to the average density of dots in each phase of the longitudinal wave. 
This manipulation reduces the angular modulation of contrast energy around each annulus, 
consequently reducing its ability to stimulate the “2nd-order” motion system, putatively 
responsible for computing the direction of spatiotemporal amplitude modulations (Chubb & 
Sperling, 1989). 
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Observations 
1. Contrast balancing weakens both clockwise and counterclockwise apparent motions, but 

both motions remain visible at moderate oscillation amplitudes (0.03𝜆	 − 0.1𝜆). 
2. At high amplitudes (> 0.16𝜆), clockwise propagation of the crests becomes very hard to 

see, and the counterclockwise rotation of the trough regions dominate perception. 
3. Anticipating the section on the motion aftereffect, the panels in the bottom row produce 

a weak motion aftereffect if observed when they stop after rotating for a while. 

Movie 5. Contrast-balanced version of Movie 2, in which dot contrast varies inversely with dot density. Wave motion 
is easily visible for 0.03𝜆	 − 0.1𝜆 but not for higher amplitudes. 

 
 

Luminance gratings may appear to drift transparently when their spatial frequency contents are 
very different. The crests and troughs of some longitudinal waves, on the other hand, appear to 
drift transparently even when their spatial frequency contents are similar, such as when the 
oscillation amplitude is 0.01λ or 0.3λ. This suggests that qualitatively different computations 
underlie the two directions of apparent motion. The fact that transparency can survive both 
luminance and contrast balancing further suggests that spatiotemporal modulations of contrast 
energy alone do not adequately describe either computation. Note however, that the clockwise 
motion of the contrast-balanced crests does eventually disappear when the oscillation amplitude 
becomes sufficiently large. This too is unlikely to be a by-product of amplitude’s effect on the 
relative widths of crests and troughs, because similarly wide crests are obtained with oscillation 
amplitudes of 0.01λ, where both directions of motion are visible, and 0.3λ, where clockwise 
motion is not visible. Thus, the disappearance of the clockwise crest motion with survival of the 
counterclockwise trough motion disqualifies the possibility that the disappearance is for crests 
that are narrow relative to some spatial integration area, because the crests at 0.3λ are as wide 
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as those perceived at 0.1λ. The implication is that the crests and troughs are processed 
independently, and the reduced crest contrast weakens it as a stimulus for the crest motion but 
does not affect the strength of the trough motion. The motion aftereffect resulting from the 
residual counterclockwise motion is considered in the Motion aftereffect section and the 
Discussion. 
 
What about spatiotemporal modulations of dot density? Note that several lines of evidence (e.g., 
Morgan et al., 2014; Morgan et al., 2022; Zeljic et al., 2024) suggest that texture density is 
computed locally, early in the hierarchy of visual computations. 
 
Density waves 
Stimuli 
One inescapable feature of longitudinal waves is the periodic pile-up of particles in the direction 
of propagation. We test its ability to convey propagation when other features of the longitudinal 
wave have been removed. Although our contrast-balanced stimuli (described in the section on 
density-contrast reciprocity) have spatiotemporal modulations of neither luminance nor contrast 
energy, they still contain spatiotemporal modulations of motion: the average motion of crest 
dots is clockwise, while the average motion of trough dots is counterclockwise. Next, we virtually 
eliminated this local motion without changing the overall structure of our annuli by randomly re-
assigning the radial position of each dot within the annulus on each frame, thus removing the 
local oscillatory dot motion but retaining the density modulation waves.   The version of this 
stimulus in Movie 6. tests whether waves of dot density in the absence of coordinated local 
motions of the dots provides a motion cue when compensated for the ancillary contrast 
modulation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Movie 6. Contrast-balanced density waves as in Movie 5 but modified to eliminate local dot motions by randomizing 
the radial position of each dot. Propagation of individual crests can be seen with effort at high amplitudes.  
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Observations 

1. Having disrupted each dot’s trajectory, counterclockwise motion remains at neither the 
local level nor the global level. 

2. No dot moves clockwise either, but the relatively dense, low-contrast crests continue to 
rotate physically in a clockwise direction around the annulus. That motion is very hard to 
see, but it does seem possible to track the motion of any individual crest with local 
attention. 

3. There is a lot of flicker due to resampling the radial location of each dot in the annular 
region, including content at high temporal frequencies.  

 
We conclude that waves of pure dot density with nulling of the consequent contrast modulation 
are almost invisible. The slight residual motion is likely attributable to an imperfect match of the 
dot density and compensatory contrast modulation functions. 
 
Flickering particles 
Did the high temporal frequency content in our density waves simply mask their density 
modulation, or was the local motion of individual dots (absent from our density waves in previous 
sections) important for the appearance of contrast-balanced longitudinal waves? 
 
Stimuli 
To assess the impact of flicker on the visibility of contrast-balanced longitudinal waves, we 
created a new version of Movie 5 in which dot polarity was reassigned randomly on each frame. 
Note that this manipulation doesn’t necessarily produce the same amount of flicker inherent in 
the density waves, but it does produce equally high temporal frequencies. 
 
 

 

Movie 7. Flickering version of Movie 5, in which dot polarity is randomly reassigned on each frame. 
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Observations 

1. Flicker eliminates any appearance of coherent motion from the low amplitude (< 0.1𝜆) 
annuli. 

2. Flicker all but eliminates the appearance of propagation from the high-amplitude (>
0.1𝜆) stimuli, but individual crests can be seen to rotate clockwise with effort. 

3. When the oscillation amplitude 𝑎 = 0.1𝜆, all 8 crests can be seen to rotate coherently, 
but the counterclockwise rotation of the troughs dominates (as it does with higher 
oscillation amplitudes). 

 
The introduction of random polarity reassignment unquestionably served to mask the apparent 
propagation of some of the contrast-balanced stimuli. It is conceivable that the apparent 
propagation of all our contrast-balanced stimuli could have been masked with more flicker. 
Consequently, it is uncertain whether  the spatiotemporal modulation of dot density is sufficient 
to convey the impression of propagation amongst longitudinal waves, or whether a contribution 
from each dot’s oscillating trajectory is required. A contribution from those oscillations seems to 
be required for the impression of coherent, retrograde motion from the troughs. 
 
Cancellation of wave motion by opposing directions of rigid motion 
The question arises how the apparent motions of crests and troughs are related to the local 
motions of the dots throughout the waveform. Clearly, neither direction of apparent motion 
corresponds to the average dot motion, because each dot is merely oscillating in place. Its motion 
is neither forward (clockwise) nor backward (counterclockwise) on average. We addressed this 
question by adding a rigid rotation to the travelling wave stimuli to determine at what speed it 
would be perceived to cancel either the clockwise crest motion or the counterclockwise trough 
motion. The default hypothesis is that the apparent speed is controlled by the rate of phase 
propagation, which is held constant in the following cancellation tests. Another possibility is that 
the apparent forward and backward motions correspond to the dots’ fastest forward and 
backward motions (with velocities ±2𝜋𝑎𝑐 𝜆⁄ ), respectively. Alternatively, the apparent velocities 
could correspond to the dots’ average forward or backward motions, respectively (with velocities 
±4𝑎𝑐 𝜆⁄ ). (Note that, here and subsequently, we use the term ‘velocity’ to specify angular 
velocity relative to the center of the annular stimuli.) 
 
Stimuli  
To test between these alternatives, stimuli were generated with a range of rigid motions added 
to all the dots in the annular longitudinal waves. Movies 8A-C illustrates a consensus when the 
oscillation amplitude had the high amplitude 0.25l (i.e., beyond the linear range of Fig. 3B) In 
this case we judged the crests to be static when a rigid counterclockwise motion having a speed 
equal to 105% of the wave’s propagation (i.e. 1.05𝑐) was added to each dot. The troughs were 
judged to be static when a rigid clockwise motion having a speed equal to 150% of the wave’s 
propagation was added to each dot. The longitudinal wave in the central annulus has no 
additional rigid motion.  
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Movie 8. Different levels of rigid rotational motion added to each dot of high-amplitude (0.25𝜆) longitudinal waves. 
Motion of the frames is keyed to the added motion to give a clear indication of its angular velocity. A: With matching 
reverse added motion (clockwise velocity –1.05𝑐). B,E: No added motion. C: Matching forward added motion 
(clockwise velocity +1.50𝑐). D,F: Equal but non-matching intermediate speed (clockwise velocity +1.30𝑐). Note that 
the crests appear stationary in panel A and the trough regions appear stationary in panel C. In panels D and F, neither 
the crests nor the troughs appear stationary (both appear to rotate counterclockwise) but the frames rotate at the 
same speed.  
 
 
Panels 8D and F illustrate the same high-amplitude longitudinal wave with equal but opposite 
rigid velocities of +1.3c. This intermediate velocity proves too fast to cancel the crests’ motion 
(they appear to rotate counterclockwise in 8D) and too slow to cancel the troughs’ (they appear 
to rotate counterclockwise in 8F). Quantitative cancellation speeds for lower-velocity waves are 
plotted in Fig. 4.  
 
Movie 9 contains the same longitudinal waves shown in Movie 2, with the wave’s actual 
propagation velocity subtracted from each dot. This is approximately the correct speed for 
cancelling the apparent propagation of the crests only when the oscillation amplitude 𝑎 ≈ 0.2𝜆. 
For larger amplitudes, it is insufficient, and the crests appear to rotate clockwise. For smaller 
amplitudes, it is overkill, and any discernible crests appear to rotate counterclockwise. 
 
These speed-cancellation observations reveal the remarkable result that the perceived 
propagation speed is some form of local average that lies between the particles’ average speed 
in that direction and their maximum speed. This is also true for the transparent, retrograde 



 15 

motion of the troughs, which seem to move a little faster. This difference in apparent speed 
increases with oscillation amplitudes > 0.1𝜆, whereas the difference between the apparent 
widths of crest and trough is maximal when 𝑎 = 0.16𝜆.  

 
Movie 9. Identical levels of counterclockwise motion with propagation speed 𝑐 added to Movie 2 modified by adding 
identical levels of counterclockwise motion at its phase propagation speed of 𝑐 = 42 deg/s. This is too slow to cancel 
the apparent clockwise propagation when 𝑎 = 0.3𝜆 (bottom right) but too fast to cancel apparent propagation when 
𝑎 < 0.2𝜆. 
 
 

 
 
Fig. 4. Cancellation speeds for the crest maxima and the trough minima of rotating longitudinal waves at a constant 
propagation speed of c = 42 deg/s. The only variable is the oscillation amplitude. The solid line plots the maximum 
dot speed without any additional rigid motion, while the dashed line plots their average speed. In each case, the 
physical clockwise and counterclockwise oscillation speeds of each dot are equal.  
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Observations (see Fig. 4) 
1. The cancellation speeds are not constant but scale monotonically with the oscillation 

amplitudes.  
2. Setting the cancellation velocity to the average velocity of the crest or trough regions, 

respectively fails to cancel the perceived motion (except in one incidental case of the crest 
velocity at 0.3l), invalidating the averaging hypothesis that the dot motion in whole of 
each half-cycle contributes to the perceived velocity. Effective cancellation requires 
added velocities closer to the maxima within each crest or trough. 

3. For higher-amplitude waves, the trough-cancellation speed substantially exceeds the 
crest-cancellation speed. 

 
These speed-cancellation observations reveal the remarkable result that the perceived wave 
motion depends on a property of the local dot motions whose oscillation is essentially invisible 
without guided scrutiny. This property is some form of local average that lies between their 
average speed and their maximum speed, separately and differently within the crest regions and 
trough regions. 

 
Motion aftereffect 
Stimuli 
A question that does not seem to have been previously addressed in the perceptual literature is 
whether travelling wave motion generates a motion aftereffect. This may be viewed in a cyclic 
adaptation paradigm of 10-s adapting and 2-s test periods, as seen in Movie 10. Note here that 
the high-amplitude longitudinal wave in panel B is identical to the one in Movie 8B. The rotating 
texture in panel A has a velocity equal to the sum of the rigid velocities required to cancel the 
apparent motions of crests and troughs, as described in the previous section.  

 

Movie 10. Motion aftereffect and lack thereof. A 2.13-s static test period follows 10.67 s of motion adaptation with 
a uniform texture rotating at 6.3 deg/s (panel A) and a high-amplitude (0.25𝜆) longitudinal wave propagating at 42 
deg/s (panel B). The uniform angular velocity in panel A is set to the sum of the rigid velocities required to cancel 
the two directions of transparent motion in panel B (see Movies 8A–C). A strong motion aftereffect is seen during 
the static test period with centered adaptation in panel A, but not for the same in panel B.  
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Observations 
1. Even though the sum of (oppositely signed) velocities required to cancel the longitudinal 

wave’s opposite directions of apparent motion is small, that sum nonetheless elicits a 
strong motion aftereffect (Movie 10A).  

2. The longitudinal wave itself does not elicit any motion aftereffect (Movie 10B). 
3. Note also that the contrast-balanced wave of Movie 5, which does not support the 

clockwise motion percept of the crests, does produce a weak motion aftereffect, which is 
stronger in peripheral vision.  

 
These observations are consistent with evidence (Kohn & Movshon, 2003) that the adaptation 
underlying the motion aftereffect occurs primarily in the directionally selective neurons of 
cortical area V1, where receptive fields are relatively small. Such neurons favoring clockwise 
motion would not be expected to receive any stronger stimulation than similarly positioned 
neurons favoring counterclockwise motion when individual dots are merely oscillating back and 
forth in their receptive fields. On the other hand, such neurons would receive stronger 
stimulation from rigid, clockwise motion. Consequently, the rigid motion should produce a 
significant aftereffect whereas the longitudinal motion should not. Indeed, this is what we found. 
 
The motion aftereffect in the contrast-balanced conditions (Movie 5) implies that the contrast-
balanced reduction in the clockwise motion reduces the motion specific to the crest regions 
without affecting the counterclockwise trough motion, resulting in a counterclockwise bias that 
produces the clockwise motion aftereffect when the motion stops. This result in turn implies that 
the lack of motion aftereffect in the original stimulus is not because the local oscillations do not 
produce local motion aftereffects, but because these local aftereffects from the crest and trough 
motions cancel each other in the net effect. 
 
 

Discussion 
Longitudinal waves are created from ensembles of locally oscillating dots with a progressive 
phase advance as a function of position. These oscillations create regions of compression and 
rarefaction whose propagation and retrograde motions so dominate perception that the local 
motion of individual dots is all but impossible to discern. These global, transparent motions thus 
arise by some process of motion integration. 
 
We show that, even for locally linear transmission through the medium at constant speed, the 
density of the longitudinal wave motion becomes notably non-sinusoidal at oscillation 
amplitudes beyond about 2% of the wavelength, and progressively piles up into a narrow cyclic 
density spike around 16% of the wavelength, beyond which the peak splits into a double spike as 
the density accretion overtakes the maximum velocity of the local medium being perturbed. This 
nonlinearity is of entirely different character than the adiabatic shock wave nonlinearities that 
were the subject of contentious analyses in the C19th. Those turned out to be time-asymmetric 
in the direction of a sawtooth wave, whereas our analysis applies to speed-invariant Boylean 
gases, in which the density singularity for a sinusoidal input remains time-symmetric but becomes 
a double singularity at higher oscillation amplitudes. 
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Having established the full nature of longitudinal waves, we then turned to the perceptual 
appreciation of visual depictions of wave motion, such as are often used in acoustics courses.  
Instead of the usual linear wave of Fig. 1, however, we use rotating ring configurations of 
travelling wave motion to control eye movements. These show that the local dot motion in the 
wave is virtually invisible, but is subsumed under the global impression of motion, in which each 
cycle splits into two opposing regions: a dominant forward motion of the crest regions and a 
residual backward motion of the trough regions. This percept is obtained even when the 
oscillation amplitude is small enough that the wave motion remained sinusoidal. At higher 
amplitudes, the forward motion of the crests is enhanced by the nonlinear pile-up of the dot 
density there, which results in their being perceived as narrow ‘walls’ between broad ‘fields’ of 
opposing motion. In the rotating ring configuration, the individual cycles then integrated into 
transparent counterrotating motion fields. Perceptual binding of all 8 crests (or all 8 troughs), see 
Movie 2 into a single coherent texture necessarily requires neurons having receptive fields large 
enough to be stimulated by them.  
 
We then asked whether the appearance of the forward component of the longitudinal wave 
motion was attributable to the difference between the average luminances of the crests and 
troughs. This hypothesis was tested in two ways. First, we reduced the crests’ average luminance 
to match that of the troughs (Movie 3). Second, we randomized dot polarity so that the expected 
luminance within each phase of the wave was equal to that of the mid-gray background (Movie 
4). Neither of these manipulations eliminated the impression of transparent, global rotations in 
opposite directions. 
 
The impression of global motion in either direction can be eliminated by the addition of a uniform 
velocity to each particle. This cancelling velocity is close to the peak oscillation velocity (Movie 
8), but we have found that it varies with oscillation amplitude and direction (i.e., consistent with 
or opposite to that of propagation).  While the cancellation of the trough motion was close, to 
proportional with the maximum trough velocity, the cancellation of the crest motion 
progressively declined below proportionality until it matched the average, rather than the 
maximum, of the crest velocity half-cycle of the waveform. 
 
The distinction between a global property and the local components from which it is formed was 
highlighted by the Gestalt psychologists at the beginning of the twentieth century. The visual 
system’s ability to integrate local motion signals into a global percept has been recognized (e.g. 
by Smith et al., 1994) since the end of the twentieth century. Just as the Smith group sought to 
eliminate spatial frequency components from their random-dot stimulus that could potentially 
excite motion-energy detectors on a global scale, we too examined various “drift-balanced” 
(Chubb & Sperling, 1988) modifications of our black-dot stimuli that were designed to hide their 
emergent properties from “1st-order” motion detectors (Cavanagh & Mather, 1989; Chubb & 
Sperling, 1989).   
 
As previously noted, the mere elimination of global-scale motion energy (via luminance 
cancellation or polarity randomization) proved ineffective at eliminating the impression of 
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transparent, global motion in opposite directions. However, reduction of the crests’ contrast did 
make them harder to see (Movie 5). In this case, the retrograde motion of the troughs was 
perceptually dominant, which we interpret to imply that the opposite directions of crest and 
trough motions are processed locally by separate local motion mechanisms, which are then each 
integrated separately around the circle to provide opposing transparent motion percepts. (In 
terms of the conventional understanding of motion processing, the local motion processing 
would be by neurons in the cortical motion area hMT, while the global integration would be by 
cortical optic flow area hMST.) One manipulation that did succeed in eliminating the impression 
of retrograde motion was the cancellation of the local motion from the troughs (Movie 6). The 
propagation of high-density crests in these latter movies was just perceptible.  
 
The perceptual results were extended by testing for a motion aftereffect generated by 
longitudinal wave motion. In fact, motion aftereffects are essentially non-existent for the 
uncompensated longitudinal wave motion (Movie 10B), even though strong motion aftereffects 
are seen for rigidly moving textures of the same format (Movie 10A). Given our contention that 
the impression of transparent global motions arises from large-scale mechanisms that integrate 
local motion information from individual dots, this negative result may not seem surprising. After 
all, the inability of other non-Fourier motion stimuli to elicit an aftereffect in static test stimuli 
has been well established (Anstis, 1980; Derrington & Badcock, 1985; Nishida & Sato, 1995). That 
being said, it is important to remember that black-dot longitudinal waves would indeed be 
expected to stimulate motion-energy detectors sensitive to the difference between the average 
luminances of crest and trough. It is therefore surprising to find that the basic longitudinal waves 
elicit no motion aftereffect, although it can emerge when the contrasts of the components in the 
two opposing directions are unbalanced.  We interpret this result to imply that there are, in fact, 
aftereffects of the local motion processing units for the opposing directions of the crests and 
troughs, but that these local aftereffects cancel to produce no net global aftereffect when 
equated, and that the trough motion aftereffect can be revealed by the manipulation of reducing 
the contrast of the crest component.  
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