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Abstract 
We used the psychophysical “summation” paradigm to reveal some spatial characteristics of 
the mechanism responsible for detecting a motion-defined visual target in central vision. 
There has been much previous work on spatial summation for motion detection and 
direction discrimination, but none has assessed it in terms of the velocity threshold or used 
velocity noise to provide a measure of the efficiency of the velocity processing mechanism. 
All our stimuli were squares (“fields”) of randomly selected gray levels. Horizontal strips of 
16 pixels shifted rightwards with a velocity defined by a disk-shaped function of space. 
Independent variables were field size, the diameter of the disk target, and the variance of 
an independent perturbation added to the (signed) velocity of each 16-pixel strip. The 
dependent variable was the threshold velocity for target detection. Velocity thresholds 
formed swoosh-shaped (descending, then ascending) functions of target diameter. 
Minimum values were obtained when targets subtended approximately 2 degrees of visual 
angle. The data were fit with a continuum of models, extending from the theoretically ideal 
observer through various inefficient and noisy refinements thereof. In particular, we 
introduce the concept of sparse sampling to account for the relative inefficiency of the 
velocity thresholds. The best fits were obtained from a model observer whose responses 
were determined by comparing the velocity profile of each stimulus with a limited set of 
sparsely sampled “DoG” templates, each of which is the product of a binary texture and the 
difference between two 2-D Gaussian density functions. 
 
Introduction 
Summation is one of three general paradigms (adaptation and masking being the other two; 
Graham, 1989) available to psychophysicists for answering questions about the spatial 
characteristics of mechanisms responsible for detecting visual targets. In the summation 
paradigm, spatial characteristics may be inferred from the relationship between target size 
and the amplitude required for detection.  While several studies have measured direction 
thresholds as a function of the size of moving targets (van de Grind et al., 1983; Tadin et al., 
2003; Lappin et al., 2009), none have measured motion detection thresholds, or analyzed 
them in terms of the ideal observer theory for the adaptive receptive field structure 
underlying the motion detection performance or its efficiency assessed with masking noise, 
as we do in the present study. 
 
For spots of light on an otherwise-uniform visual field, the retinal illumination required for 
detection decreases as the area of the spot increases to a size now known as “Riccò’s area,” 
in honor of Riccò (1877). In central vision, that area can be anywhere between 0.025 and 0.4 
deg2 (corresponding to radial extents between 0.09 and 0.35 deg; Barlow, 1958), depending 
on background illumination and exposure duration. Beyond this limit, thresholds decrease 
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more slowly or asymptote to a constant level (see Fig. 1). By definition, summation within a 
receptive field is linear. Consequently, the measurements of Riccò and others have allowed 
inferences regarding the area (i.e., 0.4 deg2) of the smallest receptive fields responsible for 
detecting spots of light in central vision. 
 

 
Fig. 1. Detection thresholds for a 0.93-s flash of light against an unilluminated background. The line has a 
gradient of –1. Intensities in 507 m𝜇	quanta/(sᐧdeg2), areas in deg2. Data replotted from Barlow (1958).   
 
Just as Riccò (1877) established the limits of spatial summation for detecting luminance-
defined targets, we set out to discover whether there are analogous limits for detecting 
motion-defined targets (see Fig. 2). Whereas detection of a brief, monochromatic target 
within Riccò's area depends primarily on the number of quanta it contains (i.e., target 
intensity), detection of motion in random-dot stimuli depends primarily on target velocity 
(Nakayama and Tyler, 1981). Thus, whereas Riccò and others measured threshold intensity 
as a function of target area, we measured threshold velocity as a function of target area. 
 
 

  
 
Fig. 2. Static representation of motion-defined targets (panels b, c, e, and f) and analogous targets in the 
luminance domain (panels a, d). Panel a contains a disk that is brighter than its small (256 x 256) inscribing 
square. Thin, red arrows in panel b are meant to represent a disk of rightward motion. Panel c contains a 
space-time representation of the central raster in panel b, with one raster per frame of a 30-frame stimulus. 
Note that the target’s motion is confined to the middle 12 frames. Panels d, e, and f show “noisy,” medium-
sized (512 x 512) stimulus fields containing the same targets. In these stimuli, each row of pixels was divided 
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into 16-pixel strips. These 16 pixels moved with uniform velocity. Correspondingly, each row of pixels in the 
luminance-domain analogue (panel d) has been divided into 16-pixel strips of uniform luminance. For a movie 
of representative targets, with and without motion noise, see 
http://www.staff.city.ac.uk/~solomon/MotionSummation.zip. 
 
Methods 
These methods were granted formal approval from the Optometry Proportionate Review 
Committee at City, University of London, and written informed consent was provided by all 
observers. 
  
Stimuli 
All stimuli were centered on a mean-gray background. The typical size of the stimulus field 
(as in Fig. 2b) was 256 x 256 pixels. However, in some cases, we used larger fields (see Table 
1). In all cases, the stimulus duration was 0.5 s (30 video frames at 60 Hz). Target motion 
was confined to the middle 12 video frames. In fact, there was technically no motion on the 
first of these 12 frames (𝑓 = 1), because it was identical to each of the preceding frames, 
wherein each pixel was independently selected from the full gamut of gray levels.  
 

Apparatus Observer Size (pixels) 𝜎!"# Target sizes Trials/Target 
USA CWT 256x256 0 7 200 
USA CWT 256x256 0.2 7 200 
USA CWT 256x256 0.4 7 200 
USA CWT 512x512 0 8 600 
USA CWT 512x512 0.4 8 200 
UK JAS 256x256 0 7 200-300 
UK JAS 256x256 0.2 7 200 
UK JAS 256x256 0.4 7 200-300 
UK JAS 512x512 0 5 200 
UK JAS 512x512 0.2 5 200 
UK JAS 512x512 0.4 5 200-300 
UK JAS 736x736 0 5 200-300 
UK JAS 736x736 0.2 3 100 
UK JAS 736x736 0.4 5 300 
UK KZC 256x256 0 7 200 
UK KZC 256x256 0.2 7 200 
UK KZC 256x256 0.4 7 200 
UK KZC 512x512 0 3 200 
UK KZC 736x736 0 5 200 
UK KZC 736x736 0.4 5 200 
UK FSN 256x256 0 5 200 
UK FSN 256x256 0.2 5 200 
UK FSN 256x256 0.4 7 200 
UK FSN 736x736 0 5 200 
UK FSN 736x736 0.2 5 200 
UK FSN 736x736 0.4 5 300 

Table 1. Methodological details. Total number of trials: 34,800. 
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Each (horizontal) raster of pixels was notionally divided into 16 or 17 strips of pixels. In the 
latter case, the central 15 of these strips had 16 pixels each, leaving 𝑛 and 16 − 𝑛 pixels for 
the outer two strips. For each raster and each stimulus field, the number 𝑛 was 
independently selected from the integers between 0 and 15. When 𝑛 = 0, the raster was 
equally divided into 16 notional strips. 
 
In successive frames (𝑓 = 2, 3, … , 12), the gray levels within each 16-pixel strip shifted 
rightwards (with respect to the first frame) by the number of positions corresponding to the 
integer closest to (𝑓 − 1)	𝑣1𝑟; 𝑎, 𝑟#$%&, 𝜎!"#5. The latter factor in this expression is the disk-
shaped profile of velocities: 
 

   𝑣1𝑟; 𝑎, 𝑟#$%&, 𝜎!"#5 = 6
𝑎 + 𝜎!"#	𝑍, 𝑟 < 𝑟#$%&

𝜎!"#	𝑍, 𝑟 ≥ 𝑟#$%&
    (1) 

 
where 𝑟 represents the distance (measured in degrees of visual angle) between the center 
of the 16-pixel strip and the center of the stimulus, 𝑎 is the target’s amplitude 
(corresponding to its expected velocity), 𝑍 is an independent sample (one for each strip) 
from a standard normal distribution, and target size 𝑟#$%& and noise level 𝜎!"# are 
independent variables. Target diameters were constrained to contain pixels that 
approximated integer powers of √2: 32, 45, 64, …, 724. Gray levels moving beyond one 
edge of a 16-pixel strip were replaced by independently selected gray levels at the opposite 
edge. 
 
Apparatus 
Travel restrictions resulting from the COVID-19 pandemic required parallel data collection in 
geographically separated laboratories. In the UK (see Table 1) stimuli were presented on a 
gamma-linearized Dell CRT with a spatial resolution of 1600 x 1200 pixels. Video signals 
were generated by a mid-2012 MacBook Pro, running OS X 10.12.6, MATLAB R2016b, and 
version 3.0.12 of the Psychtoolbox (Brainard, 1997). Maximum and minimum luminances 
were 69.09 and 0.027 cd/m2, respectively. Viewing distance was fixed at 1.67 m, producing 
pixels having a retinal subtense of 0.45 arcmin and velocities that were 0.45 deg/s times the 
velocity profile described in Eqn. 1. This value (0.45	 deg s = 1	 pixel frame⁄⁄ ) corresponds 
to the maximum (expected) target velocity. When velocity noise is present, some parts of 
the stimulus will have greater velocity, others will have less.  
 
In the USA stimuli were presented on a gamma-linearized Asus monitor with a spatial 
resolution of 2560 x 1440 pixels. Video signals were generated by a 2020 quad core Pentium 
i7, running MATLAB 2019b and version 3.0.15 of the Psychtoolbox. Maximum and minimum 
luminances were 250 and 1 cd/m2, respectively. Viewing distance was fixed at 1.45 m, 
producing pixels having a retinal subtense of 0.67 arcmin and velocities that were 0.67 
deg/s times the velocity profile described in Eqn. 1. 
 
Procedure 
On each trial of this two-alternative, forced-choice (2AFC) task, two stimulus fields were 
shown. One contained no target (𝑎 = 0); the other contained a target whose amplitude 
(𝑎 > 0) was adjusted using a QUEST adaptive staircase (Watson & Pelli, 1983), configured to 
converge on the “threshold” amplitude required for the observer to indicate which of the 
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two fields contained the target with an accuracy of 81% correct.1 Immediate auditory 
feedback followed each incorrect response. The inter-stimulus interval was fixed at 0.5 s, 
during which the screen was uniformly illuminated at the background level.  
 
In the UK setup, when the field size was 256 x 256 pixels, the inter-trial interval (between 
the previous trial’s feedback and exposure of the first stimulus) was 1.0 s. When the field 
size was 512 x 512 pixels, stimulus-computation time caused the inter-trial interval to 
increase to 2.7 s. When the field size was 736 x 736 pixels, it increased to 4.7 s. In the USA 
setup, it was < 1 s for all field sizes. 
 
Observers and conditions 
Authors JAS, FSN, and CWT served as the primary observers. Additional observations were 
carried out by KZC. Target size (𝑟#$%&) and motion noise level (𝜎!"#) were fixed within each 
block of 100 trials. Further details are given in Table 1 and Figure 3. Viewing was binocular, 
through natural pupils. Fixation at the center of the display was encouraged.  
 
  
 

 
Fig. 3. Velocity/displacement thresholds and best-fitting (swoosh-like) curves from the “DoGS” model for four 
observers. Dashed horizontal lines indicate maximum and minimum non-zero target velocities available to 
each observer. Green, amber, and blue symbols illustrate 81%-correct thresholds in the presence of noise 
having RMS amplitudes of 40%, 20%, or 0% of the maximum target velocity, respectively. Symbol opacity is 
proportional to the number of trials (see Table 1). Circles, triangles, and diamonds correspond to field sizes of 
256 x 256, 512 x 512, and 736 x 736 pixels, respectively. Solid curves illustrate best-fits of the DoGS model 
(curves corresponding to large-field fits extend to the right of the largest targets contained within smaller 
fields), while dashed amber and green lines indicate the ideal observer’s performance with noise amplitudes of 
20% and 40%, respectively. Field size, target radius, and noise amplitude were held constant within each block 
of 100 trials. Note that CWT’s horizontal axis differs from those of the other three observers because the 
viewing distance on his apparatus (see Methods) was smaller. 

 
1 Even with the most sophisticated adaptive psychometric methods, the number of trials required for precise, 
simultaneous estimates of threshold and psychometric slope was prohibitive. Consequently, we fixed the latter 
parameter (𝛽 in Watson & Pelli’s Eqn. 13) at the value of 1.3, which was both the median value obtained in 
pilot experiments (not reported here) and all linear models limited by Gaussian noise (May & Solomon, 2013). 
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Results 
Raw data are available at http://www.staff.city.ac.uk/~solomon/MotionSummation.zip, 
where all the modelling code is included. In general, faster-moving stimuli were easier to 
detect. Maximum-likelihood estimates of (81% correct) thresholds are shown in Fig. 3.2 For 
all targets, displacement = velocity × 0.2 s. Thresholds fell as the area of the disk increased 
to a value of approximately 3 deg2, before rising again in the form of a “swoosh.” This area 
corresponds to a radius of about 1 deg. Motion noise was effective in elevating detection 
thresholds for all sizes of target, though to different extents across the observers. 
 
Models3 
In 2AFC detection tasks, Signal-Detection Theory (Green & Swets, 1966) ascribes all 
incorrect responses to visual signals in the target’s absence exceeding those in the target’s 
presence. Probability correct is given by 
 
    Ψ = 𝛿 + 𝜓 − 2𝛿𝜓,      (2) 
 
where 𝛿 represents the lapse rate (i.e., the incorrect proportion of responses to massively 
suprathreshold targets, which was assumed to be 0.01 in our implementation of QUEST) 
and 
    𝜓 = ∫ 𝐹'(𝑥)𝐹()(𝑥)	𝑑𝑥

*
+* .     (3) 

 
In Eq. 3, 𝐹'(𝑥) is the cumulative distribution function (CDF) for the visual signal 𝑁 elicited in 
the absence of a target and 𝐹()(𝑥) is the derivative of the CDF (i.e., it is the density) for the 
signal 𝑆 elicited in the presence of the target. 
 
The Ideal Observer 
Behavior of the ideal observer is based on signals described by the dot product between 
each stimulus field and the expected target:  
 
    𝑋 = 𝑣1𝑟; 𝑎, , 𝑟#$%&, 𝜎!"#5 ∙ X1 − 𝐻1𝑟 − 𝑟#$%&5Z,  (4) 
 
where 𝐻 is the Heaviside step function. Consequently, the CDFs for the target (where 𝑋 =
𝑆	and	𝑎( > 0) and nontarget (where 𝑋 = 𝑁	and	𝑎' = 0) can be written as  
 

 
2 These estimates were obtained with 𝛽 = 1.3 (see Footnote 1). When simultaneously fitting all the data 
described in this paper, the single maximum-likelihood value for this parameter was 1.0. We must stress that, 
although our estimates of psychometric slope should not be considered precise, when fitting just the conditions 
without motion noise (i.e., 𝜎!"# = 0), psychometric functions were – if anything – even shallower: 𝛽 @	0.7. This 
result seems incompatible with intrinsic uncertainty models, as described below. Psychometric functions for 
2AFC detection of contrast-defined targets are almost never this shallow (see Mayer & Tyler, 1978, and May & 
Solomon, 2013 for a review). Finally, although a full investigation of these psychometric slopes is beyond this 
scope of this study, there are various potential explanations for why they may be shallower than those predicted 
by linear models with constant, Gaussian noise: i) the limiting noise is platykurtic (e.g., Neri 2013), ii) the 
variance of limiting noise increases with signal strength (e.g., Solomon, 2007), iii) stimulus velocity undergoes 
compressive, nonlinear transduction (e.g., according to a power law with exponent < 1), and iv) pooling data 
across sessions in which sensitivity changes, due to the effects of practice and/or fatigue. 
3 This section (Models) and the next section (Model Fits) may be skipped without loss of continuity. 



 

  7 

    𝐹,(𝑥) =
-
.
erfc ]

+/	1	2$	3	4%&'() 	

5.	3	6*+%) 	4%&'()
^,    (5) 

 
where erfc is the complementary error function. Note that there are no free parameters in 
the ideal observer model. The expected signal E(𝑆) grows in proportion to the square-root 

of target area, `𝜋	𝑟#$%&. . Consequently, the ideal observer’s thresholds fall in proportion to 

this quantity. On log-log axes such as the panels of Fig. 2, this proportionality manifests as a 
line with gradient −1 2⁄ . 
 
Our human observers’ thresholds were always higher than the ideal observer’s. Indeed, in 
the absence of external motion noise (i.e., when 𝜎!"# = 0), the ideal observer will never 
make an incorrect response; its threshold is effectively 0.4 However, it is noteworthy that 
the initial response gradients for the smaller targets appear to follow the same trend as the 
ideal observer, but at an elevated level. 
 
The Noisy Observers 
To elevate the (otherwise) ideal observer’s thresholds, we assume that its visual signals are 
noisy, even in the absence of any motion noise in the stimulus. By definition, “late” 
Gaussian noise is injected after the velocity profile has been matched with the template 
(i.e., the expected target). In this case we have 
 

    𝐹,(𝑥) =
-
.
erfc ]

+/	1	2$	3	4%&'() 	

5.	3	76*+%
) 	4%&'(

) 	1	6,
)8
^.    (6) 

 
Late noise can be considered implicit whenever human performances correspond to 
threshold differences in a model mechanism’s deterministic response (e.g., Betts et al., 
2012; Solomon, 2022; Schallmo et al., 2018; Tadin & Lappin, 2005). In such cases, threshold 
is determined by the standard deviation of the implicit noise. Consequently, in the absence 
of external noise, the expected visual signal grows in proportion to the target area, not its 
square-root; and on log-log axes such as the panels of Fig. 2, this proportionality would 
manifest as a line with gradient −1, which is not well-supported by any of the datasets. 
 
As an alternative to late noise, “early” Gaussian noise can corrupt visual signals before their 
velocity profiles are matched with the template. In this case we have 
 

    𝐹,(𝑥) =
-
.
erfc ]

+/	1	2$	3	4%&'() 	

5.	3	96*+%) 	1	6-
):	4%&'()

^.    (7) 

 

 
4 In the absence of velocity noise, the ideal observer’s performance is limited only by quantal fluctuations. 
Compared to all the other noise sources discussed in this study, these fluctuations are literally negligible, which 
is synonymous with “effectively 0.” 
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The variance of this early noise (𝜎;.) is functionally equivalent to an increase in the variance 
of motion noise in the stimulus. (It can be considered “equivalent input noise,” e.g., Pelli 
1990.) Consequently, thresholds for an otherwise-ideal observer with early noise would fall 
with a gradient of −1 2⁄ , just like those for an ideal observer with motion noise in the 
stimulus. 
 
Now consider what happens when external motion noise (i.e., random velocity fluctuations) 
is added to the stimulus field (i.e., 𝜎!"# > 0). When motion noise is large compared to the 
internal noise (early or late), the variance of visual signals will increase, and thresholds 
should rise. Sure enough, thresholds did rise when motion-defined targets were presented 
with random velocity fluctuations (see Fig. 3). However, so much internal noise (early or 
late) would be required to make the thresholds for this noisy-but-otherwise-ideal observer 
commensurate with those of our human observers that external noise would always remain 
negligible. Consequently, we infer that internal noise cannot be the only reason that human 
thresholds are so high.  
 
The Noisy, Inefficient Observer 
Aside from internal noise, another potential explanation for the high thresholds of our 
human observers is that their detection processes have a less-than-ideal sampling efficiency 
because their templates never match the shape of the external signal (Burgess et al. 1981).  
 
Here we consider a further modification to the noisy (but otherwise ideal) observer model 
with early noise, in which imperfectly matched templates nonetheless grow in proportion to 
the target, thereby achieving a constant sampling efficiency. Constant sampling efficiency 
could happen if each template were the product of a disc identical to the target and sparse 
array of local receptive fields (see Fig. 4). The coverage of that array (𝜂) would be equal to 
the sampling efficiency (constrained to the interval [0,1]), and the distribution of visual 
signals would be 
 

    𝐹,(𝑥) =
-
.
erfc ]

+/	1	2$	3	<	4%&'() 	

5.	3	<	96*+%) 	1	6-
):	4%&'()

^.    (8) 

 
This noisy, inefficient, but-otherwise-ideal observer can produce both realistically high 
thresholds and realistically large effects of motion noise in the stimulus. Where this model 
fails is in its prediction of a constant log-log gradient of −1 2⁄ . Although thresholds for our 
human observers did fall at this rate when target area was less than approximately 3 deg2, 
they reversed direction when target area exceeded this value. 
 
The Noisy, Inefficient, Size-Limited Observers 
We consider two further modifications of the ideal observer model, in which its templates 
have a minimum and/or maximum size. These modifications can be achieved by adding free 
parameters 𝑟=>? and 𝑟=$" (in addition to 𝜎; and 𝜂) to the signal distributions:   
 

   𝐹,(𝑥) =
-
.
erfc ]

+/	1	2$	3	<	=>?94.&+
) ,4%&'() :	

5.	3	<	96*+%
) 	1	6-

):	=>?A4.&+
) ,=$"74./0

) ,4%&'(
) 8B	

^.  (9) 
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When 𝑟=>? = 0, 𝑟=$" < ∞, this noisy, inefficient, size-limited observer can produce bi-linear 
threshold-vs-size functions. The left side of each function displays the ideal observer’s 
summation gradient of −1 2⁄ , but the right side is flat. Below, we consider the possibility 
that maximum size (𝑟=$") varies with field size (i.e., the number of pixels in the image) 
and/or external noise (𝜎!"#. ). When 0 < 𝑟=>? < 𝑟=$" < ∞, this noisy, inefficient, size-limited 
observer can produce tri-linear threshold-vs-size functions, where the gradient doubles (to  
–1) on the far-left side (as in Chen et al.	2019, for contrast summation).  
 
Intrinsic uncertainty 
Intrinsic-uncertainty (IU) models of detection (Pelli 1985) specify CDFs for the target (where 
𝑋 = 𝑆) and nontarget (where 𝑋 = 𝑁) as the product of 𝑀 CDFs, such that  
 
    𝐹,(𝑥) = [𝐹CD(𝑥; 0)]E+F[𝐹CD(𝑥; 𝑎,)]F .               (10) 
 
In Eq. 10, 𝑀 −𝐾 represents the number of “irrelevant” visual signals, which are nonetheless 
considered in the decision process. 𝐾 represents the number of “relevant” signals, so-called 
because their expected values increase with the target’s amplitude 𝑎(. Summation is 
modelled using the additional assumption that 𝐾 is proportional to target area. To complete 
the specification of IU models, we adopt the conventional assumption that all 𝐾 relevant 
visual signals can be represented by independent Gaussian-based random variables with 
equal mean and variance, i.e.,  
 
    𝐹CD(𝑥; 𝑎) =

-
.
erfc h2+/

√.	6
i.                 (11) 

 
Note that this model has three free parameters that could potentially vary with field size 
and/or external noise: the ratio between the number of relevant, independent signals 𝐾 
and target area, the total number of independent signals 𝑀, and the variance of each signal 
𝜎.. If the number of signals were independent of external noise, then we could expect the 
variance of those signals to increase (linearly) with the variance of external noise. However, 
signals will fail to remain independent when they arise from neurons (or pools of neurons) 
whose receptive fields overlap the same strip of 16 pixels to which a single sample of 
external noise has been added. Consequently, the effective values of 𝐾 and 𝑀 cannot 
plausibly increase with external noise, but they could decrease.  
 
This implication is important because a decrease in the effective values of 𝐾 and 𝑀 would 
manifest as more precipitous decreases in threshold when plotted on log-log axes, such as 
those in Fig. 3.5 No such increase in steepness can be seen in our thresholds. Indeed, the 
range of target areas over which the IU model can produce (81%-correct) threshold curves 
with a log-log gradient of –1/2 is only about one log unit (𝐾 < 𝑀	and	𝑀	 ≈ 10).  
 
For comparison with ideal observer models, we fit a simple, 4-parameter version of the IU 
model to each observer’s data (see below). We have not evaluated the IU model further, 
since it cannot capture the elevation in threshold for targets having radial extents greater 
than 1°. 

 
5 Concomitantly, they would manifest as shallower psychometric functions (see Pelli’s 1985 Eqns. 5.4 and 6.1). 
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The DoG Observers 
To produce swoosh-like summation curves, a model must have some inhibitory component. 
The simplest such model we could imagine has a template formed by a difference of 
Gaussians (DoG). Watson & Eckert (1994) previously proposed DoG-shaped templates for 
motion detection, but they did not examine their implications for spatial summation. Each 
of our DoG templates is centered on the target. On average, visual signals could be expected 
to increase with the size of the moving target until its edge reached the zero-crossing of the 
DoG, after which the expected signal would fall. Formally, the behavior of this observer is 
based on signals described by the dot product between each stimulus and a DoG:  
 
  𝑋 = 𝑣1𝑟; 𝑎, , 𝑟#$%&, 𝜎!"#5 ∙ 1exp[−𝑟. (2	𝑟$.)⁄ ] − 𝑏	expX−𝑟. 12	𝑟H.5l Z5,        (12) 
 
where 𝑟H and 𝑟$ respectively denote the space constants of the DoG’s inhibitory and 
excitatory component blobs and 𝑏 denotes the ratio between their (unsigned) amplitudes. 
Unfortunately, there is no closed-form expression for this model’s distribution of visual 
signals:  
 

  𝐹,(𝑥) =
-
.
erfc ]

+/	1	2$	<	√.	3 ∫ J(L)		NL	2%&'(	
32%&'(	

		

.	96*+%
) 	1	6-

):	53	<	94&)	+	O	44
):
^,              (13) 

where 

𝑔(𝑢) = 𝑟$	exp[−𝑢. (2	𝑟$.)⁄ ]	erf o`𝑟#$%&. −	𝑢. 1𝑟$	√25l p 	

− 𝑏	𝑟H	expX−𝑢. 12	𝑟H.5l Z	erf o`𝑟#$%&. −	𝑢. 1𝑟H	√25l p 

   
and erf is the error function. Numerical methods were required to evaluate the integral.  
 
Initially, we considered only “balanced” DoGs centered on each target (such that their dot 
product with large, uniform stimuli would be zero), in which 𝑏 = 𝑟$–.. This option produced 
uniformly poor fits (see Table 2). Better fits were obtained when 𝑏 and the model’s other 4 
parameters (𝜎;, 𝜂, 𝑟$, and 𝑟H) were free to vary, but these fits remained inferior to those of 
the noisy, inefficient observer. Finally, we examined size-limited variants of the DoG 
observer, whose templates have a minimum and/or maximum size, the latter of which was 
allowed to vary with the size of the stimulus field (i.e., the number of pixels in the image) 
and/or external noise. For all templates, the ratio between inhibitory and excitatory space 
constants remained fixed at 𝜌H$ = 𝑟H 𝑟$⁄ . A diagram of the DoG observer is provided in Fig. 
4. 
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Fig. 4. Inefficient DoG-observer model with early noise. Model decisions are based on a comparison between 
two signals internal to the observer. Each of these signals has an expected value that is equal to the dot product 
between the external signal and something called a template. When the stimulus contains a motion-defined disk, 
the external signal has a disk shape. The amplitude of the external signal is proportional to the target’s velocity. 
The template has a two-dimensional shape, just like the external signal. The presence of early noise causes the 
variance of internal signals to increase with template size, even when no velocity fluctuations are present in the 
stimulus. 
 
Model Fits6 
Details, including parameter values, of maximum-likelihood fits to the data from each 
observer are available at http://www.staff.city.ac.uk/~solomon/MotionSummation.zip.  
Pairwise comparisons between these fits to the data appear in Table 2. The four numbers in 
each cell represent differences in Akaike Information Criteria (AIC)7; one difference for each 
observer (JAS, CWT, KZC, and FSN, respectively). Values less than 2 represent “substantial 
support” for the model of lower rank (i.e., the model named at the head of that column) 
over the model in the specified row (Burnham & Anderson, 2003, p. 70). These values 
appear in red. Values greater than 10 represent “essentially no support” for the model of 
lower rank. These values appear in blue. All intermediate values appear in black. The 
rankings, which are essentially nominal, appear in the leftmost column.  

 
6 This section may be skipped without loss of continuity. 
7 That is, 2	(𝑘!−𝑘") + 2	ln(𝑙" 𝑙!⁄ ), where 𝑘! and 𝑙! are the number of free parameters and maximum likelihood of the 
lower-ranked model (respectively) and 𝑘" and 𝑙" are the number of free parameters and maximum likelihood of the higher-
ranked model. 

Template

Summation region
Sparse array of small

receptive fields

Collection of summation regions

Internal
noise

++External signal Internal signal

External
noise

(Choose one)



 

  12 

  
 
Table 2. Pairwise comparison of maximum-likelihood fits to the data. Differences in AIC are shown for the four observers across each pair of models.  For the model at the 
head of each column, values in that column represent substantial support (red), essentially no support (blue) or intermediate values (black). Conversely, blue values 
support the model at the head of their corresponding row, and red values represent essentially no support for it.

01.LNO 02.NO 03.NIO 04.NISLO 05.NISLOM 06.NISLOS 07.NISLON 08.NISLOSN 09.NISLOSNM 10.IU 11.BDoGO 12.DoGO 13.BDoGS 14.DoGS 15.DOGN

02.NO
1516.7
911.1
772.3
559.

03.NIO
1665.2
1196.4
853.
790.5

148.5
285.3
80.7
231.5

04.NISLO
2712.8
1651.4
1216.9
1297.9

1196.
740.4
444.6
738.9

1047.5
455.1
363.9
507.4

05.NISLOM
2710.7
1649.4
1212.8
1295.9

1194.
738.4
440.5
736.9

1045.5
453.1
359.8
505.4

-2.
-2.
-4.1
-2.

06.NISLOS
2717.5
1693.6
1226.8
1304.4

1200.8
782.6
454.4
745.4

1052.2
497.3
373.8
513.9

4.7
42.2
9.8
6.5

6.7
44.2
13.9
8.5

07.NISLON
2749.1
1650.
1223.5
1297.7

1232.4
738.9
451.2
738.8

1083.9
453.6
370.5
507.3

36.3
-1.5
6.6
-0.1

38.4
0.5
10.7
1.9

31.6
-43.7
-3.3
-6.6

08.NISLOSN
2735.9
1704.9
1232.6
1308.6

1219.2
793.8
460.3
749.6

1070.7
508.5
379.6
518.1

23.1
53.4
15.7
10.7

25.2
55.4
19.7
12.7

18.4
11.3
5.8
4.2

-13.2
54.9
9.1
10.8

09.NISLOSNM
2735.2
1704.6
1230.6
1312.7

1218.5
793.6
458.3
753.7

1070.
508.3
377.6
522.2

22.5
53.2
13.7
14.8

24.5
55.2
17.7
16.8

17.8
11.
3.8
8.3

-13.8
54.7
7.1
14.9

-0.7
-0.2
-2.
4.1

10.IU
2634.1
1549.3
1202.7
1250.2

1117.4
638.2
430.4
691.3

968.9
352.9
349.7
459.8

-78.7
-102.1
-14.3
-47.6

-76.6
-100.1
-10.2
-45.6

-83.4
-144.3
-24.1
-54.2

-115.
-100.7
-20.8
-47.5

-101.8
-155.6
-29.9
-58.3

-101.1
-155.4
-27.9
-62.4

11.BDoGO
2071.2
1403.3
1217.2
1051.1

554.5
492.2
444.9
492.1

406.
206.9
364.2
260.6

-641.6
-248.2
0.3
-246.8

-639.5
-246.2
4.4
-244.8

-646.3
-290.4
-9.5
-253.3

-677.9
-246.7
-6.3
-246.7

-664.7
-301.6
-15.4
-257.5

-664.1
-301.4
-13.4
-261.6

-562.9
-146.
14.5
-199.2

12.DoGO
2706.8
1648.3
1215.3
1295.2

1190.1
737.2
442.9
736.2

1041.6
451.9
362.3
504.7

-6.
-3.2
-1.7
-2.6

-3.9
-1.2
2.4
-0.7

-10.7
-45.4
-11.5
-9.2

-42.3
-1.7
-8.2
-2.5

-29.1
-56.6
-17.3
-13.4

-28.4
-56.4
-15.3
-17.4

72.7
99.
12.6
45.

635.6
245.
-2.
244.1

13.BDoGS
2353.7
1675.7
1139.4
1267.5

837.
764.6
367.1
708.5

688.5
479.4
286.4
477.

-359.
24.3
-77.5
-30.4

-357.
26.3
-73.4
-28.4

-363.7
-17.9
-87.4
-36.9

-395.4
25.7
-84.1
-30.3

-382.2
-29.2
-93.2
-41.1

-381.5
-28.9
-91.2
-45.2

-280.4
126.4
-63.3
17.2

282.5
272.4
-77.8
216.4

-353.1
27.4
-75.9
-27.7

14.DoGS
2712.2
1729.2
1226.6
1343.7

1195.5
818.2
454.2
784.7

1046.9
532.9
373.6
553.2

-0.6
77.8
9.6
45.8

1.5
79.8
13.7
47.8

-5.3
35.6
-0.2
39.3

-36.9
79.3
3.1
46.

-23.7
24.3
-6.
35.1

-23.1
24.6
-4.
31.

78.1
179.9
23.9
93.5

641.
325.9
9.3
292.6

5.4
81.
11.3
48.5

358.5
53.5
87.2
76.2

15.DOGN
2743.
1648.
1219.7
1297.6

1226.3
736.9
447.4
738.6

1077.8
451.6
366.7
507.1

30.2
-3.4
2.8
-0.3

32.3
-1.4
6.9
1.7

25.5
-45.6
-7.1
-6.8

-6.1
-2.
-3.8
-0.2

7.1
-56.9
-12.9
-11.

7.7
-56.7
-10.9
-15.1

108.9
98.7
17.
47.3

671.8
244.7
2.5
246.5

36.2
-0.3
4.5
2.3

389.3
-27.7
80.3
30.1

30.8
-81.2
-6.9
-46.2

16.DOGSN
2736.3
1725.4
1224.5
1347.8

1219.6
814.3
452.2
788.9

1071.1
529.
371.5
557.4

23.5
74.
7.6
50.

25.6
76.
11.7
52.

18.8
31.8
-2.2
43.5

-12.8
75.4
1.
50.1

0.4
20.5
-8.1
39.3

1.
20.8
-6.1
35.2

102.2
176.1
21.8
97.6

665.1
322.1
7.3
296.8

29.5
77.1
9.3
52.6

382.6
49.7
85.1
80.4

24.1
-3.8
-2.
4.1

-6.7
77.4
4.8
50.3
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Models 1 – 9 are all based on the ideal observer, with disk-shaped summation regions 
matching each target profile. The acronyms for these 9 cases should thus be understood to 
include the implicit modifier that they are “otherwise ideal” in addition to the specified 
characteristics. The ideal observer’s maximisation of signal-to-noise ratio requires those 
summation regions to change for each motion-defined target. Analogous changes in the 
templates of our models for human observers can be ascribed to an attentional strategy 
(Chen et al. 2019).  

1. LNO, the (late) noisy observer. An otherwise-ideal observer with late noise (a.k.a. 
“decision noise”). One free parameter. 

2. NO, the (early) noisy observer. An otherwise-ideal observer with early noise (a.k.a. 
“equivalent input noise”). One free parameter. 

3. NIO, the noisy, inefficient observer. A noisy observer whose otherwise-ideal 
template covers a fixed proportion of the target’s 16-pixel strips. Two free 
parameters. 

4. NISLO, the noisy, inefficient, size-limited observer. A noisy, inefficient observer 
whose templates are limited to an arbitrary maximum size regardless of the size of 
the stimulus field. Three free parameters. 

5. NISLOM, the noisy, inefficient, size-limited observer with a minimum template size. 
A noisy, inefficient observer, whose templates have both a maximum and a 
minimum size. Four free parameters. 

6. NISLOS, the noisy, inefficient observer with size-specific template maxima. A noisy, 
inefficient observer whose largest templates are free to increase with size of the 
stimulus field (i.e., the number of pixels in the image). Two free parameters, plus one 
for each field size. 

7. NISLON, the noisy, inefficient observer with noise-specific template maxima. A noisy, 
inefficient observer whose largest templates are free to increase with stimulus noise 
level. Two free parameters, plus one for each level of stimulus noise. 

8. NISLOSN, the noisy, inefficient observer with size- and noise-specific template 
maxima. A noisy, inefficient observer whose largest templates are free to increase 
with field size and/or stimulus noise. Two free parameters, plus one for each 
combination of field size and stimulus noise. 

9. NISLOSNM, the noisy, inefficient observer with noise- and size-specific template 
maxima and a minimum template size. A noisy, inefficient observer whose largest 
templates are free to increase with field size and/or stimulus noise, and whose 
smallest template is also limited to an arbitrary size (but is invariant with field size or 
stimulus noise). Three free parameters, plus one for each combination of field size 
and stimulus noise. 
 

Intrinsic Uncertainty Model  
10. IU, a simple form of the intrinsic-uncertainty model. Four free parameters remain 

invariant with field size and external noise: the ratio between the number of 
relevant independent signals and target area, the total number of independent 
signals, and two parameters describing the linear relationship between signal 
variance and external noise. 
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Models 11 – 16 employ Difference of Gaussian (DoG)-shaped summation regions that 
increase in size with a range of target sizes.  

11. BDoGO, the balanced DoG one-max-fits-all model. Identical to the noisy, inefficient 
observer, except it uses DoG-shaped templates that are perfectly balanced. Five free 
parameters (early noise 𝜎;, coverage 𝜂, ratio of inhibitory:excitatory space-
constants 𝜌H$, ratio between excitatory space-constant and target radius 𝜌$#, and 
maximum excitatory space-constant 𝑟$QQ). 

12. DoGO, the DoG one-max-fits-all model. Identical to the balanced DoG one-max-fits-
all model except that its DoGs need not be balanced. Six free parameters. (In 
addition to BDoGO’s five, there is another free parameter, 𝑏, for the ratio between 
inhibitory gain and excitatory gain.) 

13. BDoGS, the balanced DoG model with size-specific template maxima. Identical to the 
balanced DoG one-max-fits-all model, except there is a maximum space-constant 
that is allowed to increase with field size. Four free parameters, plus one for each 
field size. 

14. DoGS, the DoG model with size-specific template maxima. Identical to the DoG one-
max-fits-all model, except there is a maximum space-constant that is allowed to 
increase with field size. Five free parameters, plus one for each field size (𝑟.RS, 𝑟R-., 
and/or 𝑟TUS). 

15. DoGN, the DoG model with noise-specific template maxima. Identical to the DoG 
one-max-fits-all model, except there is a maximum space-constant that is allowed to 
increase with the level of stimulus noise. Five free parameters, plus one for each 
level of stimulus noise. 

16. DoGSN, the DoG model with size- and noise-specific template maxima. Identical to 
the DoG one-max-fits-all model, except there is a maximum space-constant that is 
allowed to increase with field size and/or stimulus noise. Five free parameters, plus 
one for each combination of field size and stimulus noise. 

 
Note that every number in the first three columns of Table 2 is blue. Thus, our data provide 
essentially no support for LNO, NO, or NIO over any of the other models we consider. Those 
first three models are too restrictive. Similarly restrictive are all models with a minimum 
template size, and all balanced DoG models. Also take note of the comparison between 
DoGSN and DoGO. Here again, almost every number is blue (at 9.3, the comparison for KZC 
can be considered almost blue), indicating that DoGO is too restrictive. However, whereas it 
is primarily the restriction against noise-specific template maxima that hampers DoGO’s fit 
to JAS’s data, it is primarily the restriction against size-specific maxima that hampers its fit 
to data from CWT, KZC, and FSN.  
 
Although the shape of summation curves can vary between models, when any given 
model’s parameter values are fixed, all the curves predicted by that model are constrained 
to have the same shape. This shape can be thought of as a compromise between the 
different noise levels and field sizes. Fig. 3 shows that the maximum-likelihood fits of DoGS 
to JAS’s and KZC’s data produce “compromises” with relatively shallow swooshes. Best-
fitting parameter values [𝜎;, 𝜂, 𝜌H$, 𝑏, 𝜌$#, 𝑟.RS, 𝑟R-., 𝑟TUS]	were 
[0.28,0.018,1.6,0.10,1.1,53,60,60] for JAS; [0.20,0.20,1.2,0.66,0.75,51,80,∗] for CWT; 
[0.32,0.0096,2.2,0.077,1.5,83,110,120] for KZC; and [0.069,0.022,2.0,0.18,1.7,75,∗ ,120]  
for FSN, where asterisks replace maximum space constants for unused field sizes. 
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Discussion 
The primary result of this study is the finding that the maximum summation region for 
motion detection is about 3 deg2 in the center of the visual field. This value is between 1 
and 2 orders of magnitude larger than Riccò’s area for luminance summation (possibly 
better understood as unsigned contrast summation, see Thibos et al., 2019). It corresponds 
to a retinal subtense of 2 deg, which is a good match for one-half the wavelength of the 
sinusoidally modulated flow field that was most easily detected by CWT (Nakayama & Tyler, 
1981). It is also a fairly good match to the average receptive field size of foveal neurons in 
the middle temporal area of macaque, where even a single action potential can convey a 
substantial amount of directional information about slowly moving stimuli (Bair & Movshon, 
2004). (Albright & Desimone’s 1987 regression of receptive field sizes against eccentricity 
indicates that this size should be approximately 1.2 degrees of visual angle.)  
 
Much larger receptive fields have been inferred from psychophysical experiments with 
large-scale optic flow. Burr et al. (1998) recorded a roughly constant (~10%) sampling 
efficiency with which the direction of a target flow-field’s motion could be identified, 
regardless of its retinal subtense. This result may seem inconsistent with the swoosh-like 
summation curves reported here and elsewhere (e.g., Tadin et al. 2003), but note that Burr 
et al. manipulated target subtense by changing the observer’s viewing distance. 
Consequently, motion speed varied from approximately 12 deg/s for their large targets to 
190 deg/s for their small ones. It seems likely that direction-discrimination of this relatively 
high-velocity optic flow engages different visual mechanisms than the detection of our low-
velocity, motion-defined targets. 
 
When our motion-defined targets were smaller than 3 deg2, thresholds fell with with an 
increase in the square root of target area. This relationship implies a constant sampling 
efficiency and stands in sharp contrast to the thresholds for luminance-defined targets, 
which fall with target area (not its square-root) when that area is smaller than Riccò’s area 
(Barlow, 1958). Constant sampling efficiency implies a capability of accessing templates 
whose sizes match the target sizes, even if those matches aren’t perfect. Efficiency can be 
defined as the square of the ratio between ideal and human thresholds in high noise (Pelli, 
1990). Perfect (“ideal”) matches produce efficiencies of 100%. The largest we found (2.5%) 
was achieved by CWT with the smallest target in 40% noise. KZC never achieved better than 
0.3% efficiency. (These numbers are well-matched by the best-fitting values for the 
coverage parameter in DoGS.) This coverage, which we attribute to a sparse array of small 
receptive fields, may correspond to the relatively sparse sampling area of a neuron’s 
dendritic tree, compared to the size of visual field over which it extends.  
 
Comparison with previous investigations of spatial summation with moving stimuli 
Whereas our measurements of velocity threshold can be considered directly analogous to 
Riccò’s measurements of luminance threshold (possibly better understood as an unsigned 
threshold; see Thibos et al. 2019), others have characterized spatial summation for motion 
detection using alternative independent variables. Perhaps most notable is a study by Tadin 
et al. (2003), who reported swoosh-like summation curves of threshold duration for targets 
defined by random dots and drifting gratings. In the absence of external noise, our empirical 
results mirror theirs. However, in some cases, the detection of their drifting gratings was 
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facilitated by the addition of external noise (randomized pixel contrasts). Unlike Tadin et al., 
we did not find any evidence for facilitation from external noise.  
 
Several other laboratories have investigated spatial summation with moving targets. Van de 
Grind et al. (1986) measured the widths of just-detectable, vertical strips of translating 
texture having various velocities against a static background. They also measured threshold 
signal-to-noise ratios for motion detection (1983). Like Tadin et al. (2003), Lappin et al. 
(2009) measured duration thresholds for direction discrimination with targets having 
various sizes. Both of these groups used target velocity as an independent variable. Our 
work can be considered complementary, as we report threshold velocities for targets of 
various size and signal-to-noise ratio.  
 
As an index of the relationship between grating velocity and the effect of target size on the 
duration threshold for direction discrimination, Lappin et al. (2009) used log ratio between 
the thresholds for large (110 deg2) and small (4.91 deg2) targets. Consistent with the 
swoosh-like summation curves reported by Tadin et al. (2003), this index was positive for 
high speeds (≥ 0.7 deg/s). However, it was close to zero for speeds in the range of the 
threshold velocities reported here. Prima facie, this behavior may suggest that our studies 
probe distinct visual mechanisms. However, there is no genuine inconsistency because our 
summation curves are defined by different dependent variables. To evaluate the suggestion 
of distinct mechanisms, we would need a model for how duration and velocity affect both 
the mean and the variance of the visual signals used for direction discrimination and motion 
detection. 
 
Qualitatively similar to the monotonically decreasing duration thresholds for direction-
discrimination with low-contrast gratings (Tadin et al. 2003, Tadin & Lappin, 2005), 
Anderson and Burr (1987, 1991) reported that contrast thresholds decrease monotonically, 
regardless of whether the task is detection or direction discrimination with a drifting Gabor 
target. Tadin and colleagues attributed the very different, swoosh-like shape of summation 
curves (mapping target size to duration threshold for direction discrimination) for high-
contrast targets to their greater detectability.  
 
Assuming that some form of surround suppression is responsible for the non-monotonicity 
of our summation curves (and, indeed, we offer no alternative explanation), our results 
indicate that highly visible targets are not required for its activation. Similar non-
monotonicity can be seen in all our detection thresholds, including those obtained at 
relatively low signal-to-noise ratios. However, it must be noted that the “signal” and “noise” 
in our stimuli were not proportional to contrast or grey level; they were proportional to 
velocity. Therefore, there really is no conflict between our results and earlier literature. 
 
Although Bell and Lappin (1973) argued that direction discrimination was a better test of 
motion processing than displacement detection, Nakayama and Tyler (1981) demonstrated 
that detection of oscillatory displacements in random-dot stimuli was a constant function of 
velocity for various temporal frequencies. In other words, motion-defined form could not be 
detected until the random dots that comprised it were moving with sufficient velocity. 
Identifiable displacements in random-dot stimuli were dubbed ‘short-range apparent 
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motion’ by Baker and Braddick (1985). They suggested that the minimum-displacement 
thresholds were, “likely determined by receptive field properties in area 17.”  
 
Comparison with previous modeling efforts 
Tadin and Lappin (2005) considered several models for the swoosh-like summation 
functions in the absence of external noise. All their models employ a sigmoidal transducer, 
without input from neighboring mechanisms. The relationship between parameter values 
and their model’s behavior is somewhat opaque (as noted by Betts et al., 2012) because 
sigmoidal transduction (with its inherent divisive inhibition) is only the first stage and does 
not produce swoosh-like summation curves. To obtain swooshes, their models rely on a 
second stage with subtractive inhibition, a feature analogous to the inhibitory component of 
our DoG models. However, unlike our DoG models, it is not clear how to modify the 
formulas of Tadin and Lappin (or those of Betts et al.) for compatibility with external noise. 
Of course, it would be possible to calculate the distribution of signals in their excitatory 
channel as well as the distribution of signals in their inhibitory channel, but unless both 
channels were linear (and Tadin and Lappin’s formulas collapsed to a simple DoG model), 
those signals would be correlated with a coefficient whose calculation would be intractable. 
 
Our DoGN model contains most of the spirit of Tadin and Lappin’s (2005) models. 
Specifically, it has an inhibitory surround and a template size that increases with decreased 
visibility (increased external noise). However, it only showed an advantage over the DoGS 
model for one of our four observers, so it was not well-supported in our implementation.  
We therefore regard the DoGS model with the fixed maximum template size, as plotted in 
Fig. 2, as the preferred model for human motion summation.   
 
We concentrated on a class of linear models wherein the expected visual signal is given by 
the dot product between the spatial layout of stimulus velocities and an internal template 
mediating motion detection.  This template might correspond to a single physiological 
receptive field or the superposition of several, but within the context of our psychophysical 
model it is merely a function mapping spatial position to a unitless quantity that can be 
considered the detector’s gain. A summary of our modeling can be described as follows. If 
template size were a constant function of target size (as in the models described by Tadin 
and Lappin, 2005), then the model’s thresholds would either fall too rapidly (over small 
sizes) or not at all (over large sizes), as the target size increased. Thus, we reasoned that 
template sizes must adaptively increase with (small-to-medium) target sizes, such that the 
perceptual system selected the best-matching available template for these target sizes. 
Also, if the variance of internal signals did not similarly increase with template (and target) 
size, then the model’s thresholds would fall too rapidly to match the data. Thus, we inferred 
that internal noise affected signal variance in just the same way as external noise; it could 
be considered “early.”  
 
If target size never exceeded the template’s central, excitatory region, then the model’s 
thresholds would not rise to form the ascending parts of the swoosh-like curves seen in Fig. 
3, implying that large targets must encroach upon the largest template’s inhibitory 
surrounds. However, any simple difference-of-Gaussians template would produce either 
implausibly low thresholds or no effect of external noise. Therefore, to account for the 
inefficiency of the performance, we conjectured that each DoG-shaped template must 
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linearly combine inputs from similarly sparse arrays of small receptive fields. Best fits 
(smaller AIC values) were obtained when larger DoG-shaped templates were allowed with 
larger field sizes.  
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