
Int. J. Inf. Secur. (2009) 8:77–87
DOI 10.1007/s10207-008-0065-y

REGULAR CONTRIBUTION

Mobile Web services authentication using SAML and 3GPP
generic bootstrapping architecture

Kalid Elmufti · Dasun Weerasinghe · M. Rajarajan ·
Veselin Rakocevic · Sanowar Khan ·
John A. MacDonald

Published online: 28 November 2008
© Springer-Verlag 2008

Abstract In this paper we present a platform for the direct
consumption of web services by a Mobile Station. We give
an architectural solution where Mobile Operators play the
role of Trusted Third Parties supplying service credentials
that allow a co-located 3GPP Network Application Function
and Liberty-enabled Identity Provider entity to implement
a controlled Shopping Mall service to Mobile Stations from
multiple trust domains. We consider both the protocol and the
structure and syntax of the various tokens required to mini-
mise service latency over the bandwidth and performance
constrained mobile system, whilst providing adequate secu-
rity services to protect against the perceived threat model.
To validate our proposal we have developed code to create a
Web Service test scenario using SAML authentication tokens
utilising readily available J2ME, Java Card, J2SE and J2EE
platforms, Web Services tools from Apache, the KToolBar
emulator from Sun, and the JCOPS suite of tools for Java
Card applet development.

Keywords Mobile Web Services · Authentication ·
GAA · SAML · 3GPP generic bootstrapping architecture ·
Mobile Authentication Protocol

This work was supported by sponsorship funding from City
University, London. This work was supported by sponsorship funding
from Telefonica Móviles, España.

K. Elmufti (B) · D. Weerasinghe · M. Rajarajan · V. Rakocevic ·
S. Khan
Mobile Networks Research Group,
School of Engineering and Mathematical Sciences,
City University, Northampton Square, London EC1V 0HB, UK
e-mail: k.elmufti@city.ac.uk

J. A. MacDonald
Information Security Group, Royal Holloway,
University of London, Egham TW20 0EX, UK
e-mail: john@madgo.com

1 Introduction

This paper proposes a protocol for authentication and
payment between a consumer and a Web Service Provi-
der that builds upon the Mobile Operator relationship with
the mobile subscriber. The proposed scheme enables the
Mobile Operator to provide a trusted authentication service
that allows a third party to implement an environment where
Web Service Providers gain direct commercial access to the
Mobile Operator’s subscriber base for the consumption of
digital and physical products.

But why should the Mobile Operator wish to encourage
such access? It has long been noted [6] that distribution
structures, and specifically the consumer facing retailing
function, evolve as industries mature. Many consider tra-
ditional Mobile Operators to be at the early stages of their
development as retailers of digital content. The current
distribution structures typified by Vodafone Live! from
Vodafone, T Zones from T-Mobile, and e-mocion from Tele-
fonica are examples of “one stop shops”. Vertically integra-
ted, they source, market and advertise a range of goods to
consumers who are encouraged to repeat purchase. They
may be considered as analogous to a Department Store on
the high street. The typical High Street has evolved, howe-
ver, and in many cases is complemented (if not replaced)
by the Shopping Mall. Comprising both Department Stores
and specialist retailers the operator of the Shopping
Mall benefits from a large number of customers (i.e. traffic
volume) whilst remaining independent from the cost
and management of the retailed stock. As the commercial
benefit from provision of digital content to mobile consu-
mers transitions from promotional to revenue generating,
the “Shopping Mall” concept of digital content retailing
may become an attractive model for the traditional Mobile
Operator.

123

78 K. Elmufti et al.

2 The web service requirement

Our proposal involves four main actors; the Consumer, the
Mobile Operator, the Shopping Mall Operator and the Ser-
vice Provider.

The consumer is assumed to access the scheme via a
bandwidth-constrained Mobile Station, comprising mobile
device and service-enabling SIM card connected to a GPRS
or UMTS mobile network. Service latency should be minimal
without the need to purchase new equipment, and the “pur-
chase experience” should be consistent across all services,
irrespective of the actual service provider. Payment for ser-
vices should be through the normal on-phone and off-phone
payment mechanisms. Anonymity is an optional consumer
requirement. Service consumption is ad hoc, irregular and
transitory in duration.

The Shopping Mall Operator is assumed to require the
maximum number of consumers for the available services,
and the maximum number of available services for the parti-
cipating consumers. Service Providers and Consumers
should be capable of dynamically and asynchronously ente-
ring and leaving the system. The service should be available
to consumers from various and disparate trust domains and
the service must be terminal vendor independent and capable
of being set-up using Over The Air (OTA) techniques.

Finally, Mobile Operator and Service Provider entities will
not want to develop new business processes solely for specific
Shopping Mall Operators. These entities must interact with
the system using standard, internationally agreed protocols.

We base our proposed scheme on the assumption that
these requirements are met with a Web Services architec-
ture, where:

– the consumer service endpoint is an OTA installed appli-
cation running on a mobile device that uses the SIM card
as its security element,

– the service content is provided by a Web Services Provi-
der in accordance with internet standards,

– the Mobile operator provides the authentication service,
and

– the Shopping mall operator implements a co-located
3GPP network application function and liberty-enabled
Identity Provider entity.

3 The proposed scheme

In our proposal the Shopping Mall Operator acts as an Iden-
tity Provider between Web Service Providers and each of the
Web Service consumers (Mobile Stations). The Mobile Ope-
rator owning the SIM deployed in the Mobile Station, acts as
an Authentication Authority to the Shopping Mall Operator.

We utilise the combined Liberty & 3GPP GAA model, as
defined in [3], to combine the Service Orientated Architec-
ture of Web Services with a Mobile End User end point. We
target the provision of identity-consuming services where
knowledge of the user (principal) is important. In this way
we address the highest value scenario; specifically:

– where the service is enhanced by knowledge of some data
related to the identity of the principal (e.g. payment).

– where privacy, trust and authentication are highly rele-
vant.

We consider a federated environment where it is in the
principal’s interest to re-use such assertions/validations/
vouches for access to unrelated services. Our platform imple-
ments a permission based access control where the permis-
sion level is a function of the “quality” of the initial assertion.
Further, we consider the general case where, although the
consumer identity is provided by the Mobile Operator cus-
tomer owning entity, they are given the freedom to attest for
the identity of a particular consumer up to “a certain level”.
Therefore not all assertions are necessarily considered to be
of equal quality.

Securing identity is fundamental for Web services secu-
rity, and as the identity of valid users must move around when
information moves from one trust domain to another, and the
fact that Web services will be used to cross trust domains
makes portable trust an important requirement for Web ser-
vices security.

Authentication credentials are defined in SAML vocabu-
laries. The Security Assertion Markup Language (SAML)
is the XML based security standard created to enable por-
table identities and the assertion of these identities. SAML
is used to exchange authentication and authorization creden-
tials across different security domains [4].

With reference to Fig. 1, in the GSM/3GPP mobile archi-
tecture, security and trust reside in two locations. These are
the network home location register (HLR) of the home sub-
scriber system (HSS) and the Operator issued tamper resistant

Fig. 1 Security model

123

Mobile Web services authentication using SAML and 3GPP generic bootstrapping architecture 79

Fig. 2 Scheme description

SIM card. We therefore consider the network HSS as the cus-
tomer owning entity.

A client application needs to run within the user device
in order to use the processing capabilities of the user device.
However this user device is unlikely to be trusted by scheme
entities to hold a valuable network level identity. [Note: This
distrust is likely to increase as devices move from traditio-
nally closed proprietary operating systems to more open ope-
rating systems capable of performing the file manipulation
required by advanced 2.5G and 3G services].

The customer owning entity—the network HLR—attests
the identity of a particular consumer up to “a certain level”.
Application layer credentials are bootstrapped from the (3G)
cellular network mutual authentication process and provided
to both the End User device and the Service Provider. This
allows the Service Provider and End User to communicate
securely as they now share the same secret.

We use the GBA or Generic Bootstrapping architecture
of generic authentication architecture (GAA) as described in
[3] to exploit the 3GPP Authentication and Key Agreement
process to produce application credentials. The Mobile Sta-
tion uses the Bootstrapping Server Function of the Mobile
Operator’s Home Subscriber System to create these applica-
tion layer credentials, i.e. GBA, over the Ub interface. These
are then shared with the Identity Provider (IdP or sometimes
referred to as the Network Application Function) via the Zn
interface. The Mobile Station client can then communicate
directly with the Service Provider using these credentials.

The use case for a non-registered user begins when the
User attempts to purchase a service from an (S P). The (S P)

advises the (N AF/I d P) who determines if User is
registered. If not registered, the (N AF/I d P) determines if
User has the capability, i.e. the “User Agent”, in the form
of the MIDP2.0 and Javacard application code. If the User
Agent is not present then this application code is over the
air (OTA) downloaded to the User Equipment in accordance
with [8]. The User Agent then registers with the (N AF/I d P)
for single sign-on service.

The scheme for a registered user is summarised with refe-
rence to Fig. 2.

1. Once registered, the user agent of the (U E) performs
GBA_U with (BSF) over Ub.

2. The user agent applet within the UICC is provided with
Ub parameters.

3. The UICC component of the user agent calculates the Ks

and provides the ME with the service layer credentials
(Ks_(int/ext)_N AF). The Ks always remains in the
UICC.

4. The user agent makes contact with the (N AF/I d P) to
obtain a “Shopping Mall” identity.

5. Service credentials appropriate to the User Agent are
communicated via Zn to the (N AF/I d P).

6. A SAML authentication token for the “Shopping Mall”
is provided to the User Agent from the (N AF/I d P).

7. (U E) communicates with (S P) using service credentials
and requests a service.

8. (S P) confirms validity of (U E)’s service credentials.

123

80 K. Elmufti et al.

The (U E) can now purchase from (S P) using On-Phone
billing (i.e. via HSS as the payment gateway) or Off-Phone
billing (i.e. via a second Service Provider who performs a
payment gateway service). The use case continues with (U E)
accessing multiple Service Providers until the session is acti-
vely terminated either by the User or the (S P).

This process allows the service provider to deliver an iden-
tity consuming web service direct to the End User, without
having to resort to the use of end user certificates or setting
up its own identification system.

The Mobile Station is assumed to implement a Security
Agent function—an example of which is presented in [8]. The
Security Agent comprises a device executed MIDlet applica-
tion for I/O and computationally intensive operations, toge-
ther with a tamper-resistant module (e.g. Trusted Programme
Module (TPM) and/or SIM card) executed application for
secure storage and cryptographic processing. The Shopping
Mall Operator is assumed to implement a Token distribution
centre.

We adopt a push-based model [7] to exchange authen-
tication and payment SAML authorisation tokens between
the scheme entities. Tokens are pushed from the Shopping
Mall Operator to the Mobile Station, for local storage. This
allows a shopping basket of services to be assembled before
the tokens are subsequently pushed from the Mobile Station
to the Web Service Providers in exchange for their services.

By storing the tokens on the Mobile Station we simulate a
familiar shopping behaviour. We allow the consumer to pause
(i.e. service interruption) between the phases of entering the
Shopping Mall (i.e. authentication), browsing and selecting
the goods (web service selection) and proceeding to the che-
ckout (i.e. payment). It is considered good practice [5] to
design mobile applications so that they can be interrupted by
the user.

4 Implementation options

Web Services are defined [9] as software systems that sup-
port interoperable network interactions. They allow imple-
mentation of a service-orientated architecture incorporating
the entities of Service Provider, Service Consumer and Ser-
vice Registry. For information to be moved around the net-
work it must be packaged in a format that is understood by
these entities. The Simple Object Access Protocol (SOAP)
[9] is the standardised packaging protocol currently utilised
for Web Services. SOAP supports information exchanges by
specifying a way to structure XML messages.

As in any open network environment, these exchanges
are exposed to security threats of message leakage, tampe-
ring and vandalism. We propose protocol and token imple-
mentation options that are designed to resist masquerading,
message tampering, replay, and denial of service attacks.

Further, as the characteristic of a Web Service is a response
to a message, perceived service quality is also dependent on
latency between message and response. We therefore also
consider the implementation options that affect this.

We present both specific protocol exchanges and the struc-
ture and syntax of the authentication and payment tokens.

4.1 Prerequisites for protocol

Our protocol uses both symmetric and asymmetric crypto-
graphic techniques to provide the authentication and integrity
services required.

The following requirements must be met prior to the use
of the protocol.

– All actors have agreed on a specific signature algorithm.
The signature on data X using private key K is written
sK (X).

– All actors have agreed on an asymmetric encryption algo-
rithm, for which the encryption of data X using public key
P is written eP (X).

– All actors except the consumer have encryption key pairs
for encryption scheme, and all the actors possess a trusted
copy of the public key of the other actors.

– All actors except the consumer have asymmetric key pair
for a signature scheme, and all the actors possess a trusted
copy of the public key of the other actors.

4.2 Protocol

We describe the critical protocol exchanges to address the
threat model by considering the authentication, service selec-
tion and payment phases of the protocol. Our description
assumes that an authenticated key establishment process has
taken place between the Mobile Operator and the Security
Agent of a Mobile Station [8].

We adopt the following additional notation:

S P = Service Provider
I d P = Identity Provider
N AF = Network Application Function
BSF = Bootstrapping Server Function
User = Mobile phone user
W S = Web Service
I M P I = IP Multimedia Private Identity

We have divided the protocol into three sections; Authenti-
cation, Service Selection, and Payment, the following sub-
sections will describe each section. Figure 3 provides an
overview of the protocol message flow.

123

Mobile Web services authentication using SAML and 3GPP generic bootstrapping architecture 81

Fig. 3 Proposed protocol

Payment Phase

Service Phase

Authentication Phase

MO User NAF/IdP FSP SP

1: ReqAccess (IMPI)

2: Init BSP

7: (Ks, Key lifetime)

4: (B-TID)
5: Login (B-TID)

8: Challenge (RAND)

9: ChallengeResponse

10: (UT)

11: RequestService (SPID, UT)

12: (SPUT, tsK)

13: CallService (UserRequest, SPUT)

14: (Invoice)

15: RequestService (FSPID, UT)

16: (SPUT_FSP, tsK_FSP)

17: CallService (Invoice, SPUT_FSP)

18: InvoiceConfirmation(Invoice)

19: ServiceDelivery

20: DeliveryConfirmation

3: StartBSP (IMPI)

6: (B-TID, NAF HOSTNAME)

4.2.1 Authentication:

1. User to NAF/IdP [ReqAccess(IMPI)]. The User sends a
request to access the “Shopping Mall” attaching with the
request the User IMPI number.

2. NAF/IdP to User [Init BSP]. Assuming the User has not
been authenticated at this stage, the NAF/IdP will send a
request to the User to initiate a new Bootstrapping Pro-
cedure (BSP).

3. User to BSF [StartBSP(IMPI)]. We assume at this stage
that the User does not have a valid bootstrapping ses-
sion or the freshness of the key material is not sufficient.
The User will initiate the BSP with the BSF via the Ub
interface, the details are defined in [1].

4. BSF to User [B-TID, Key lifetime]. The BSF will gene-
rate B-TID which is a string of base 64 random data
and the BSF server domain name; it will also gene-
rate key material Ks which is the result of concatena-
ting the Confidentiality Key (CK) and the Integrity Key
(IK) resulting from the AKA protocol. The details of the
generation of B-TID and the Ks are defined in [2]. The
User will use the B-TID as the Username and the Ks

as the password to access the NAF/IdP. B-TID will be
sent to the User via the Ub interface along with the Key
Lifetime, the password Ks will be generated by the user
based on the AKA protocol and it will be stored in the
UICC.

5. User to NAF/IdP [Login (B-TID)]. The User starts the
login procedure by forwarding its ‘Username’, i.e. the
B-TID to the NAF/IdP.

6. NAF/IdP to BSF [B-TID, NAF hostname]. The NAF/IdP
needs to obtain the User’s password, i.e. Ks that belongs
to B-TID in order to be able to authenticate the User.
This is done by the NAF/IdP sending the B-TID and its
NAF hostname to the BSF via Zn interface, the details
of this operation are defined in [2].

7. BSF to NAF/IdP [Ks , Key lifetime]. In response to step
6 the BSF will send to the NAF/IdP the User password
i.e. Ks and the key lifetime (Note: other related data will
be sent in this message, these data were omitted here for
simplicity); the details of this operation are defined in [2]
and the security of this message are defined in [1].

8. NAF/IdP to User [Challenge (RAND)]. The NAF/IdP
will challenge the User the possession of the password,

123

82 K. Elmufti et al.

i.e. Ks . This step is required to protect against re-play
attack. The NAF/IdP generates a random number RAND
and sends it to the User.

9. User to NAF/IdP [ChallengeResponse]. After the User
receives the RAND, the User will generate the Challen-
geResponse and sends it to the NAF/IdP to prove the pos-
session of the password, i.e. Ks . The challengeResponse
is a function of the RAND and Ks ; ChallengeResponse
= f(RAND,Ks); this operation will take place in UICC as
Ks will never be reviled to the handset. It is assumed that
both the User and the NAF/IdP uses the same function
‘f’ to generate the ChallengeResponse.

10. NAF/IdP to User [UserToken]. The NAF/IdP needs to
verify the ChallengeResponse received in step 9, and if
not successful it repeat step 8; if successful it will gene-
rate a UserToken (UT) and sends it to the User. The UT
will be generated as follows: the IdP part of the NAF/IdP
will generate a Temporary User ID (TUID), this will be
used to access the SSO system in which the IdP acts as
the Authentication Server. The TUID is derived by the
IdP from the User ID (UID).
Note: the NAF IdP mapping is done using a ‘User map
table’, which maps the User’s IMPI to the UID (or TUID).
The UT will be built by concatenating the TUID to a
date/time timestamp (TS), and signing the TUID||TS
with the IdP digital signature private key I d Pds:sk , and
encrypting the result with the IdP encryption public
key I d Pe:pk , such that the UT = eI d Pe:P K (sI d Pds:SK

[TUID||TS]).
This UT will be sent to the User encrypted using the
password Ks received in step 7.

This concludes the authentication phase, all steps can hap-
pen at an earlier time before requesting access to any parti-
cular third party service provider, providing the lifetime of
the keys have not been exceeded.

4.2.2 Service selection:

The proposed protocol for the Service Phase of Fig. 3 is
described below:

1. User to NAF/IdP [RequestService (SPID, UT)]. Once the
User receives the UT he/she can now request access to
any service provider (SP) in the Shopping Mall, however
to do that the User must first receive SP UserToken from
the NAF/IdP. This is achieved by the RequestService
message where the User sends the ID of the requested
SP to the NAF/IdP concatenated with the UT.
The RequestService message will be encrypted with Ks

to protect the message confidentiality, the RequestSer-
vice = eKs (SPID||UT).

2. NAF/IdP to User [SPUT, tsK]. The NAF/IdP now gene-
rates a specific UserToken for the User to be used only
with the SP requested by the SPID from the RequestSer-
vice message; this UserToken will be referred to as the
SPUT. The SPUT is built as follows: first a Temporary
Session Key (tsK) is generated by the IdP, this will be
concatenating with the SPID and the TUID and a new
timestamp TS; these data then will be signed with the IdP
digital signature private key I d Pds:SK , and encrypted
with the SP encryption public key S Pe:P K , such that the
SPUT = eS Pe:P K (sI d Pds:SK [TUID||SPID||tsK||TS]). The
SPU T will be sent along with tsK to the User in a mes-
sage encrypted using Ks .
It is the creation of the service provider specific SPUT,
from the user token UT generated following successful
authentication of the user by the NAF/IdP, that provides
the user anonymity towards the SP. This is an important
aspect of the proposed scheme.

3. User to SP [CallService(UserRequest, SPUT)]. The User
can now talk directly with the SP requesting any services
offered by this SP, the CallService message will contain
the UserRequest and the SPUT. The UserRequest will be
encrypted using the tsK to protect the User privacy.
Note: it is assumed at this stage that when the User sends
this message to the SP that the User is confirming his/her
selection, which can be indicated in the UserRequest.

4. SP to User [Invoice]. Once the SP receives the CallSer-
vice message it decrypts the SPUT using its encryp-
tion private key S Pe:SK , it then verifies the signature
of the SPUT, this is done by validating the SPUT
using the NAF/IdP signature public key sI d Pds:P K , to
ensure the integrity of the content of SPUT; if the valida-
tion is successful the SP compares the TUID (or UID) to
its registered Users database if it exist, this option allows
the SP to give customized services to its customers. Then
the SP gets the tsK from SPUT and use it to decrypt the
UserRequest; the SP will reply with an ‘Invoice’, this
Invoice will contain a confirmation of the UserRequest,
Price, and a method of payment (e.g. Credit Cards only).
The Invoice will be signed by the SP digital signature pri-
vate key and encrypted with tsK. Invoice= eS PtsK (sS Pds:SK

([UserRequest||Price||MethodOfPayment||TS]))

4.2.3 Payment:

The proposed protocol for the Payment Phase of Fig. 3 is
described below:

1. User to NAF/IdP [RequestService (FSPID, UT)]. The
User verifies the invoice by decrypting it using tsK, and
verifies the content of it. If the Invoice verification pro-
cess is successful, the User now starts the payment phase.
It is assumed that the User has an account with a

123

Mobile Web services authentication using SAML and 3GPP generic bootstrapping architecture 83

Financial Service Provider (FSP), who will charge the
User and pay the SP. However for the User to communi-
cate with the FSP the User must obtain a SPUT for this
FSP; this is done the same way as in steps 11, 12, and
changing the SPID with the FSPID.

2. NAF/IdP to User [SPUT_FSP, tsK_FSP], SPUT_FSP =
eF S Pe:P K (sI d Pds:SK [TUID||FSPID||tsK_FSP||TS]).

3. User to FSP (CallService[Invoice, SPUT_FSP]). The
User forward the Invoice and the SPUT_FSP to the FSP
in a CallService message, to indicate the User confir-
mation for the FSP to charge the User and pay the SP
indicated in the Invoice.

4. FSP to SP [InvoiceConfirmation(Invoice)]. Similar to
protocol message 14 of Fig. 3, the FSP will decrypt and
validate the signature of SPUT_FSP (received in step
17) to obtain the tsK_FSP which will be used to decrypt
the Invoice, which if successful will indicate the User
confirmation to process the Invoice.
The FSP then charge the Users with the amount stated in
the Invoice, and generate an InvoiceConfirmation, which
is the Invoice concatenated with the FSPID and a status
flag to indicate the statues of the charging, which can
only be True (successful operation) or False (unsuccess-
ful operation). The InvoiceConfirmation message will be
signed with the FSP signature private key sF S Pds:SK to
protect the integrity of the message and to act as a proof
of payment. InvoiceConfirmation= sF S Pds:SK

(Invoice||FSPID||StatusFlag)
5. SP to User [Service Delivery], once the SP receives the

InvoiceConfirmation message from the FSP, it validate
the message signature and then checks the StatusFlag,
which if set to True, the SP will deliver the service to
the User; an optional message can be sent to the FSP to
confirm service delivery.

As mentioned above the scheme supports both On-Phone
and Off-Phone payment mechanisms. The protocol depicted
in Fig. 3 and described in detail above is for the Off-Phone
payment mechanism. The On-Phone payment mechanism
refers to the case when the user uses the Mobile Operator as
a FSP by charging the user’s phone bills.

The payment protocol will be exactly as in the Off-Phone
case, with the main difference that the FSP will be the MO—
the entity that contains the BSF.

4.3 Authentication and payment tokens

Our platform creates a collaborative commercial environ-
ment. Central to this is the notion of portable trust, i.e. iden-
tity credentials issued in one domain being accepted as proof
of the subject’s claimed identity (authentication) in
another. There exists, therefore many parallel authentication
processes. Section 3 and subsequent explanations describe

the process adopted for one of them, namely GBA levera-
ging the 3GPP mobile cellular credentials. To cater for this
generic requirement we implement the scheme tokens (e.g.
UT) as SAML objects, whose quality rating is based on the
value of the attestation that the authentication domain gave
the subject. The SAML object, or token, UT is therefore an
authentication assertion of the subject (single domain entity),
that has been accepted by the NAF/IdP for use within the col-
laborative commercial environment of the controlled shop-
ping mall (CSM). By issuing a UT to the subject, the subject
is now considered a principal (Liberty terminology) within
the CSM. The UT is, in essence, the portable identity authen-
tication assertion of the subject. To provide the quality metric,
the UT is signed by the NAF/IdP in a way that is appropriate
for the attesting authority. This quality metric is a very impor-
tant element of our platform as it allows many diverse SP’s
to decide how much to “trust” the principal.

The following is a list of the various tokens deployed in
“The Proposed Scheme”:

– UserToken
(UT=eI d Pe:P K (sI d Pds:SK [UID||TS])); used by the NAF/
IdP only to identify the user in the “Shopping Mall”.

– SP UserToken
(SPUT=eS Pe:P K (sI d Pds:SK [TUID||SPID||tsK||TS])); user
identifier that is unique for every SP inside the “Shopping
Mall”.

– Invoice
eS PtsK (sS Pds:SK

([UserRequest||Price||MethodOfPayment||TS])); is the
payment token.

– InvoiceConfirmation
sF S Pds:SK (Invoice||FSPID||StatusFlag); used as proof of
payment.
These tokens are implemented as XML objects, as detai-
led below:

– UserToken

<UserToken>
<UID>String</UID>
<TimeStamp>Timestamp</TimeStamp>

</UserToken>

– SP UserToken

<SPUserToken>
<TempUID>String</TempUID>
<SPID>String</SPID>
<TempSessionKey>Key</TempSessionKey>
<TimeStamp>Timestamp</TimeStamp>

</SPUserToken>

– Invoice

<Invoice>
<InvoiceNumber>String<InvoicecNumber>
<UserRequest>

123

84 K. Elmufti et al.

<Item>String</Item>
<Quantity>int</Quantity>

</UserRequest>
<Price>double</Price>
<TimeStamp>Timestamp</TimeStamp>

</Invoice>

– InvoiceConfirmation

<InvoiceConfirmation>
<Invoice>

<InvoiceNumber>String<InvoicecNumber>
<UserRequest>

<Item>String</Item>
<Quantity>int</Quantity>

</UserRequest>
<Price>double</Price>
<TimeStamp>String</TimeStamp>

</Invoice>
<FinacialSP>String<FinacialSP>
<Status>boolean<Status>

</InvoiceConfirmation>

These XML objects are incorporated in the SOAP mes-
sages that exchange information between scheme actors.
Example SOAP messages arising from the scheme are
presented in Appendix A.

4.4 Proof of concept prototype

To validate our proposal we have constructed a Proof of
Concept model, based on the readily available open source
tools:

– BSF, NAF_IdP, SP and FSP are deployed as Web Services
in Axis (Apache Extensible Interaction System). Axis is
a SOAP processor that has been developed as an Apache
open source project. Apache Axis 1.3 is deployed on top
of Jakarta Tomcat application server and the above Ser-
vices are deployed in the Apache Axis 1.3. Those services
are implemented in J2EE environment.

– A J2ME Client performs the Mobile End User function
and is emulated by the Wireless KToolbar [10] from Sun
Microsystems, running our Security Agent MIDP 2.0
MIDlet on the reference J2ME implementation. The SIM
card Security Agent function is provided by the JCOPS
suite of tools for Java Card applet development.

– Communication between Web Services as well as Web
Services and Mobile client has been developed using
SOAP messages over http. For authentication SAML
tokens were used and are added to the SOAP messages.
Axis client is also included in some of the Web Services
to invoke services in another Web Service. WSDL docu-
ment for each web service is created by the Axis Engine.

– According to the protocol, communication between
all the entities are secured using java.security and
javax.crypto libraries. SOAP messages are signed by
XML signature to ensure message integrity. VeriSign’s

Trust Services Integration Kit is used generate XML
signatures.

The WSDL of the simulated controlled Shopping Mall
service (NAF IdpService) is presented in appendix B.

The demonstration environment of our proof of concept
model is implemented in J2ME and J2EE. J2ME provides
the necessary Mobile device simulation and J2EE provide
the web service implementation and deployment. The model
is designed so that each phase of a specific use case is initiated
manually and monitored by visual feedback through the use
of J2ME mobile simulator.

5 Conclusion

In this paper we have introduced a scheme for the direct
consumption of Web services by a Mobile Station; we des-
cribed how the Liberty Alliance ID-FF model can make
use of the extended authentication services offered by 3GPP
GAA to provide a Controlled Shopping Mall environment to
mobile phone users and Service Providers.

The protocol and the system structure described in this
paper, in addition to the syntax of the various security tokens;
were used in the development of a “proof of concept proto-
type” to validate our proposal. The prototype was developed
using readily available J2ME, Java Card, J2SE and J2EE
platforms.

Our contributions of system architecture, protocols, and
enabling data structures could form the basis of a new busi-
ness model for the changing telecommunication industry. To
summarise, our proposal provides:

1. the user with a high level service discovery interface plus
anonymity from Web Service Providers;

2. the Mobile Operator with a pivotal role and a revenue
generating opportunity in the provision of a web services
security and payment platform;

3. the Service Provider with a secure, scalable distribution
channel.

In conclusion, our proposal allows developers and resear-
chers to rethink current distribution structures and business
models for the sourcing and delivery of digital services to
mobile subscribers.

Appendix A: Scheme SOAP messages

SOAP message with the SAML payment token

<?xml version="1.0" encoding="utf-8"?> <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

123

Mobile Web services authentication using SAML and 3GPP generic bootstrapping architecture 85

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header> <saml:Assertion ID="Asser007"
IssueInstant="2006-09-06T16:38:28.921Z" Version="2.0"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" soapenv:actor=""
soapenv:mustUnderstand="0"> <saml:Issuer NameQualifier="Kalid’s
Computer"/> <saml:Subject> <saml:NameIDFormat="URI"
SPProviderID="Kalid’s Server"/> <saml:SubjectConfirmation
Method="MethodURI"> <saml:NameID Format="URI" SPProviderID="Kalid’s
Server"/> <saml:SubjectConfirmationData InResponseTo="SAML Assertion
Ref ID" NotBefore="2006-09-06T16:38:29.968Z"
NotOnOrAfter="2006-09-06T16:38:29.984Z" Recipient="RecipientURI"/>
</saml:SubjectConfirmation></saml:Subject> <saml:Conditions
NotBefore="2006-09-06T16:38:29.937Z"
NotOnOrAfter="2006-09-06T16:38:29.937Z">
<saml:AudienceRestriction><saml:Audience>Audience
URI</saml:Audience></saml:AudienceRestriction> </saml:Conditions>
<saml:Advice> <saml:AssertionIDRef>Assertion ID
Reference</saml:AssertionIDRef> <saml:AssertionURIRef>Assertion URI
Ref</saml:AssertionURIRef> <saml:Assertion ID="Assertion ID
Reference" IssueInstant="2006-09-06T16:38:29.953Z" Version="2.0"/>
</saml:Advice><saml:AttributeStatement><saml:Attribute
FriendlyName="Attribute Name" Name="AtTrIbUtEnAmE"
NameFormat="AttributeNameURI"/></saml:AttributeStatement>
<saml:AuthzDecisionStatement Decision="Permit"
Resource="WebServiceURI">
<saml:ActionNamespace="ActionURI">AuthorizedAction</saml:Action>
<saml:Evidence> <saml:AssertionIDRef>Assertion ID
Reference</saml:AssertionIDRef> <saml:Assertion ID="Assertion ID
Reference" IssueInstant="2006-09-06T16:38:29.984Z" Version="2.0"/>
<saml:AssertionURIRef>Assertion URI Ref</saml:AssertionURIRef>
</saml:Evidence></saml:AuthzDecisionStatement> </saml:Assertion>
</soapenv:Header>

<soapenv:Body> <ns1:StartBSPResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://soapinterop.org/"> <CallPaymentServiceReturn
href="#id0"/> </ns1:CallPaymentService> <multiRef id="id0"
soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
#xsi:type="UserInformation"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"> <Invoice
xsi:type="soapenc:invoice"> <InvoiceNumber
xsi:type="soapenc:string">String<InvoicecNumber> <UserRequest
si:type="soapenc:userRequest"> <Item xsi:type="soapenc:string">Live
FootBall Clip</Item> <Quantity xsi:type="soapenc:int">2</Quantity>
</UserRequest> <Price xsi:type="soapenc:double">1200.00</Price>
<TimeStamp xsi:type="soapenc:string">04-03-2006 23:12</TimeStamp>
</Invoice> </multiRef> </soapenv:Body> </soapenv:Envelope>

SOAP message with encrypted payment token

<?xml version="1.0" encoding="utf-8"?> <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body> <xenc:EncryptedData
Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<xenc:CipherData>
<xenc:CipherValue>5PLpoZblWWuCxemqLECvsITG/915oLIOHGQ7CUbsLkb
IjXdDs6Ld/L+/7pRSYbfo9za9L6TUZLdquVNiC7Uw1nrLCrh6sttsCNAfdOsO
CdP0TY9RFucyPPdRAe+KWlZEvMUAr3m33BL6GhdsS67xksgv40B1vgLOublYn
MRXG+kdm9uqJ1Tad.....wEFYnbbyRB0rWfBtFaw==</xenc:CipherValue>
</xenc:CipherData> </xenc:EncryptedData> </soapenv:Body>
</soapenv:Envelope>

Signed and Encrypted SOAP envelope with contents payment token

<?xml version="1.0" encoding="utf-8"?> <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header> <ds:Signature
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> <ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
<ds:Reference URI=""> <ds:Transforms> <ds:Transform}

123

86 K. Elmufti et al.

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
<ds:TransformAlgorithm=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"/>
</ds:Transforms> <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>zPJxl6q7d2qvsVHH4tFgliLlKNM=</ds:DigestValue>
</ds:Reference> </ds:SignedInfo>
<ds:SignatureValue>FMHb70eO5DmN6fH2f4AD7+dGAVhtcgzpQJxtvJsy+SbeItv
5dhETBA==</ds:SignatureValue> <ds:KeyInfo> <ds:X509Data>
<ds:X509Certificate>
MIIC2TCCApcCBENeHwowCwYHKoZIzjgEAwUAMFIxCzAJBgNVBAYTAlVTMRIwE
AYDVQQKEwlXcm94IEJhbmsxGjAYBgNVBAsTEVdyb3ggQmFuayBPbi1saW5lMR
MwEQYDVQQDEwpXZWIg.....ZfcJIkVVRE0rGCxwBczDG <ds:DSAKeyValue> <ds:P>
/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9
HTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DA
K2HXKu/yIgMZndFIAcc= </ds:P>
<ds:Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</ds:Q>
<ds:G>9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+Z
zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRk
Zl6Ae1UlZAFMO/7PSSo= </ds:G> <ds:Y>
l49/FUaZcrInNuQgiNJdPhNhwjlxhifgbh1i56CJ5MWGgsHcEicR2IBPTOO+W
bxCUwELLhWr1oPOYyfhPHOpudyKFN5vLFgLuDCPZyaeBqdFHbqcDaDZ8PSCq6
924DjUt0MAJ2fXhhFmw= </ds:Y> </ds:DSAKeyValue> </ds:KeyValue>
</ds:KeyInfo> </ds:Signature> </soapenv:Header> <soapenv:Body>
<xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<xenc:CipherData>
<xenc:CipherValue>5PLpoZblWWuCxITG/915oLIOHGQ7CUbsLkbIjXdDs6L
d/L+/7pRSYbfo9za9L6TULdquVNiC7Uh6sttsCNAfdOsOCdP0TY9RFucyPPdRA
e+KWlZEvMUAr3m33BL6Ghds........yRB0rWfBtFaw==</xenc:CipherValue>
</xenc:CipherData> </xenc:EncryptedData> </soapenv:Body>
</soapenv:Envelope>

Appendix B: Service WSDL

A collapsed version of the Web Service Description Language (WSDL) for the proof
of concept (NAF IdpService) implementation is presented below:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://localhost:8080/axis/services/NAFService"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://localhost:8080/axis/services/NAFService"
xmlns:intf="http://localhost:8080/axis/services/NAFService"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:message name="ReqServiceResponse">
<wsdl:part name="ReqServiceReturn" type="soapenc:string"/>

</wsdl:message>
<wsdl:message name="ReqServiceRequest">

<wsdl:part name="spID" type="soapenc:string"/>
<wsdl:part name="userToken" type="soapenc:string"/>

</wsdl:message>
<wsdl:message name="ReqAccessRequest">

<wsdl:part name="impi" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="ReqAccessResponse">
</wsdl:message>
<wsdl:message name="LoginResponse">

<wsdl:part name="LoginReturn" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="ReqLoginRequest">

<wsdl:part name="tempID" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="ReqLoginResponse">

<wsdl:part name="ReqLoginReturn" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="LoginRequest">

<wsdl:part name="loginChallenge" type="soapenc:string"/>
<wsdl:part name="tempID" type="soapenc:string"/>

</wsdl:message>
<wsdl:portType name="NAF_IdPService">

<wsdl:operation name="ReqAccess" parameterOrder="impi">
<wsdl:input message=
"impl:ReqAccessRequest" name="ReqAccessRequest"/>

123

Mobile Web services authentication using SAML and 3GPP generic bootstrapping architecture 87

<wsdl:output message=
"impl:ReqAccessResponse" name="ReqAccessResponse"/>

</wsdl:operation>
<wsdl:operation name=

"Login" parameterOrder="loginChallenge tempID">
<wsdl:input message=
"impl:LoginRequest" name="LoginRequest"/>

<wsdl:output message=
"impl:LoginResponse" name="LoginResponse"/>

</wsdl:operation>
<wsdl:operation name="ReqLogin" parameterOrder="tempID">

<wsdl:input message=
"impl:ReqLoginRequest" name="ReqLoginRequest"/>

<wsdl:output message=
"impl:ReqLoginResponse" name="ReqLoginResponse"/>

</wsdl:operation>
<wsdl:operation name="ReqService" parameterOrder="spID userToken">

<wsdl:input message=
"impl:ReqServiceRequest" name="ReqServiceRequest"/>

<wsdl:output message=
"impl:ReqServiceResponse" name="ReqServiceResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="NAFServiceSoapBinding" type="impl:NAF_IdPService">

<wsdlsoap:binding style=
"rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="ReqAccess">
<wsdlsoap:operation soapAction=""/>

+<wsdl:input name="ReqAccessRequest">
+<wsdl:output name="ReqAccessResponse">

</wsdl:operation>
<wsdl:operation name="Login">

<wsdlsoap:operation soapAction=""/>
+<wsdl:input name="LoginRequest">
+<wsdl:output name="LoginResponse">

</wsdl:operation>
<wsdl:operation name="ReqLogin">

<wsdlsoap:operation soapAction=""/>
+<wsdl:input name="ReqLoginRequest">
+<wsdl:output name="ReqLoginResponse">

</wsdl:operation>
<wsdl:operation name="ReqService">

<wsdlsoap:operation soapAction=""/>
+<wsdl:input name="ReqServiceRequest">
+<wsdl:output name="ReqServiceResponse">

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="NAF_IdPServiceService">

+<wsdl:port binding="impl:NAFServiceSoapBinding" name="NAFService">
</wsdl:service>

</wsdl:definitions>

References

1. Access to network application functions using hypertext trans-
fer protocol over transport layer security. Technical report, ETSI
European Telecommunications Standards Institution, June 2005.
UMTS, Generic Authentication Architecture (2005)

2. Generic bootstrapping architecture. Technical report, ETSI
European Telecommunications Standards Institution, June 2005.
UMTS, Generic Authentication Architecture (2005)

3. Interworking of Liberty Alliance ID-FF, ID-WSF and Generic
Authentication Architecture. Technical report, 3GPP 3rd Genera-
tion Partnership Project, July 2005. 3GPP TR 33.980; Technical
Specification Group Services and System Aspect, Release 4 (2005)

4. SAML V2.0 Executive Overview. Technical report, OASIS, April
2005. OASIS Standard (2005)

5. Block, C., Wagner, A.C.: MIDP 2.0 Style Guide. Addison-Wesley,
London (2003)

6. Ford, R.: Managing retail service businesses for the 1990s: Marke-
ting aspects. Eur. Manage. J. 8, 58–66 (1990)

7. Krishna, S.: Web Services Framework and Assertion exchange
using SAML. W3C, http://www.w3.org (2001)

8. MacDonald, J.A., Sirett, W.G., Mitchell, C.J.: Overcoming channel
bandwidth constraints in secure SIM applications. In: Security and
Privacy in the Age of Ubiquitous Computing. Springer Science and
Business Media (2005)

9. Snell, J., Tidwell, D., Kulchenko, P.: Programming Web Services
with SOAP. O’Reilly, Cambridge (2002)

10. Sun Microsystems, http://java.sun.com/products. Wireless Tool-
kit, Version 2.1 (2003)

123

http://www.w3.org
http://java.sun.com/products

	Mobile Web services authentication using SAML and 3GPP generic bootstrapping architecture
	Abstract
	1 Introduction
	2 The web service requirement
	3 The proposed scheme
	4 Implementation options
	4.1 Prerequisites for protocol
	4.2 Protocol
	4.3 Authentication and payment tokens
	4.4 Proof of concept prototype

	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

