
 1

A Cross layer Analysis of TCP Instability in

Multihop Ad hoc Networks

Ehsan Hamadani, Veselin Rakocevic

Mobile Network Research Group

School of Engineering and Mathematical Sciences

City University, London EC1V 0HB, UK

[E.hamadani, V.rakocevic]@city .ac.uk

Abstract: It is well-known that due to the nature of some

ad hoc network applications (e.g. emergency operation,

battlefield communication), TCP instability can have a

devastating impact on the Quality of Service requirements.

As we will show in this paper, TCP instability is truly a

cross layer problem which needs to be addressed by

considering the interaction of multiple layers with each

other. We first divide the TCP instability problem into

intra-flow and inter-flow instability and then propose a set

of simple but effective solutions and show through

extensive simulations the improvements achieved using the

proposed algorithms.

I) INTRODUCTION

 Multihop ad hoc networks are autonomous systems of

mobile devices connected by wireless links without the use

of any pre-existing network infrastructure or centralized

administration. During recent years ad hoc networks have

attracted considerable research interest thanks to their easy

deployment, maintenance and application variety. To

enable seamless integration of ad hoc networks with the

Internet (for instance in ubiquitous computing

applications), TCP seems to be the natural choice for users

of ad hoc networks that want to communicate reliably with

each other and with the Internet. On the other hand, one of

the prominent random access protocols known for ad-hoc

networks is the IEEE 802.11 MAC standard [1] which has

been widely used and adopted. However, neither TCP nor

802.11 were primarily designed and optimized to work in

multihop ad hoc networks. Not surprisingly, as shown in

[2,3], the network exhibits serious performance issues

when TCP runs over 802.11 in multihop ad hoc networks.

In particular interest to us in this paper is the network

instability issue as we believe due to the nature of some of

the ad hoc network applications (e.g. emergency operation,

battlefield communication) the disconnectivity or

starvation of one or more connections for even a short

period of time is not acceptable and can have a devastating

impact on QoS. More specifically, the ad-hoc network

users are more willing to receive a continuous and stable

flow of data rather than sending/receiving large bulk of

data instantly. This argument holds also true for jitter

sensitive applications such as audio or video streaming. As

we will show later in the paper, instability is truly a cross

layer problem which needs to be addressed by considering

the interaction of multiple layers with each other. During

recent years, there has been a number of valuable works

that have investigated the TCP instability by investigating

the interaction of routing protocols and TCP in multihop

ad hoc networks [4-6]. In this paper, we take a

different approach to address TCP instability by

carefully tracking the chain of events occurring

between link layer and TCP. In particular, we divide

the TCP instability problem into intra-flow and inter-

flow instability where the former instability is caused

by the interaction of nodes belonging to the same TCP

connection while the latter happens when nodes

belonging to different connections interact. Based on

the findings, we then propose a set of simple but

effective solutions and show through extensive

simulations the improvements achieved using the

proposed algorithms.

The rest of the paper is organized as follows. In

section 2, we will give an overview of the IEEE

802.11 MAC and TCP with special emphasis on

backoff algorithm and TCP congestion control

mechanism, respectively. In section 3, the main causes

of inter-flow and intra-flow instability are discussed

and explained in fine details. Then, based on the

drawn facts, we propose two different schemes in

section 4 that are applied to TCP and 802.11. This is

followed by the simulation model and the key results

obtained by simulating the proposed model against the

default TCP and 802.11 MAC protocol in section 5.

Finally, in section 6, we conclude the paper with some

outlines towards future work.

II) PROTOCOLS OVERVIEW

a) IEEE 802.11 MAC

 IEEE 802.11 Distributed Coordination Function

(DCF) [1] provides the basic access method of the

802.11 MAC using the CSMA/CA (Carrier Sense

Multiple Access with Collision Avoidance) scheme to

access the channel. Each station willing to send data

generates a random backoff period according to

equation (1) as its deferral time before transmitting,

unless the backoff timer already contains a nonzero

value, in which case the selection of a random number

is not needed and not performed.

Backoff Time = Random() * SlotTime (1)

Here, the SlotTime depends on the technology

deployed in physical layer and Random() is a random

integer number of time slots drawn from a uniform

distribution over the interval [0,CW], where CW

(Contention Window) itself is an integer within the

range of [CWmin,CWmax]. At the beginning of each

 2

frame transmission, the contention window takes an initial

value of CWmin. Then, CW is doubled every time the node

is not successful to transmit its frame until the CW reaches

the value of CWmax. Once it reaches the CWmax, the CW

remains at the value of CWmax until it is reset. Also the

CW is reset to CWmin after every successful attempt to

transmit a frame or the frame is dropped after several tries

(specified by Max-Retry-Limit). The above backoff

scheme is also known as Binary Exponential Backoff

(BEB). After choosing the new backoff timer, if no

medium activity is indicated, the backoff timer is

decremented by one slot-time. If the medium is determined

to be busy at any time during the backoff process, then the

backoff timer is suspended. Once the backoff counter

reaches zero, the node can transmit the data.

b) TCP Congestion Control

 TCP Congestion Control was added to TCP in 1987 and

was standardized in RFC2001 [7] and then updated in

RFC2581 [8]. In a broad sense, the goal of the congestion

control mechanism is to prevent congestion in intermediate

router’s buffer by dynamically limiting the amount of data

sent into the network by each connection. To estimate the

number of packets that can be in transit without causing

congestion, TCP maintains a congestion window (cwnd)

that is calculated by the sender as follows: when a

connection starts or a timeout occurs, slow start is

performed where at the start of this phase, the cwnd is set

to one MSS (Maximum Segment Size). Then the cwnd is

doubled after each window worth of data is acknowledged.

Once cwnd reaches a certain threshold, the connection

moves into the congestion avoidance phase where TCP

gently probes the available bandwidth by increasing the

cwnd by one packet in every round trip time (Additive

Increase). During this time if the TCP detects packet loss

through duplicate acknowledgments, it retransmit the

packet (fast retransmit) and decreases the cwnd by a factor

of two (Multiplicative Decrease) or it goes to slow start

according to the TCP version used. Alternatively, if the

sender does not receive the acknowledgment within

retransmission time out (RTO), it goes to slow start and

drops its window to one MSS.

After calculating the current value of cwnd, the effective

limit on outstanding data (i.e. flight size), known as ‘send

window’ (swnd), is set as the minimum of the cwnd and

available receiver window (rwnd). The rwnd is the amount

of available buffer size in the receiver side and is taken

into account in order to avoid buffer overflow at the

receiver by a fast sender (flow control). Therefore:

min{ , }swnd rwnd cwnd= (2)

III) PROBLEM DESCRIPTION

a) Intra-flow Instability

To understand the main cause of TCP instability in a single

TCP flow (intra-flow instability), let us recall from section

2 that the performance of TCP directly depends on the

swnd which its optimal value should be proportional to

bandwidth-delay product of the entire path of the data

flow. It is important to note that the excess of this

threshold does not bring any additional performance

enhancement, but only leads to increased buffer size in

intermediate nodes along the connection. As shown in

[2,9], the bandwidth-delay product of a TCP

connection over multihop 802.11 networks tends to be

very small. This is mainly because in 802.11, the

number of packets in flight is limited by the per-hop

acknowledgements at the MAC layer. Such property

is clearly quite different from wireline networks,

where multiple packets can be pushed into a pipe

back-to-back without waiting for the first packet to

reach the other end of the link. Therefore, as

compared with that of wired networks, ad hoc

networks running on top of 802.11 MAC, have much

smaller bandwidth-delay product. However, as shown

in [3], TCP grows its congestion window far beyond

its optimal value and overestimates the available

bandwidth-delay product. To get a better

understanding of TCP overestimation of available

bandwidth-delay product in ad hoc networks, consider

a simple scenario in fig.1 where all nodes can only

access their direct neighbors. Here a TCP connection

is running from node A to E and all nodes have at

least one packet to send in the forward direction.

Fig. 1. 4 hop chain topology

Let us assume nodes B and D initially win the channel

access and start to transmit their data into the network

at the same time. Soon after both stations start

transmitting their data, the packet from B to C is

collided with the interference caused by D�E

transmission. Following this case, node A is very

likely to win the access to the channel and starts

transmitting several consecutive packets towards B

before releasing the channel [10]. Meanwhile, since B

is unable to access the channel it buffers the new

packets in addition to packet(s) already in its buffer

and starts building up its queue (figure 2).

Fig. 2. Queue build up in a 4 hop chain topology

This results in an artificial increase of the RTT delay

measured by the sender as node B now becomes the

bottleneck of the path. Such situation leads to an

overestimate of the length of available data pipe and

therefore an increase of the TCP congestion window

and hence more network overload in the next RTT.

Fig.3 summarizes the chain of actions that occur

following a network overload and lead to TCP intra-

flow instability. Initially, increasing the network

overload causes more contention among nodes as all

of them try to access the channel (stage 2). On the

other hand, when the level of contention goes up,

more packets need to be retransmitted as the

probability of collision increases with the increasing

level of contention (stage 3). This in turn introduces

extra network overload and therefore closing the inner

part of the cycle (stage 1�stage2�sage3�stage1).

This cycle is continued until one or more nodes

cannot reach its adjacent node within a limited

number of tries (specified by the MAC_Retry_Limit

 3

in 802.11 MAC standard) and drop the packet (packet

contention loss). This packet loss is then recovered by the

TCP sender either through TCP fast retransmit or through

TCP timeout (stage 4). In both cases, TCP drops its

congestion window resulting in a sharp drop in number of

newly injected packets to the network (stage 5) and

therefore giving the network the opportunity to recover.

However, soon after TCP restarts, it creates network

overload again by overestimating the available bandwidth-

delay product of the path, and the cycle repeats.

Fig. 3. Intra-flow instability cycle

Fig.4 shows the change of cwnd and the instances of TCP

retransmission (caused by packet contention losses) in a 4

hop chain topology shown in figure 1 using 802.11 MAC.

The result fully supports the above argument and confirms

that TCP behavior towards overloading the network causes

extensive packet contention drops in the link layer. These

packet drops are wrongly perceived as congestion by the

TCP and result into false trigger of TCP congestion control

algorithm, frequent TCP packet retransmissions and finally

TCP instability.

Fig. 4. Change of cwnd and the instances of TCP

retransmission in a 4 hop chain topology

b) Inter-flow Instability

Unlike the intra-flow instability that is caused by the

interaction of nodes belonging to the same connection,

inter-flow instability is observed when multiple flows

compete to access the channel. In particular, inter-flow

instability mainly happens when one connection is able to

monopolize the channel resources at the expense of other

contending connections. Therefore, as we will see in this

section, the inter-flow instability is closely linked to well-

know unfairness problem reported in [10]. To investigate

the cause of inter-flow instability, we have conducted

number of simulations using different scenarios. Our main

observation was that regardless of the transport and

routing protocol used in the network, inter-flow

instability is a serious issue that mainly (but not

exclusively) lies on the binary exponential backoff

(BEB) algorithm adopted in 802.11 MAC. To see how

the BEB can cause instability, consider a static cross

topology shown in fig.5 where connection 1 runs from

node A to node G and connection 2 runs from nodes

H to node M.

Fig. 5. A cross topology

Let us consider the case where nodes C and J are

competing in their first try to access node D (which is

shared between 2 connections). As the CWs at both

stations are very small (e.g. less than 31) the

transmission of RTSs of nodes C and J (that are

hidden from each other) may very likely overlap

partially, and as a result there will be a collision. The

collision may occur several times until the CWs are

large enough to allow either node to get control of the

medium [11]. In particular, one of the two nodes (let

us say, node C) may select a small back-off time from

its CW, while the other node (i.e., J) selects a large

value resulting in letting the C�D RTS/CTS

handshake to be successfully completed. Once the

data transfer is completed, node C resets its CW and

backs-off before initiating another handshake.

However, the remaining back-off timer at node J may

be large compared to the back-off timer at node C,

which is drawn from the range [0, CW
min

]. In that

case, nodes C and D may exchange several more

frames (belonging to connection 1) before node J’s

back-off timer reduces to zero. Whenever the back-off

timer at node J reduces to zero, node J starts

transmitting to node D. However, as the CW at node C

is equal to CW
min

 (because of previous successful

transmission) the contention is most likely to result in

a collision. After the collision, node C doubles its CW

from CW
min

whereas node J doubles its CW from a

larger value (CW >> CW
min

) as it could not succeed in

its previous transmission. Therefore, the CW at node J

is very likely greater than that at C and node C is more

likely to get control of the medium again! This

obviously brings connection 2 into TCP instability

situation as connection 2 has been starved during this

period and is unable to send its data to the destination.

Even worse, this process (i.e., several packet

transmissions from connection 1) may repeat several

times if the J�D RTS/CTS handshake starts around

B

C

D

E

F

A

G

I

J

K

L

H

M

C
o
n
n

e
ctio

n
 2

Connection 1

 4

the same time as B�C or E�F RTS/CTS handshakes as

well; as in all cases node D will still be reserved by

connection 1.

Figure 6 shows the achieved throughput by connection 1

and 2 using UDP and static topology in a cross topology.

The results fully supports the above argument and

confirms that the inter-flow instability experienced by one

or more connections in multihop ad hoc networks is

mainly (but not exclusively) due to the BEB algorithm used

in 802.11 MAC. In particular, as we have showed in [12],

the inter-flow instability problem becomes more severe

when TCP is used over 802.11. This is because medium

contention results to considerable number of link layer

packet drops and therefore false trigger of TCP congestion

control algorithm which can result to even more instability

experienced by one or more connection(s) as described

earlier.

Fig. 6. Inter-flow instability

IV) PROPOSED SOLUTIONS

a) TCP Contention Control

To tackle the TCP intra-flow instability by controlling the

amount of network overload as discussed in section 3, we

use a novel cross layer algorithm called TCP Contention

Control (TCC) which is implemented by the TCP receiver.

The basic idea behind TCC algorithm is quite simple. In

each RTT, TCC monitors the effect of changing the

number of outstanding packets in the network on the

achieved throughput and the level of contention delay

experienced by each packet (we will shortly explain how

the contention delay is measured by TCC). Then, based on

these observations, the TCC estimates the amount of

traffic that can be sent by the sender to get a balance

between the maximum throughput and the minimum

contention delay by each connection. To achieve this,

TCC defines a new variable called TCP_Contention which

its value is determined based on the pseudo code in fig.7.

(1)

{

(1)

*
_ _ -

_

_ _

}

{

(

T h r o u g h p u t

C o n t e n t i o n

C o n

i f

 i f

M S S M S S
 T C P C o n t e n t i o n T C P C o n t e n t i o n

T C P C o n t e n t i o n

 e l s e

 T C P C o n t e n t i o n T C P C o n t e n t i o n M S S

e l s e

 i f

≥

>

=

= +

∆

∆

∆ 1)

_ 2 *

*
_ _

_

}

(_ 2 *)

_ 2 *

t e n t i o n

 T C P C o n t e n t i o n M S S

 e l s e

M S S M S S
 T C P C o n t e n t i o n T C P C o n t e n t i o n

T C P C o n t e n t i o n

i f T C P C o n t e n t i o n M S S

 T C P C o n t e n t i o n M S S

>

=

= +

<

=

Fig. 7. Pseudo code of calculating TCP_Contention

As it can be seen in the code, the calculation of

TCP_Contention depends on the value of two

parameters named DeltaThroughput and

DeltaContention. DeltaThroughput which is

calculated as in formula 3, simply compares the

amount of throughput received by the receiver in

current RTT (RTT_new) and the last RTT (RTT_old)

_

_

() *(_)

() *(_)

RTT new

RTT old

Throughput

data received RTT old

data received RTT new
=∆ (3)

To measure the DeltaContention, we assume the

presence of a new field, known as ContentionDelay in

the MAC Protocol Data Unit (MPDU) that keeps the

value of Contention Delay (CD). CD is calculated to

be equal to the time from the moment the packet is

placed at the beginning of buffer utill it leaves the

buffer for actual transmission on the link layer.

Therefore, the CD does not record the queuing delay

experienced by each packet. This is an important

feature of contention delay as it helps the TCP to

distinguish between network congestion losses and

network contention losses and therefore react properly

as we explain later in this section. Then each packet

alongside the connection records the CD experienced

in each node and add the new CD to the

ContentionDelay field. In this manner, the total

contention delay experienced by each packet along the

path are collected at the MAC layer and are delivered

to the TCP receiver. The TCP receiver then calculates

the Contention Delay per Hop (CDH) by dividing the

CD by total number of hops traversed by that specific

packet. Finally the receiver derives the Average

Contention Delay per Hop (ACDH) by calculating the

mean value of CDH received during one RTT. Having

the value of ACDH, the DeltaContention is calculated

as the value of ACDH in current RTT (ACDHRTT_new)

divided by the ACDH measured in last RTT

(ACDHRTT_old)

_

_

RTT new

RTT old

C ontention

A C D H

AC D H
=∆ (4)

We should also note that because of TCP Delayed

ACK algorithm which generates an ACK every other

received segment, we set the minimum

TCP_Contention to 2*MSS to make sure at least 2

segments are in the network and can trigger the

transmission of TCP ACK at the receiver without

waiting for maximum ACK delay timer to expire.

Having calculated the TCP_Contention by TCC, the

important question that needs to be answered now is

how we propagate the value of TCP_Contention

(which is calculated by the receiver) back to the

sender. To do that, let us recall from section 2 in

which we mentioned the TCP sender cannot have a

number of outstanding segments larger than the rcwnd

which is advertised by its own receiver. By default,

the TCP receiver advertises its available receiving

buffer size, in order to avoid saturation by a fast

connection (flow control). We propose to extend the

use of rcwnd to accommodate the value of

TCP_Contention in order to allow the receiver to limit

 5

the transmission rate of the TCP sender also when the path

used by the connection exhibits a high contention and

frame collision probability. Therefore, when TCC is used,

the new value of rcwnd becomes the minimum of

TCP_Contention and the available buffer size in the

receiver (available_receiver_buffer).

rwnd = min { available_receiver_buffer , TCP_Contention } (5)

It is important to note that the value of TCP_Contention in

every other RTT. In between of each change, the

TCP_Contention remains fixed to make sure the packets

received by the receiver are sent into the network after the

sender has applied the changes imposed by the receiver in

the last RTT.

b) Fair Backoff Algorithm

To address the inter-flow instability we propose a new

scheme called Fair Backoff Algorithm (FBA) that aims to

tackle the instability encountered by multiple flows

sharing the channel while avoiding any control message

exchange between competing nodes. This adds great

advantage to make the algorithm practical and as simple as

possible. Since the contention window is the main

parameter used in each node to access the channel, we

have defined three different stages in each node using FBA

(figure 8).

Fig. 8. Different node stages in a FBA scheme

Normal: this stage is entered when the station firstly has

data to send in its buffer and secondly it has either

recovered back from a failed channel access or it has failed

to gain the channel after a successful transmission. The

main purpose of this stage is two-fold. It first improves

short-term fairness and thus instability as we will explain

later in this section. Secondly, it decreases the number of

collisions between contending nodes by assigning

relatively large CW in this stage.

Restrictive: following a successful channel access in the

Normal stage, the node enters a Restrictive stage where the

probability of node’s channel access decreases with

respect to the number of consecutive channel access events

and increases with its buffer size. This stage has been

designed to force the successful nodes to release the

channel in favor of others while giving higher priority to

the congested node (such as node D in figure 1) compared

to non-congested ones.

Greedy: if the node is unsuccessful after choosing its

initial back off at Normal stage, it will enter the Greedy

stage where the station takes high priority to access the

channel by choosing relatively smaller contention window

compared to successful stations. This stage is included to

prevent nodes from getting starved while avoiding

experience further collisions by the station.

Each node then chooses an appropriate CW following

the rule given in equation (6) in each stage.

min

min

min

CW * Tradeoff_co Normal

CW= CW * [1+Success*(1-Buffer_co)] Restrictive

CW * Failed Greedy

 (6)

Here Success and Failed are the number of

consecutive successful and consecutive failed channel

access tries (and not necessarily failed transmission

try) seen by each node, respectively. We have also

defined two other variables called “Tradeoff

Coefficient” (Tradeoff_co) and “Buffer Coefficient”

(Buffer_co) which are both critical to the performance

of the algorithm.

Tradeoff_co is an integer number between 1 (i.e.

CW= CWmin) and 33 (i.e. CW=CWmax). It addresses

the high probability of collisions between stations

that are in Normal stage by assigning relatively large

contention windows to such nodes. This will firstly

result in smaller number of packet collisions and

secondly will improve short-term fairness as it gives

immediate equal opportunity to nodes coming from

different stages regardless of their prior stage. On the

other hand, a large value of Tradeoff_co will result to

greater number of idle slots in the channel which

obviously degrades the achieved throughput.

Therefore, the value of Tradeoff_co can be seen as the

tradeoff between the achieved fairness and the

throughput. As we concluded in [13], the Tradeoff_co

value of 10 shows to satisfy the objectives of

introducing Tradeoff_co in the system.

The next parameter is Buffer_co which is a number

between 0 and 1 and gives higher priority to nodes

who are situated in a more congested area of the

network. To understand the idea behind Buffer_co in

the restrictive stage, consider again figure 5 where

ideally the probability of accessing channel by node D

should be higher than other relaying nodes as D is

routing packets from 2 connections. We define

Buffer_co as below:

min

min

min max

max

max

 0 Buffer<=Thresh

Buffer -Thresh
Buffer_co= Thresh <Buffer<Thresh

Thresh -Thresh

 1 Buffer>=Thresh

 (7)

 where Buffer is the current number of packets inside

the MAC buffer; Threshmax and Threshmin are chosen

to be 20% and 80% of the maximum buffer size,

respectively
1
. It should be noted that to measure the

contention around each node we use Buffer_co. This

is because to a large extent, the amount of contention

around each node can be reflected in its buffer

occupancy ratio.

V) RESULTS
The simulations were performed using OPNET

simulator [15].The transmission range in each node is

1 - These parameters were chosen following the RED [14]

algorithm

 6

set to 100m. The data rate is set to 2Mbps and the channel

uses free-space with no external noise. Each node has a 20

packet MAC layer buffer pool and in all scenarios, the

application operates in asymptotic condition (i.e., it always

has packets ready for transmission). Nodes use DSR as the

routing protocol. In transport layer, TCP NewReno flavor

is deployed and the TCP advertised window is set its

maximum value of 64KB so the receiver buffer size does

not affect the TCP congestion window size. TCP MSS size

is assumed to be fixed at 1460B. RTS/CTS message

exchange is used for packets larger than 256B (therefore

no RTS/CTS is done for TCP-ACK packets). The number

of retransmission at MAC layer is set to 4 for packets

greater than 256B (Long_Retry_Limit) and 7 for other

packets (Short_ Retry_Limit) as has been specified in

IEEE 802.11 MAC standard. All scenarios consist of

nodes with no mobility.

a) Cross Topology

To verify the performance of the proposed algorithms

(TCC+FBA), we first use a cross topology showed in

figure 5 with the change that while connection 1 runs from

the beginning of the simulation, connection 2 start time is

set to 300 seconds. Our main goal of conducting this

simulation is to show the effect of the intra-flow instability

(from start time to time 300) and the inter-flow instability

(from time 300 seconds to the end of simulation) and show

how TCC and FBA can alleviate each problem,

respectively. Fig.9 depicts the throughput seen by

connection 1 over the simulation time. It can be easily seen

that in default TCP and 802.11, until time 300 seconds, the

inter-flow instability causes frequent TCP throughput drop

to zero. Also it is obvious the instability becomes more

severe, as soon as connections 2 starts at time 300 where

due to intra-flow instability connection 1 rarely gain access

to the channel. On contrary, using TCC + FBA eliminates

both intra-flow and inter-flow instability to a great extent

and result into more smooth and stable TCP throughput

during simulation time.

Fig. 9. TCP throughput in a cross topology

To further illustrate the effectiveness of TCC and FBA in

addressing the problems explained in section 3, fig.10

depicts the smooth average number of packets buffered in

all nodes and fig.11 shows the Jain’s fairness index
1

respectively. This is because as explained in section 3, the

former graph is linked to the intra-flow instability and can

be used to assess the effectiveness of TCC while the latter

1
 - The Jain’s fairness index graphs in this paper are

calculated using the fairness sliding window technique

described in [16]

can be interpreted as the inter-flow instability and

hence be used to evaluate the FBA. It can be seen

from fig.10 that while in default operation of TCP and

802.11, on average 2.4 packets are queued in each

node, the number declines to 1.3 when TCC and FBA

are introduced. On the other hand, in default settings,

the average queue size experiences a sharp increase

when connection 2 starts at time 300, while the

number of buffered packets almost is unchanged in

the new algorithm. This confirms the TCC is

efficiently controlling the amount of outstanding data

in the network regardless of number of contending

connections. Similarly, fig.11 suggests the

introduction of FBA has magnificently improved both

short term (small sliding window) and long term

(large sliding window) fairness by giving equal

chances to both connections to access the channel and

therefore guarantees smooth and stable TCP

throughput for both connections.

Fig. 10. Average number of packets buffered in all nodes

in cross topology

Fig. 11. Fairness Index in a cross topology

b) Grid Topology

To further verify the performance of the TCC and

FBA algorithms, we used a grid topology in fig.12

Fig. 12. 4x4 Grid topology

Fig.13 and Fig. 14 show the average number of

packets buffered in all nodes and the fairness index

measured between all four connections, respectively.

 7

Fig. 13. Average number of packets buffered in all nodes in a

grid topology

Fig.14 Fairness Index between 4 connections in grid topology

The results show that in scenarios with higher number of

interacting TCP flows and therefore higher contention, the

TCC + FBA still outperforms the default operation of TCP

and 802.11.

To show the TCP stability improvements using the

proposed algorithms in a grid topology, Table 1 compares

the aggregated throughput, total number of TCP

retransmissions, average RTT and average of RTT

standard deviations for all connections.

Table 1- TCP measurements in a grid topology
 Default TCC+FBA

Aggregated TCP Throughput (Bytes/sec) 42347 51385

Total number of TCP retransmissions 1535 345

Average RTT (sec) 0.2425 0.1021

Average of RTT standard deviations 0.2524 0.0826

It is obvious that the introduction of TCC+FBA has

resulted into higher and smoother throughput and end-to-

end delay compared to default TCP and 802.11. In

particular, it is interesting to note that the RTT has been

almost halved thanks to TCC that tries to minimize the

unnecessary network load and therefore decreasing the

contention and queuing delay experienced by individual

packets in the network.

VI) CONCLUSION AND FUTURE WORK
In this paper, we addressed the TCP instability by carefully

tracking the chain of events occurring between link layer

and TCP. We divided the TCP instability problem into

intra-flow and inter-flow instability where the former

instability is caused by the interaction of nodes belonging

to the same TCP connection while the latter happens when

nodes belonging to different connections interact. Based

on that, we proposed two separate solutions named TCC

and FBA to tackle the intra-flow and inter-flow instability,

respectively. The main characteristic of TCC was to

control the amount of outstanding data in the network and

hence alleviate intra-flow instability by monitoring the

level of contention in the link layer and achieved

throughput in the transport layer. On the other hand, FBA

addressed the inter-flow instability by improving the

channel access fairness between contending TCP

flows. As the initial results obtained from a cross and

a small grid topology were promising, in future we

plan to extend our simulations to a more general

scenarios with larger number of TCP flows in a

medium to large scale random topology.

References

 [1] "IEEE Standards for Wireless LAN Medium

Access Control (MAC) and Physical Layer

(PHY),Part 11:Technical Specifications" .1999

 [2] Z. Fu, X. Meng, and S. Lu, "How Bad TCP Can

Perform in Mobile Ad Hoc Networks", IEEE

Symposium on Computers and Communications,

2002

 [3] Z. Fu and others, "The Impact of Multihop

Wireless Channel on TCP Performance," IEEE

Transactions on Mobile Computing, vol. 4, no. 2,

pp. 209-221, 2005.

 [4] K. Nahm, A. Helmy, and C.-C. J. Kuo, "TCP Over

Multihop 802.11 Networks: Issues and

Performance Enhancement", MOBIHOC, 2005

 [5] X. Yu, "Improving TCP Performance Over

Mobile Ad Hoc Networks by Exploiting Cross-

Layer Information Awareness", MobiCom, 2004

 [6] P. C. Ng and S. C. Liew, "Re-Routing Instability

in IEEE 802.11 Multi-Hop Ad-Hoc Networks",

29th Annual IEEE International Conference on

Local Computer Networks, 2004

 [7] W.Stevens, "RFC 2001 - TCP Slow Start,

Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms,".Technical Report,

Jan.1997.

 [8] M.Allman, V.Paxson, and W.Stevens, "RFC 2581

- TCP Congestion Control,".Technical Report,

Apr.1999.

 [9] S.Xu and T.Saadawi, "Does the IEEE

802.11MAC protocol work well in multihop

wireless ad hoc networks", 39 ed pp. 130-

137.2001

 [10] C. Ware and others, "Unfairness and Capture

Behaviour in 802.11 Adhoc Networks", IEEE

International Conference on Communications,

2000

 [11] Zhifei Li, Sukumar Nandi, and Anil K.Gupta,

"Modeling the Short-Term Unfairness of IEEE

802.11 in Presence of Hidden Terminals,"

Accepted to Appear in Elsevier Performance

Evaluation, 2006.

 [12] E Hamadani and V Rakocevic, "Evaluating and

Improving TCP Performance Against Contention

Losses in Multihop Ad Hoc Networks",

Marrakech, Morocco, 2005

 [13] E Hamadani and V Rakocevic, "TCP Contention

Control: A Cross Layer Approach to Improve

TCP Performance in Multihop Ad Hoc

Networks", 5th International Conference on Wired

/ Wireless Internet Communications, 2007

 [14] S. Floyd and V. Jacobson, "Random Early

Detection Gateways for Congestion Avoidance,"

IEEE/ACM Transactions on Networking, vol. 1,

no. 4, pp. 397-413, 1993.

 [15] OPNET simulator, http://www.opnet.com

 [16] C. E. Koksal, H. Kassab, and H. Balakrishnan,

"An Analysis of Short-Term Fairness in Wireless

Media Access Protocols", Proceedings ACM

SIGMETRICS, 2000

