
978-1-4244-2677-5/08/$25.00 ©2008 IEEE  1 of 7 

COMPLEXITY REDUCTION OF MARKOV CHANNEL MODELS FOR WIRELESS NETWORKS 
USING GRAPH THEORY 

Hassaan Khaliq Qureshi, Khurram Shahzad, Syed Ali 
Khayam                                        

School of Electrical Engineering & Computer Science
National University of Sciences & Technology 

(NUST) Rawalpindi, Pakistan.  

 

Muttukrishnan Rajarajan, Veselin Rakocevic 
School of Engineering and Mathematical Sciences 

City University, London, UK. 

ABSTRACT 

Accurate simulation and analysis of wireless networks are 
inherently dependent on accurate models which are able to 
provide real-time channel characterization. High-order 
Markov chains are typically used to model errors and 
losses over wireless channels. However, complexity (i.e., 
the number of states) of a high-order Markov model in-
creases exponentially with the memory-length of the un-
derlying channel. In this paper, we present a novel graph-
theoretic methodology that uses Hamiltonian circuits to 
reduce the complexity of a high-order Markov model to a 
desired state budget. Our trace-driven performance evalu-
ations for real wireless local area network (WLAN) and 
wireless sensor network (WSN) channels demonstrate that 
the proposed Hamiltonian Model, while providing orders 
of magnitude reduction in complexity, renders an accuracy 
that is comparable to the Markov model and better than 
existing reduced state models. 

 

I. INTRODUCTION 

Due to a lack of available infrastructure to perform realis-
tic wireless experiments, system-level simulations are used 
to evaluate the performance of emerging wireless proto-
cols and services. An accurate model of the wireless chan-
nel is an important component of such simulation-based 
performance evaluation. In the past three decades, channel 
error modeling techniques have been used extensively to 
improve the design of communication channels and the 
protocols that operate on these channels [1]. Using an ac-
curate channel model, one can simulate the channel and 
can gain insights into the channel’s underlying behavior. 
More importantly, an accurate and low-complexity chan-
nel model can be used to tune critical parameters of net-
work protocols and applications at design time and in real-
time. Lastly, a low-complexity channel model also allows 
real-time channel characterization and prediction which is 
required by rate adaptive protocols and applications. 

In the channel modeling context, stochastic models have 
gained significant research attention [2], [3], [4]. In par-
ticular, high-order Markov channel models have been 

shown to be quite accurate in modeling link layer bit-
errors and packet losses [1], [2], [5], [6], [7]. Unfortunately 
the complexity of Markov models increases with their 
memory length and, consequently, the viability of using 
Markov models in resource-constrained wireless environ-
ment is severely limited. Thus, accurate approximations of 
high-order Markov channel models are needed for wireless 
environments.  

Many models have been proposed in recent literature to 
reduce the complexity of high-order Markov chains [6]. 
While there exists a clear tradeoff between complexity and 
accuracy (lower the model complexity, lower the accu-
racy), existing low-complexity channel models (with the 
exception of the bipartite model [7]) reduce the channel 
model’s complexity to a fixed level and therefore do not 
cater for the emerging heterogeneous communication de-
vices; for instance, on a given channel, high-end wireless 
devices (e.g., desktop and laptop computers) can afford 
higher complexity channel models than low-end devices 
(e.g., PDAs and smart phones.) To cater for such device 
heterogeneity, we need channel models that can adapt their 
complexity to an arbitrary level in accordance with the 
resources available at a wireless device.  

In this paper, we propose a new variable-complexity wire-
less channel model referred to as the Hamiltonian Model 
(HM). The HM reduces the complexity of high-order Mar-
kov channel models by identifying and aggregating Hamil-
tonian circuits present in the states of the Markov chain. 
Given a desired complexity budget in terms of the total 
number of Markov states, the proposed model identifies a 
Hamiltonian circuit in the Markov chain, finds cycles of 
the needed complexity, and then aggregates these cycles 
into odd and even states based on the number of total 
states present in those cycles. 

The performance of the proposed model is compared with 
the Bipartite Model (BM) of [7]. The performance charac-
teristics of both models are evaluated using a comprehen-
sive dataset of actual traces collected in two different envi-
ronments: (i) 802.11 MAC layer bit errors at 5.5 Mbps; (ii) 
802.15.4 MAC layer bit errors at 250 Kbps. We compare 
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the models’ accuracies by measuring their closeness to the 
actual wireless channel traces using an information-
theoretic Kullback–Leibler-based divergence measure and 
by comparing the Cumulative Distribution Functions 
(CDF) of bit errors. Our results demonstrate that HM has 
significantly higher modeling accuracy than BM. 

The rest of this paper is organized as follows. Section II 
describes the related work in this area. Section III provides 
the background that is required to understand the contribu-
tion of this paper. Section IV describes error trace collec-
tion on Wireless Sensor and Local Area Networks. Section 
V describes the proposed Hamiltonian model. Section VI 
outlines performance evaluation of the HM model and 
compares its performance with the BM model. Section VII 
summarizes key conclusions of this paper. 

II. RELATED WORK 

Some previous studies have proposed methods to reduce 
the complexity of high-order Markov models [2], [6], [7]. 
In [6], guidelines were proposed to accurately model 
Markov based wireless channels and a constant complexity 
probabilistic model was proposed. In [8], authors showed 
empirically that low complexity hierarchical and hidden 
Markov models cannot characterize the bit error processes 
and proposes to employ high-order Markov chains for ac-
curate channel characterization. These studies, however, 
resulted in models with fixed, non-scalable complexities.  

Since complexity and accuracy of a model generally ex-
hibit a direct proportionality relationship, we argue that, in 
view of the heterogeneity of contemporary wireless de-
vices, a model should be able to scale its complexity in 
accordance with the complexity that can be afforded at a 
wireless device. More specifically, given a complexity 
budget (for instance, in terms of number of model states,) a 
scalable channel modeling algorithm should be able to 
produce a channel model to satisfy that budget. We are 
only aware of two studies ([2] and [7]) which approach the 
wireless channel modeling problem in this light. 

Chen and Rao [2], [3] used the lumpability framework to 
reduce the order of a Markov channel model. However, the 
lumpability conditions place very stringent constraints on 
the transition probabilities of a Markov chain. These con-
straints are generally not satisfied by real-life wireless 
channel models. Therefore, we do not compare perform-
ance of our proposed technique with lumped Markov 
chains. 

Willig [7] proposed a scalable-complexity Bipartite Model 
for wireless channels. The bipartite model uses the notion 
of a binary indicator sequence and divides the sequence 
according to its burst order. Based on the burst order, the 
image of good and bad burst Probability Mass Functions 
(PMFs) are divided into burst intervals. A transition matrix 

is then computed for transiting between the burst intervals. 
We compare the performance of our proposed model with 
the BM. 

III. BACKGROUND AND NOTATION 

In this section we present brief background about the bi-
nary nature of traces and then most commonly used Mar-
kov chains of order K  and the important notations used in 
this paper.  

REPRESENATION OF BINARY WIRELESS 
TRACES 

Traces collected over a wireless medium generally repre-
sent two states. One state is the good state and the other 
state is the bad state or the lossy state. Hence we can char-
acterize wireless traces generally as a binary time se-

ries{ }lx(n) ,n=1  where { }∈x(n) 0,1  and l is the length of 
the error trace.  

Without loss of generality, throughout this paper we use 
zero to represent an error-free bit and one for a bit in error. 
The sequence of these bits form a alternating bursts of ze-
ros and ones. If the burst consists of number of zeros then 
we refer to it as a good burst and if the burst consists of 
one’s then we call it a bad burst. The trace can hence be 
represented as pairs of good and bad bursts: 

( ) ( ) ( )N ,G , N ,G ,..., N ,G ,n n1 1 2 2 where nN and 
nG  rep-

resent the length of the thn good and the bad bursts, respec-
tively [1]. Many channel modeling studies have showed 
that this binary representation is suitable for representing 
channel traces [2], [7], [8], [9]. 

THK ORDER MARKOV CHAINS 

A Markov chain of memory K  is a discrete time random 
process whose probabilities for going to future states at a 
given present state are independent of the past states. For a 
memory length of K , the Markov chain comprises of K2  
possible combinations of K  consecutive bits. If we have a 
set of states K  which consists of { }S= S ,S ,S ,…,Sn1 2 3 , 

then the process starts in one of these states and moves 
successively from one state to another. If we define Si  as a 

current state then for moving to next state Sj , the prob-

ability will be denoted byPij . The probabilities are called 

transition probabilities and are computed by sliding bit by 
bit a K  bit memory window over the data [10]. In this pa-
per, Markov chain corresponding to even (odd) decimal 
numbers is referred as even (odd) states. Using the above 
notation, an example 3-rd order Markov chain is shown in 
Figure 1; only transitions to even states are shown. If the 
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Markov chain is in an even state, the last received bit (i.e., 
the least significant bit position in the memory window) 
must be error-free. Similarly, a Markov chain in the odd 
states implies that the last bit was corrupted. Due to the 
binary nature of the underlying wireless bit-error process, 
each Markov chain state can transit to only two other states 
[11]. This is due to the Markov chain definition in which 
the memory-window at each time instance is left-shifted 
by one bit and a one or a zero bit is added to the least-
significant bit position. Thus from state S , a Markov chain 
can transit either to even state ( ) K2S mod2  or to odd state 

( ) K2S+1 mod2 . Since the sum of all transitions from a 
Markov state must sum to one, for any state S  we have 

( ) ( )K KP =1-P2S+1 mod2 2S mod2 . It should also be em-

phasized that once a corrupted bit is received, a K -th or-
der Markov chain will return to state 0 (i.e., the no error 
state) only from state K-12  after K  transitions; see in 
Figure 1 that at state 3-12 = 4 , the Markov chain wraps 
around to state 0. 

IV. DATA COLLECTION 

To perform realistic performance evaluation over opera-
tional channels, we collected a comprehensive dataset of 
wireless error traces over two different channels: 1) an 
802.15.4 WSN channel, and 2) an 802.11b WLAN chan-
nel. All traces were collected at the MAC layer after 
physical layer processing; MAC layer channels are re-
ferred to as residual channels in prior literature [4], [6]. 
This section describes the data collection and some pre-
liminary trace statistics. 

802.15.4 DATA COLLECTION 

We used Crossbow’s Micaz motes [12] to collect residual 
bit-error traces over wireless sensor networks. These motes 
operate on the ISM frequency band of 2.4 GHz and sup-
port a peak data rate of 250 Kbps. Sensor motes were run-
ning the open-source TinyOS operating system [13].  We 
modified the source code of TinyOS applications to dis-
able the MAC layer checksum feature at the receiver. 
Hence, corrupted packets were not dropped in a receiver’s 
kernel, and were passed to a data logging application. The 
application logged all packets on an attached computer 
through the serial port. We collected the traces at four dif-
ferent locations or setups. These setups are named accord-

ing to their geographical location as shown in Figure 2. 
The light-shaded mote in Figure 2 is the base station which 
received and logged data, while the remaining motes are 
sending motes which transmitted packets with predefined 
contents to the base station. In each experiment, one 
sender transmitted unicast data to the base station and the 
other senders were inactive; i.e., in each trace collection, 
there was no channel contention and collisions as there 
was only a single sender and a single receiver. While per-
forming experiments, motes were kept stationary. In order 
to collect traces with varying error behaviors, the distance 
between the motes and the base station was varied from 5 
to 12 meters. The senders transmitted 20-byte fixed-sized 
frames at a rate of 10 frames per second.  

 We first performed the experiments by having a direct line 
of sight (LoS) between the sender and the base station but 
the error rates observed in those experiments were too low 
to warrant further analysis. Therefore, throughout this pa-
per, we focus on non-LoS traces. The average number of 
frames per trace was approximately 31,000 frames. Thus, 
the average length of each trace was approximately 5 mil-
lion bits [4].  For evaluation of HM and BM we used five 
traces for each setup and a total of 20 traces for all setups. 
While we collected more actual wireless sensor network 
traces but the trends observed in 20 traces (5 per setup) are 
representative of the trends that we observed in other 
traces. 

802.11 DATA COLLECTION 

For 802.11b traces, we repeated the same process as the 
802.15.4 traces using the topology shown in Figure 3 and 
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Figure 1:  A 3-rd order (memory length=3) Markov chain. 

 
Figure 2: Setup for 802.15.4 bit error traces. 

 

 
 

Figure 3: Setup for 802.11b bit error traces. 
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AP (access point) was operating in Distributed Coordina-
tion Function (DCF) mode and three wireless stations 
communicating in the infrastructure network configura-
tion. One of the stations was operating as the server and 
the remaining two as multicast clients. All wireless sta-
tions were Linux boxes using Dlink wireless cards with 
Prism2 chipset device drivers [14]. The server was station-
ary and transmitted a continuous stream of predetermined 
patterns to the multicast clients. Traces were generated for 
each bitrates at different stationary client positions with 
and without LoS. It was observed that, with clear LoS, the 
error rate at all bitrates was extremely low. Such excellent 
performance deemed further LoS study inconsequential. 
Hence, both clients were positioned in a separate room 
across two walls in order to simulate a more realistic busi-
ness/classroom/home-network wireless setup and forced to 
transmit non Line of Sight frames of 512-bytes at a physi-
cal layer data rate of 5.5Mbps. The average length of each 
trace was approximately 6 million bits. We collected 3 
traces at different locations for 5.5Mbps. We also calcu-
lated the traces at 11 Mbps but due their non-Markovian 
behavior we do not use those traces in this paper. 

TRACE BIT ERROR RATE (BER) STATISTICS 

TABLE I shows the average bit error rates of 802.15.4 and 
802.11b original traces, respectively. It can be seen that 
highest bit error rate was observed for Room 3 as in this 
case the sender and receiver were at the farthest distance 
from each other. Room 2 has the lowest bit error rate as in 
this case the sender and receiver were at the closest dis-
tance from each other. The bit error rate of Upper floor and 
stairs are similar because of the small distance variation 
between these setups. In case of 802.11b where the re-
ceiver’s were kept stationary, the average bit error rate 
observed at different locations was 0.003. 

V. THE HAMILTONIAN WIRELESS CHANNEL 
MODEL 

Let a K -th order Markov chain be represented as a K  ver-
tex connected digraph ( )G= V,E  with positive edge wei- 

ghts. Markov chain of any order forms a connected graph 
as long as both the two state transitions probability in each 
Markov state are greater than zero. We observed that 
Markov chains exhibit many interesting graph-theoretic 
properties which can be used to reduce the complexity as-
sociated with higher order Markov chains and those prop-
erties can be used to develop a scalable model. A graph in 
which we can traverse each vertex or node exactly once 
forms a Hamiltonian circuit. A Hamiltonian circuit can be 
identified in Markov chains of any arbitrary order. By us-
ing this property, we can further arrange the states accord-
ing to the nodes traversed, which gives a easy method for 
aggregating states that comprise the Hamiltonian circuit. 
Since a cycle of arbitrary length can be identified in the 
Markov digraph, the states of the circuit can be aggregated 
to a desired state budget. These characteristics are a conse-
quence of the Markov chain construction and are therefore 
present at all orders of the Markov chains.   

Moreover, the Hamiltonian circuit formed in the Markov 
digraph clearly identifies the good and bad nodes which 
remain separated during state aggregation. This is a very 
important property because it is generally undesirable to 
merge good (even) and bad (odd) states together [7]. After 
Hamiltonian state aggregation, the merged states probabili-
ties are aggregated and normalized into one aggregate state 
of the low-complexity model. This graph-theoretic realiza-
tion helps us in reducing the complexity in a finite time 

TABLE I: AVERAGE BIT ERROR RATE OF ACTUAL 
TRACES  
Setup BER 

Room2 0.00085689 

Room3 0.01519663 

Stairs 0.00737452 

802.15.4 

Upper floor 0.00735198 

802.11b Location 1,2,3 0.003067968 

 

 
a) Markov chain of order K = 4 . 

 
b) Hamiltonian circuit. 

 
c) Hamiltonian circuit arranged by vertices traversed 

 
d) Hamiltonian circuit reduced toK = 3 . 

 
Figure 4: An example of complexity reduction using the 

Hamiltonian Model. 
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and in a simple and easy manner.  In the following discus-
sion, we provide an example of applying the proposed 
Hamiltonian Model based state aggregation on a Markov 
chain of orderK = 4 . 

A Markov chain of order K = 4   is shown in Figure 4[a].  
If we start from state zero and start traversing all the other 
vertices, the order of traversed vertices in the consequent 
Hamiltonian circuit will be: 0-1-3-7-15-14-13-11-6-12-9-
2-5-10-4-8-0. This is depicted with dotted line or edges in 
Figure 4[b]. After finding a Hamiltonian cycle we ob-
served that there are n cycles in the graph.  Based on the 
cycles still left in the graph we applied our algorithm to 
work in such a way to find a cycle exactly aggregating the 
graph into K = 3  states. This procedure is shown in 
Figure 4[c]. We first found a cycle consisting of 5 vertices 
(7, 5, 14, 13, 11,) and then again we found another edge 
coming from vertex 5 towards vertex 11 which was al-
ready merged. Hence, we actually looked for a cycles con-
sisting of ten nodes and then we separated the cycle into 
odd and consecutive even nodes. Figure 4[d] shows the 
final transformation from K = 4  toK = 3 . We then nor-
malized the probabilities of the states aggregated in odd 
and even parts. We first compressed our model from 
92 512=  to 82 256=  and then to 72 128=  and so on up 

to 32 8= . We applied the algorithm on the graph as de-
picted in the figures and at each state we generated artifi-
cial traces generated by our model. It is also possible to 
find the Hamiltonian circuit by traversing vertices different 
than the traversed vertices shown in Figure 4. For that the 
model remains the same and is still applicable in reducing 
the needed complexity. 

VI. PERFORMANCE EVALUATION 

In this section, we use the error traces to compare the per-
formance of the Hamiltonian Model with the Bipartite 
Model using Bit Error Rate (BER), Kullback-Leibler Di-
vergence (KLD) and bit error distributions.  

 

Bit Error Rate (BER) 

We calculated the BER of 802.15.4 and 802.11b synthetic 
traces generated by Hamiltonian Model and the Bipartite 
Model. TABLE 2 shows the Average BER per setup of 
Hamiltonian Model traces parameterized from actual trac-
es at K= 4  and K= 8 . It also shows the BER of Bipar-
tite Model for varying number of K -states. Comparing 
with TABLE I, it can be observed that BER of Hamiltonian 
Model (HM) traces are closer to the actual traces’ BER 
than the Bipartite Model (BM). Overall, the inaccuracy in 
BER estimates shows the opposite trends in HM and BM. 
For the HM, the inaccuracy decreases with an increase in 
the number of states. The BM, on the other hand, incurs 
more inaccuracy for higher number of states. Thus for the 
BM introducing more state does not necessarily increase 
the accuracy of the model. Typically, an increase in the 
complexity of a model (e.g., with an increase in the order 
of a Markov chain) causes the accuracy of the model to 
improve. However, for the HM model we did not observe 
this proportionality trend between complexity and accu-
racy. On the contrary, after empirically evaluating the HM 
model’s accuracy for varying state merging orders, we ob-
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Figure 5: Resister average divergence of good bursts 
versus complexity for the 802.15.4 bit error process. 
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Figure 6:  Resister average divergence of bad bursts ver-

sus complexity for the 802.15.4 bit error process. 

TABLE 2: AVERAGE BIT ERROR RATE OF SYNTHETIC 

TRACES 
Setup Number of States 

Model 
 16 256 

Room2 0.001315 0.000416 

Room3 0.022036 0.021816 

Stairs 0.010695 0.011524 
Hamiltonain_802.15.4 

 

Upper Floor 0.010517 0.014039 

Hamiltonian_802.11b Location 1,2,3 0.004328 0.005284 

Room2 0.0009345 0.0540207 

Room3 0.0032156 0.0725722 

Stairs 0.0017525 0.0453318 
Bipartite_802.15.4 

Upper Floor 0.0080524 0.1279515 

Bipartite_802.11b Location 1,2,3 0.033962 0.030718 
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served that a particular HM order provides better accuracy 
than orders above and below it. 

While the BER estimates give us an overall picture of the 
accuracy of a model, for more elaborate performance 
comparison, we need to compare the burst distributions of 
the HM and BM. To this end, we compare the good- and 
bad-bursts’ distributions of the two models in the next two 
sections. 

Kullback-Leibler Divergence (KLD) of Good- and Bad-
Bursts 

Entropy is a measure of the average number of bits re-
quired to represent all outcomes of a probability distribu-
tion. The Kullback-Leibler divergence quantifies the dif-
ference in the entropies of two probability distributions 
[15]. The KLD divergence quantifies the source-coding-
like overhead incurred by employing a model instead of 
the actual source. For two probabilities distributions p  and 
q defined over a common alphabetΨ , the KL divergence 
is defined as: 

2

p(x)
D(p || q) = p(x)log

x q(x)
∑ . 

The KLD has two shortcomings: 1) non symmetry, 2) it 
requires the two distributions to be continuous with respect 
to each other. Therefore, instead of Kullback-Leibler we 
used the KL based Resistor-Average (R) divergence meas-
ure defined as [15]:  

1 1 1
+

R(p, q) D(p q) D(q p)
= .  

For accuracy evaluation of HM and BM, we compare the 
R divergence of good- and bad-bursts distributions derived 
from actual traces and the models. The R divergence ob-
served in Figure 5, Figure 6, Figure 7 and Figure 8 at dif-
ferent states demonstrate that the HM shows results dem-
onstrating very small R values for good bursts and 
outperforms the BM. The results for R divergence of 
802.15.4 HM traces and BM are demonstrated in Figure 5. 
It shows consistently better performance with decreasing 
order of K  and renders good behavior with increasing 
state compression. Figure 6 shows the R divergence of 
bad-bursts for 802.15.4 traces generated from HM and 
BM. For bad bursts, it demonstrates very small R values 
elaborating similarity with actual traces when compared 
with BM and showing a slightly higher R divergence at 
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Figure 7: Resister average divergence of good bursts ver-

sus complexity for the 802.11b bit error process. 
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Figure 8: Resister average divergence of bad bursts versus 

complexity for the 802.11b bit error process. 
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Figure 9: Good burst length distribution for 802.15.4 bit 

error traces at K= 5 . 
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K = 5  because of high BER atK = 6 . The slight varia-
tions in bad burst R divergence values can be removed by 
averaging over more traces. Due to space constraint, we do 
not report these results. R divergences of good and bad 
bursts for the 802.11b traces are shown in Figure 7 and 
Figure 8. It can be clearly observed that at decreasing or-
der of K the HM has very small R divergence in the good 
bursts case. On the other hand, the good-bursts distribu-
tions of the BM diverge quite significantly from actual 
traces.  For bad-bursts, the R divergence of the HM is 
slightly higher than the BM. Nevertheless, both models are 
able to capture the bad-bursts behavior quite accurately. 

Cumulative Distribution Function (CDF) of Good and 
Bad Bursts 

We derive CDFs of good and bad bursts from actual net-
work traces and traces artificially synthesized by our 
model and the BM. For evaluation we took one trace per 
setup from each of the model at different memory length. 

The cumulative distribution function for good and bad 
burst length at K= 5  is shown in Figure 9 and Figure 10 
respectively. The CDF of the HM clearly follows the CDF 
of actual 802.15.4 traces for both the good and bad burst 
distributions. The CDF for K= 8  is also plotted for good 

and bad burst lengths and is shown in Figure 11 and. Fig-
ure 12. The CDF of the HM clearly follows the CDF of 
actual 802.11b bit error traces in both the good and bad 
burst length distributions respectively. However, the CDF 
of the BM renders same behavior following the CDF of 
actual 802.11b bit error traces in the case of bad burst.   

VII. CONCLUSION 

In this paper, we presented a novel algorithm to reduce the 
complexity of high-order Markov channel models to a de-
sired state budget. We performed state aggregation by 
identifying Hamiltonian Circuits in the Markov digraph. 
States in the circuit were then aggregated to a given and 
arbitrary state budget. We demonstrated that the HM pro-
vides orders of magnitude reduction in complexity and 
renders very accurate performance. 

ACKNOWLEDGMENT 

The authors would like to thank Adnan Iqbal and Junaid 
Jameel Ahmad for their helpful comments on the original 
draft of this paper. 

REFERENCES 
[1] S. A. Khayam, H. Radha, S. Aviyente, and J. R. Deller, Jr., “Markov and 

multifractal wavelet models for wireless MAC-to-MAC channels,” Elsevier 
Performance Evaluation, vol. 64, no. 4, pp. 298−314, May 2007. 

[2] A.M. Chen and R.R. Rao, “Wireless Channel Models – Coping with Com-
plexity,” Wireless Multimedia Network Technologies, Kluwer Academic 
Publishers, 271-288, 1999.  

[3] A.M. Chen and R.R. Rao, “On tractable wireless channel models,” IEEE 
PIMRC, Sep. 1998. 

[4] A. Iqbal and S.A. Khayam, “Improving WSN Simulation and Analysis 
Accuracy Using Two-Tier Channel Models,” ICC, May 2008.  

[5] A. Konrad, B.Y. Zhao, A.D. Joseph, and R. Ludwig, “A Markov based 
channel model algorithm for wireless networks,” ACM WINET, (9), 189-
199, 2003. 

[6] S.A. Khayam and H. Radha “Constant-Complexity Models for Wireless 
Channels,” IEEE Infocom, April 2006. 

[7] A. Willig. “A new class of Packet- and Bit-Level Models for Wireless 
Channels,” TKN-02-009, Telecommunication Networks Group, Technical 
University Berlin, June 2002. 

[8] S.A. Khayam and H. Radha, “Linear-Complexity models for wireless 
MAC-to-MAC channels,”ACM WINET, (11)5, 543-555. 2005. 

[9] S.A. Khayam and H. Radha, “Markov-based modeling of wireless local 
area networks,” ACM MSWIM, Sep. 2003. 

[10] C.M. Grinstead and J.L. Snell, “Introduction to Probability: Second Re-
vised Edition,” AMS, 1997. 

[11] S.A Khayam and H. Radha, “On the Impact of Ignoring Markovian channel 
Memory on the Analysis of Wireless Systems,” IEEE International Con-
ference on Communications (ICC), June 2007. 

[12] Crossbow Homepage, http://www.xbow.com. 
[13] TinyOS Homepage, http://www.tinyos.net/. 
[14] Linux-wlan Home Page. http://www.linux-wlan.org/. 
[15] T. Cover and J. A. Thomas, Elements of Information Theory, Second Edi-

tion. ISBN: 0-471-24195-4. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 75 14
9

22
3

29
7

37
1

44
5

51
9

59
3

66
7

74
1

81
5

88
9

96
3

10
37

11
11

11
85

Good burst length

C
D

F

Orignal_G

Bipartite_G_256

Hamiltonian_G_256

 
Figure 11: Good burst length distribution for 802.11b bit 
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