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® The dissemination, explanation and discussion of recent exciting results in this field
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Conformal Field Theory community, and to bring mathematicians and physicists working in
this area together.

* To act as a forum for young researchers to present their work and to become known and
integrated into the community.
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Dynamical systems in three different settings

What is the behaviour of standard quantities in dynamical
systems when they are complexified?
Three different scenarios:

@ PT-symmetry

[PT,H] =0 and P7o=9¢

@ spontaneously broken P7-symmetry

[PT,H] =0 and PTO +£ o

@ broken P7-symmetry

[PT,H|#0 and PTd+£d
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Dynamical systems in three different settings

Quantities of interest:

@ energy

E= H[u ]dx_jq{H[u

@ fixed points

@ asymptotic behaviour
@ k-limit cycles

@ bifurcations

@ chaos
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Complex KdV equation

The KdV system:

Hamiltonian:

HKdV:—§U3+%U)2( B,ve€C

equation of motion:

Ut + Buuy + yUxxx = 0

Antilinear symmetries:

PT,. : x— —X,t— —ti——iu—u forpg,veR
PT_ : X+ —X,t— —t i —i,u— —u forig,y€R
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‘P T -symmetric, spontaneously broken and broken solutions

Integrating twice:

2 6

with integration constants k¢, ko € C
traveling wave: u(x, t) = u(¢) with ( = x — ct
view this as a 2 dimensional dynamical systems:

uf = +Re [ﬁm}
ul = +Im [ﬁm}

the fixed points are the zeros of P(u):

2 c
ug = S </<;2 + KU+ ~UP — Bu3> =: AP(u)

R _
s =

I _
U =
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‘P T -symmetric, spontaneously broken and broken solutions

Linearisation at the fixed point uy:

< IZICC > = J(uP, uh

with Jacobian matrix

“c
u=us UC

:taRe[\/XW] iBRe[fF]

— ad

u—ur aImmu,/P(u)] alm[f \/ )]
f + = -

oul u=us

J(uh, U

Linearisation theorem: Consider a nonlinear system which
possesses a simple linearisation at some fixed point. Then in a
neighbourhood of the fixed point the phase portraits of the
linear system and its linearisation are qualitatively equivalent, if
the eigenvalues of the Jacobian matrix have a nonzero real
part, i.e. the linearized system is not a centre.
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‘P T -symmetric, spontaneously broken and broken solutions

The ten similarity classes for J

jieR j1 > j» > 0| unstable node
jo < j1 <0 | stable node
Jo <0 < ji | saddle point

J1 = jo, diagonal J Ji>0 unstable star node
ji<O0 stable star node

J1 = j2, nondiagonal J | j; > 0 unstable improper node
ji<O0 stable improper node

jieC Reji > 0 | unstable focus

Reji=0 | centre
Reji <0 stable focus
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Further integration:
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assume: P(u) = (u — A)3, which is possible for

ko =—— and A=

o
=®

N
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‘PT -symmetric, spontaneously broken and broken solutions (rational)

Further integration:

EVA(C—¢o) = /du\/FlTu)

assume: P(u) = (u — A)3, which is possible for

J¢] c? cd c
)\ = —— = —— = — A = —
37, KA 2/8, K2 6ﬂ2 and ﬁ
then: 1o
c v
u(Q)=— - — 5
B B —¢)?
energy:

ac? 36+ 7242 | 10c (& +3ac3) 48y (& +10a°¢3 + 5acf)
s K o (#-¢) (#-%)
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‘PT -symmetric, spontaneously broken and broken solutions (rational)

(a) PT-symmetric:c=1,5=2,y=3,A=1/2 .
(b) broken P7T-symmetry: c=1,=2+i2,v=3, A= T‘

The energy is real for (a) and complex for (b).
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A= Ry = g(ﬁA—ZC), ke = - (30-204), B = -2A
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assume: P(u) = (u — A)?(u — B), which is possible for

__h _Asa _ A b _3¢c_
=g m1=5(A-20), ke =p(30-204), B="7-24

then (with one free parameter):
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

assume: P(u) = (u — A)?(u — B), which is possible for

__h _Asa _ A b _3¢c_
=g m1=5(A-20), ke =p(30-204), B="7-24

then (with one free parameter):

U(C) = B+ (A— B)tanh? B\/A “BYA(C - go)}

linearisation: (A — B = rage’?8, \ = r,e’»)

J(A) = ( +./TaBr\ COS [%(HAB + 9)\)} F+/TaBr ) sin [%(HAB + 9,\)} )
+/Ta SN [5(0a +0))]  +y/Tasl cos [5(0ap + 60,)]

with eigenvalues (¢ /R for A< B, A\ >0o0orA> B, A <0)
, i
i = Erasrexp [Z(QAB + ex)]

. i
o = E£ragnexp {_Z(HAB‘FHA)}
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

Energy for the periodic motion for one period:

a Mo, [ A

u;  JrVaWu— Bu-A) 3 VA-B

5-%HMm
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Energy for the periodic motion for one period:
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- ET € R for P7-symmetric solution

- E1 € C for spontaneously broken P7-symmetric solution
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

Energy for the periodic motion for one period:

B du H[u] _ A
Er= p O = s Vs v

In general:

- ET € R for P7-symmetric solution

- E1 € C for spontaneously broken P7-symmetric solution
- E7 € C for broken P7T-symmetric solution

But:

sind., 03
EreR for A— i _i%
TeR AT 5sin 6, —20,/3) 0P ( "3 )
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

PT-symmetric solution:

—02f

—nal 5 4

T L T feenin (Lt e (L reretn qdln it
20 25 io is 40
Rewu Rew

(a) periodic: c=1,3=3/10,y=3,A=4,B=2, T =2/15x
(b) asympt. constant: c=1,3=3/10,y=-3,A=4,B=2
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

PT-symmetric solution:

—02f

—nal 5 4

T L T feenin (Lt e (L reretn qdln it
20 25 io is 40
Rewu Rew

(a) periodic: c=1,3=3/10,y=3,A=4,B=2, T =2/15x
(b) asympt. constant: c=1,3=3/10,y=-3,A=4,B=2
EreR
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

spontaneously broken P7-symmetric solution:

1wf L L L B F T T T T |

=1

(a) periodic: c=1,3=3,7=8,A=4+fand B=2— i for
Im (y = 0.5 black, Im(y = 0.3 green Im(y = 0.1 blue

(b) asympt. constant: c=1, = 3,y =-3forA=4 -],
B=2+iIm(y= —0.5black; A= A*, B= B*, Im(, = 0.5 blue
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

spontaneously broken P7-symmetric solution:

1wf L L L B F T T T T |

=1

(a) periodic: c=1,3=3,7=8,A=4+fand B=2— i for
Im (y = 0.5 black, Im(y = 0.3 green Im(y = 0.1 blue

(b) asympt. constant: c=1, = 3,y =-3forA=4 -],
B=2+iIm(y= —0.5black; A= A*, B= B*, Im(, = 0.5 blue
EreC
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

broken P7-symmetric solution:

020 T T T T ™

ois - Bl

mu
e
>
T
L

000 - Bl

=005 - -

o d MeE e 1
20 1 3 L

(a) periodic: A=4,B=2,c=1,8=3,7=3+} '
(b) asympt constant: A=4,B=2,¢c=1,3=3,v=-3+1,
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

broken P7-symmetric solution:

020 T T T T ™

ois - Bl

mu
e
>
T
L

000 - Bl

=005 - -

o d MeE e 1
20 1 3 L

(a) periodic: A=4,B=2,c=1,8=3,7=3+} '
(b)asympt constant: A=4,B=2,¢c=1,3=3,v=-3+1,
ETE(C
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‘P T -symmetric, spontaneously broken and broken solutions (trigonometric)

broken P7-symmetric solution:

(a) periodic solution with complex energy Er = —10.52 + i1.67
(b) periodic solution with real energy E; = —4x



Complex KdV equations
[ Jele]e]

‘PT -symmetric, spontaneously broken and broken solutions (elliptic)

assume: P(u) = (u— A)(u — B)(u — C), which is possible for

1
_357, w1 = 5 [8(42 + AC+ C?) —30(A— ©)

- /;C[scﬁ(A+C)] and stﬁC(A+C)

A =



Complex KdV equations
[ Jele]e]

‘PT -symmetric, spontaneously broken and broken solutions (elliptic)

assume: P(u) = (u— A)(u — B)(u — C), which is possible for

1
_357, w1 = 5 [8(42 + AC+ C?) —30(A— ©)

- /;C[scﬁ(A+C)] and stﬁC(A+C)

A =

then (with two free parameter):

u(¢) = A+ (B~ A)ns? B\/B_Aﬁ(g—co)

A-C
A-B
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‘PT -symmetric, spontaneously broken and broken solutions (elliptic)

PT-symmetric solution:

A=1,B=3,C=6,c=1,p0



Complex KdV equations
[e]e] o]

‘PT -symmetric, spontaneously broken and broken solutions (elliptic)

spontaneously broken P7-symmetric solution:

Tm

el

-t

(a) —64 < ¢ < 18 solid (red) and 18 < ¢ < 200 dashed (black)
(b) —200 < ¢ < 1400
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‘PT -symmetric, spontaneously broken and broken solutions (elliptic)

broken P7-symmetric solution:

a 1a [
E m E
o F—9 F

(@)A=1,B=3,C=6,c=1,3=3/10and v = 3 + 2i for
—200 < ¢ < 200;
(b)A=1,B=2+3i,C=6,c=1,3=3/10—i/10and v =3
for —200 < ¢ < 200
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Relation to quantum mechanical Hamiltonians

Reduction to quantum mechanical Hamiltonians:
For instance:

u—x, (—t k1 =0 rp=vE, [=6cg, 7=-cC

converts

2 B
2 __ 3
uc—fy</£2+/<1u+2u 5 )

into Newton’s equations for

e 15 15 3
H_E_2p+2x gx

treated in
[C. Bender, D. Brody, D. Hook, Phys. A41 (2008) 352003]
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

Soliton solutions:
Hirota’s bilinear method (u (x, t) = 122(In 7))

6~
F <7D§+DXD2)T-T:0
one soliton solution:
3yp?
Bcosh? [3(p1x — Pt + 61)]

u(x,t)=

two soliton solution:
24y Y8 o(—1) pkpS™

1 _I N2 (o142 (py —py) 2
ﬁ(P1+P2)4{2°°Sh(§(W1*772)>+9 22 (W+1ﬂ

u(x,t)=

where we abbreviated n; = pix — yp3t + ¢; for i = 1,2 with

¢y =1+coshny, ¢y =4sinhn,, ¢ =coshny +6coshn, —1, c3 =4(sinhny + sinhny)

and ¢;(n1,1,) = Cs—i(12,11)
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

PT-symmetric complex one-soliton solution

0.4 kL L L L
0o oz 04 06 08 10 o 2 4

(a) PT-symmetric solution with 3 =6, v =1, p; = 1.2 for

¢ = i0.3 blue, ¢ = i0.8 red, ¢ = i1.1 black, f = -2

(b) Broken P7-symmetric solution 8 =6,v=1+i04,p; =1.2
for ¢ = i0.3 blue, ¢ = i0.8 red, ¢ = i1.1 black t = -2
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

‘PT-symmetric complex one-soliton solution

B=6,y=1,p =12, 6=i03,
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

Complex one-soliton solution with broken P7-symmetry

B=6,v=1+i04,p =1.2,¢=i0.3,
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

We obtain a breather regaining its shape when:

u(x+Ax,t)=u(x,t+ Ay)

with
A _ 27Tpf
L (e - pf) v —2pipr (P2 PE) s
A, — 2P (3p2 — P?) v + 2mpr (3p2 — P2) v,

(p} = p?) vi — 2pipr (P? + PE) 7,

speed of the soliton:

pi (P? — 3pZ) v
Pr

V=—Z:<3p/2—/3?)%—
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

Complex one-soliton solution with broken P7-symmetry

o
=

i
1
\
I
|
i
i

L il o .
l il I N )
$ o\ y 1 7
S A /
v

-1
=10 - o

B=6,y=1+1i/2,p1 =2, ¢ =1i0.8and A; = —7/2 for different
times t = —7/2 solid (blue), t = —1 dashed (red), t =0
dasheddot (orange), t = 0.7 dotted (green), and t = 7/2
dasheddotdot (black) (a) real part; (b) imaginary part
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

‘PT-symmetric two soliton solution

.20 r

0.20

6=6,vy=1,p1 =12, po =22, ¢4 =i0.1 and ¢, = i0.2. (a)

t = —2 solid (blue), t = —0.2 dashed (red), t = 0.2 dotted
(black); (b) t = 0.3 dotted (black), t = 0.8 dashed (red), t = 2.0
solid (blue)
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

Two soliton solution with broken P7-symmetry

I T TT T P
Lu® -
4 a3 H
i ot
) P
. & ‘\
! 2 -ﬂ. '
= H 5
E . E I
. £
\\ e ;-’5’
o
1
= =, ..‘.‘ -
"'v,‘ ,,,,
T s T
[ 4 o 6
Re Ren

B=6,v=1+in/8, p; =2(2/3)"/3, p =2, ¢; = i0.1 and
¢o = i0.2. (a) t = —4 solid (blue), t = —3.5 dashed (red),

t = —2. dotted (black); (b) t = 0.7 solid (blue), t = 2 dashed
(red), t = 8 dotted (black)

Al =-3,A%=-2,
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

‘PT-symmetric complex two-soliton solution

Real partfor: 6 =6,vy=1,py =12, po =22, ¢4 = i0.1,
¢po =10.2
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

Complex two-soliton solution with broken P7-symmetry

Real part for: 3 =6,y =1+ ir/8, py = 2(2/3)'/3, po = 2,
¢1 =10.1 and ¢, = i0.2
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‘P T -symmetric, spontaneously broken and broken solutions (solitons)

Energy for the one-soliton:

36+°p3

E1S:_ 5ﬂ2

Energy for the two-soliton:
@ P7T-symmetric case:
E>s =~ —10.8049 = Eq5(p1) + E1s(p2)
@ Broken P7T-symmetric case:

Eps ~ —7.8876 — i9.4327 = Eq5(p1) + Eis(P2)



Deformations of the KdV equation

General deformation prescription:
‘PT -anti-symmetric quantities:

PT : p(x, 1) — —o(x, 1) = b :o(x,t) — —ilip(x, t)]°

Two possibilities for the KdV Hamiltonian

6T Uy = Uy e i= —i(iuy)® or 67 U U= —i(iu)F,
such that

+_7ﬁ 3 0 a e+ - _ g cnet2 , V2
H = 6u 1+€(/ux) H; (1+5)(2+5)(IU) +2ux

with equations of motion

Ut + BuUly + YUxxx,e = 0 Ut + iBU-Ux + yUxxx =0
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The H:-models
Integrating twice yields now:

U = oxp | s (1 = 2 4| PP
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The H-models

The H:-models
Integrating twice yields now:

U’ =exp [2(€+ 1)(1 s+4n)] [AP(w)] T+
Again we can construct systematically solutions by assuming:
P(u) = (u— A3,

P(u) = (u—A)(u- B),
P(u) = (u—A)(u-B)(u-C)

but now we have branch cuts.

For instance:



Deformations of the KdV equation
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The H-models

Broken P7-symmetric rational solutions for HT/S

Different Riemann sheets for A= (1 —1i)/4,c=1,5=2+2i
andy =3

(a) u(1)

(b) u®



Deformations of the KdV equation
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The H-models

‘PT-symmetric trigonometric/hyperbolic solutions

A=4B=2c=1,=2andy=3
() H*,
(b) H*,



Deformations of the KdV equation
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The H-models

Broken P7-symmetric trigonometric solutions for HL /2

(a) Spontaneously broken P7-symmetry with A =4 + J,
B=2-2i,c=1,3=3/10andy=3

(b) broken P7-symmetry with A=4,B=2,c=1, 5=3/10
andy =3+



Deformations of the KdV equation
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The H-models

Elliptic solutions for "

1/2°

(a) PT-symmetricwithA=1,B=3,C=6,5=3/10,y=-3
andc=1

(b) spontaneously broken P7-symmetry with A =1+,
B=3-i,C=6,3=3/10,y=-3andc =1



Deformations of the KdV equation
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The H_ -models

The H+_-models
Integrating twice gives now:

2 c i€
2:— — 2_ - 2+€ ::A u
U 7<”2+H1U+2” B(1+e)(2+e)u ) Qu)

where )
201¢

A i@

Forki =ko=0

1/e
B cle+1)(e+2)
uie) = (iﬁﬁ {cosh (LEE%CO)) + 1} )
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The H_ -models

® H,:

= complex version of the modified KdV-equation
@ H,:

assume Q(u) = u?(u? — B?)(u? — C?), possible for
_ 15¢

Ky =ro =0, B=iC and c* 3



Deformations of the KdV equation
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The H_ -models

® H,:
= complex version of the modified KdV-equation
@ H,:
assume Q(u) = u?(u? — B?)(u? — C?), possible for
k1 = k2 =0, B=iC and C4:1gc

eigenvalues of Jacobian:
i = +ivnraexp [;(493 + 9A)]

. . i
k= FiviBew |44+ 0)]



Deformations of the KdV equation
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The H_ -models

Broken P7T -symmetrlc solution for 7, :

(a) star node at the originforc=1,3=2+1i3,y=1and
B =(15/2 + i3)/*

(b) centre atthe originforc=1,3=2+1i3,y=—1 and
B = (30/13 —i45/13)'/4



Deformations of the KdV equation
e0

Relation to quantum mechanical Hamiltonians

Reduction to quantum mechanical Hamiltonians:
Again we can relate to simple quantum mechanical models:
The identification

u—x, ¢(—t, k1 =0, rkp=vE, and [=n~g(1+¢e)(2+¢)
relates H_ to
H=E= %pz — Z%/XZ + gx?(ix)°

For ¢ = 0 these are the "classical models" studied in
[C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Relation to quantum mechanical Hamiltonians

Reduction of the 7/, -model

7

2
2 Ux

1 B oa
H, U] = oY +

Twice integrated equation of motion:
c

u2—g K2 + kiU +
C_’y 2 1 >

2 T 4\ _.
u +ﬁﬁu ) = AQ(u)
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Relation to quantum mechanical Hamiltonians

Reduction of the 7/, -model

7

2
2 Ux

1 B oa
H, U] = oY +

Twice integrated equation of motion:
c

u2—g K2 + kiU +
C_’y 2 1 >

u? + ﬁ112u4> = AQ(u)
Reductionu — x, { — t

k1 =—7, kp=vEx, B=-3yg and c=—w?
Quartic harmonic oscillator of the form

_p 12 W’ 2,94
HfEXfép —|—TX—|-?X +ZX
Boundary cond.: k1 =7 =0, Clim u(¢) =0, Clim ux(¢) = v2Ex

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]
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Relation to quantum mechanical Hamiltonians

Reduction of the 7/, -model

7

2
2 Ux

1 B oa
H, U] = oY +

Twice integrated equation of motion:
c

u2—g K2 + kiU +
C_’y 2 1 >

u? + ﬁ112u4> = AQ(u)
Reductionu — x, { — t

k1 =—7, kp=vEx, B=-3yg and c=—w?
Quartic harmonic oscillator of the form

1 2
H:EX:§p2+rx+%x2+%x4

Boundary cond.: k1 =7 =0, Clim u(¢) =0, Clim ux(¢) = v2Ex
[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]
Note: Ex # Eu(a)
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The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u— A)?(u— B)(u— C)
3 (¥ —2¢)
196\/19_720(4_%) A3 — e_\/%(c_C")ﬁ/S

¥ 1= 3¢ + BA?
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0000000000

The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u— A)?(u— B)(u— C)
3 (¥ —2¢)
196\/19_720(4_%) A3 — e_\/%(c_C")ﬁ/S

¥ 1= 3¢ + BA?

Reduced solution:



Deformations of the KdV equation
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The quartic harmonic oscillator from complex modified KDV

Linearisation about the fixed point A:
Eigenvalues of the Jacobian matrix

!
2

i

i = o | :

(204 + GA)] Jo = Era\/ryexp [ (204 + HA)}
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The quartic harmonic oscillator from complex modified KDV

Linearisation about the fixed point A:
Eigenvalues of the Jacobian matrix

i ) i
J1 = E£rav/riexp [2(26A + 0)\)] Jo = Erav/ryexp [—2(29A + 9)\)}

Recall: Ex = — g /\— =
Condition for Ato be a centre 204+0)\=m
Condition for Ey to be real: 40, — 0y = 0,7
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The quartic harmonic oscillator from complex modified KDV

Linearisation about the fixed point A:
Eigenvalues of the Jacobian matrix

i ) i
J1 = E£rav/riexp [2(26’A + 9)\)] Jo = Erav/ryexp [—2(29A + 9/\)}

Recall: Ex = — g /\— =
Condition for Ato be a centre 204+0)\=m
Condition for Ey to be real: 40, — 0y = 0,7

All possible scenarios exist:

periodic orbits with real energies forweiR,geR
periodic orbits with nonreal energies forweiR,g¢ R
nonperiodic orbits with real energies forw ¢ iR,w*/g € R

nonperiodic orbits with nonreal energies forw ¢ iR,w*/g ¢ R



Deformations of the KdV equation
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The quartic harmonic oscillator from complex modified KDV

(a) Periodic orbits E = —25/4 forg = 4, w = iv/10
(b) Periodic orbits E = —5 + i5/2 for g = 4 + 2i, w = iv/10



Deformations of the KdV equation
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The quartic harmonic oscillator from complex modified KDV

(a) Nonperiodic orbits E = —25/4 for g = —4, w = €/4y/10
(b) Nonperiodic orbits E = 25/4i for g = —4i, w = v/10



Deformations of the KdV equation
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The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u—A)(u— B)(u— C)(u— D)
Two free parameters in solution:

2
B(A— D)+ A(D - B)sn {\/m(é CO)’BC)(ig;]
A—D+(D—B)sn[‘/m(c o)l

C)(B—D) ?
| (B=C)(A-D)
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The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u—A)(u— B)(u— C)(u— D)
Two free parameters in solution:

2
B(A~ D) + A(D - Bysn |- JAD ¢ ) {4-01e-)

A-D)
u(Q) = 2

A—D+(D—-B)sn {W(C Co)|30)gf\gg]
Reduction:

x(t) = Asn[ t+ to)Ay/2Ey

i)



Deformations of the KdV equation
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The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u—A)(u— B)(u— C)(u— D)
Two free parameters in solution:

B(A - D)+ A(D — B)sn {V“BCAD(C ¢o)

)(B—D)
’ (B= C)(A D)]

2
(B=D)

A—D+(D—B)sn {\/W(C <0)|BC)(AD)]

Reduction:

x(t) = Asn[f—i—l‘o )A\/2E, 4Ex]
Square root singularity = no linearisation, alternatively
[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]
x(t) = x(t + nwy + mwy) for n,meZ,
o = 4./2 K [ —A%g } o — i2v/2 K [2A2g+ 2w2]
VoA 1 202 |gA? 1 2u2 VoA 1 202 | gR 1 2uw?

Nimwq + MImws, =0
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The quartic harmonic oscillator from complex modified KDV

Note:
One needs t — t + ity, fy € R to avoid pole t = (nw1 + Mwy)/2

i
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—1D +++_ S
. .
-
L]
s -
LR R T

L




Deformations of the KdV equation
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The quartic harmonic oscillator from complex modified KDV
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The quartic harmonic oscillator from complex modified KDV
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The quartic harmonic oscillator from complex modified KD
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The quartic harmonic oscillator from complex modified KDV
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Ito type systems and its deformations
Coupled nonlinear system

U+ avy + fuly + yUxxx = 0O, a, 3,7 € C,
Vi+o(uv)x + dvax = 0, 9,0 C
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Ito type systems and its deformations
Coupled nonlinear system

U+ avy + fuly + yUxxx = 0O, a, 3,7 € C,
Vi+o(uv)x + dvax = 0, 9,0 C

Hamiltonian for § = «

H = Y-S I ux+g
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2 6! T2 Vx



Ito type systems
[ ]
The undeformed model

Ito type systems and its deformations
Coupled nonlinear system

U+ avy + fuly + yUxxx = 0O, a, 3,7 € C,
Vi+o(uv)x + dvax = 0, 9,0 C

Hamiltonian for § = «

> B 3 ¢

2
— Y2y u %
Hi=-3 6 +2x+2
PT-symmetries:
PT++ZXH—X,tH—t,iF—?—i,U'—’U,V’_)V fOfOé,ﬁ,’Y,QbGR

PT i X+ —X,t— —ti——iju—uv—-v fora,g,v,¢cR
PT _,:X+— Xt —ti— —i,u— —u v v foria,iB,v,¢ €R
PT__:xr— —X,tr— —t i+ —i,ur— —u,vi— —v forio,iB,v, ¢ € R



Ito type systems

@00

Deformed models

Deformed models

H;: _ —guvz _ gus _ %(iux)€+1 _ &(ivx)u+1
Hew = 3 iuu(iv)"“ - 2“3 SR CO %VE
Ho, = ﬁu(iv)’“r1 - (1+5;?2+5)(iu)2+8 + %u;’; + %vf

with equations of motion

Ut + avWy + Ul + YUxxx,e = 0, Ut + oV, Vx + Sulx + YUxxx,e = 0,
Ve + a(uv)x + PViooru = 0, Vi + a(UV#)X + ¢Vixx = 0,

Ut + aVVy + /BUQUX + ")/Uxxx = 0, Ut + CYVMVX + /BUEUX —+ 7Uxxx = 07
Vi + a(UV)x + ¢Vxxx,u = 0, Vi + a(uvy)x + dVix = 0.
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Ito type systems

oeo

Deformed models

Solution procedure

e similar as for KdV, but the degrees of the polynomials is higher
e type Il R(v) = v(v — A)2(v — B)?

e eigenvales of the Jacobian:

jk = E\Tan [oos <32A + 02 > ra — Ccos <62A + 05+ 0;) rB]

+i(=1)K\/Tarx [sin (32/‘ + 9;) ra — sin (‘92/‘ + 05+ 92A> rg}



Ito type systems
(o] Jo}

Deformed models

Solution procedure

e similar as for KdV, but the degrees of the polynomials is higher
e type Il R(v) = v(v — A)2(v — B)?

e eigenvales of the Jacobian:

S 304 0 Oa 0
jk = E£\ran [oos < 5 + 2> ra — Ccos <2 + 05+ 2> rB]
+i(=1)%\/rary |sin 30 + 5 b ra —sin Z +0p+ O Is
2 2 2 2
e energy:

_ HIV]
Er, — fr’H[v( fff o 5"

— 3
- _ﬁiava (Z\—B) {cA2+n2A+§< +M> }




Deformed models

Periodic trajectories for type Il broken P7-symmetry

Ito type systems

ooe

LS

g QO

=)
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Conclusions

Conclusions:

@ the type of trajectory does not tell which scenario we are in
all types of fixed points occur (except saddle points)
there is no chaos by Poincaré-Bendixson theorem
not Hamiltonian in Re(u), Im(u)
energies can be computed effectively in complex models
possible to have broken P7-symmetry with real energies
solitons as in real case, broken P7-symmetry = breather
deformed models extend over several Riemann sheets
new features in Ito systems, such as kink or cusp solutions
quantum mechanical models result from simple reductions

we expect similar behaviour for other nonlinear equations



Conclusions

Thank you for your attention
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