

PT-symmetry breaking in complex nonlinear wave equations and their deformations

Andreas Fring

Quantum Physics with Non-Hermitian Operators Max Planck Institute, Dresden 15-25 June 2011

based on arXiv:1103.1832 (accepted for publ. in J. Phys. A.)
Andrea Cavaglia (City University), Bijan Bagchi (Calcutta University)

PT-symmetry breaking in complex nonlinear wave equations and their deformations

Andreas Fring

Quantum Physics with Non-Hermitian Operators Max Planck Institute, Dresden 15-25 June 2011

based on arXiv:1103.1832 (accepted for publ. in J. Phys. A.)
Andrea Cavaglia (City University), Bijan Bagchi (Calcutta University)

0000

8th UK meeting on Integrable Models, Conformal Field Theory and Related Topics

Edinburgh, 16 & 17 April 2004

Scientific Programme & Timetable | Meeting Arrangements | Registration Form | Participants List

The proposed meeting is to be the eighth in a series of annual one-day meetings on this topic. The main aims of the meeting are:

- The dissemination, explanation and discussion of recent exciting results in this field.
- To promote communication and collaboration within the UK Integrable Models and Conformal Field Theory community, and to bring mathematicians and physicists working in this area together.
- To act as a forum for young researchers to present their work and to become known and integrated into the community.

Speakers:

Carl Bender (Washington)
Richard Blythe (Manchester)
Alexandre Caldeira (Oxford)
Vladimir Dobrev (Newcastle)
Andreas Fring (City)
Yiannis Papadimitriou (Amsterdam)

- Calogero-Moser-Sutherland models
 - A. Fring, Mod. Phys. Lett. A21 (2006) 691
 - A. Fring, Acta Polytechnica 47 (2007) 44
 - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
 - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
 - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
 - A. Fring, Pramana J. of Physics 73 (2009) 363
 - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
 - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
 - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
 - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
 - A. Fring, J. Phys. A40 (2007) 4215
 - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
 - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

Complex KdV equations

- Calogero-Moser-Sutherland models
 - A. Fring, Mod. Phys. Lett. A21 (2006) 691
 - A. Fring, Acta Polytechnica 47 (2007) 44
 - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
 - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
 - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
 - A. Fring, Pramana J. of Physics 73 (2009) 363
 - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
 - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
 - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
 - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
 - A. Fring, J. Phys. A40 (2007) 4215

 - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

- Calogero-Moser-Sutherland models
 - A. Fring, Mod. Phys. Lett. A21 (2006) 691
 - A. Fring, Acta Polytechnica 47 (2007) 44
 - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
 - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
 - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
 - A. Fring, Pramana J. of Physics 73 (2009) 363
 - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
 - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
 - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
 - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
 - A. Fring, J. Phys. A40 (2007) 4215
 - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
 - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

Integrable models and PT-symmetry

- Calogero-Moser-Sutherland models
 - A. Fring, Mod. Phys. Lett. A21 (2006) 691
 - A. Fring, Acta Polytechnica 47 (2007) 44
 - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
 - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
 - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
 - A. Fring, Pramana J. of Physics 73 (2009) 363
 - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
 - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
 - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
 - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
 - A. Fring, J. Phys. A40 (2007) 4215
 - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
 - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

Complex KdV equations

What is the behaviour of standard quantities in dynamical systems when they are complexified?

Three different scenarios:

$$[\mathcal{P}\mathcal{T},H]=0$$
 and $\mathcal{P}\mathcal{T}\Phi=\Phi$

spontaneously broken PT-symmetry

$$[\mathcal{P}\mathcal{T},H]=0$$
 and $\mathcal{P}\mathcal{T}\Phi\neq\Phi$

$$[\mathcal{P}T, H] \neq 0$$
 and $\mathcal{P}T\Phi \neq \Phi$

Complex KdV equations

What is the behaviour of standard quantities in dynamical systems when they are complexified?

Three different scenarios:

PT-symmetry

$$[\mathcal{P}\mathcal{T}, H] = 0$$
 and $\mathcal{P}\mathcal{T}\Phi = \Phi$

spontaneously broken PT-symmetry

$$[\mathcal{P}\mathcal{T},H]=0$$
 and $\mathcal{P}\mathcal{T}\Phi\neq\Phi$

$$[\mathcal{P}T, H] \neq 0$$
 and $\mathcal{P}T\Phi \neq \Phi$

Complex KdV equations

What is the behaviour of standard quantities in dynamical systems when they are complexified?

Three different scenarios:

PT-symmetry

$$[\mathcal{P}\mathcal{T},H]=0$$
 and $\mathcal{P}\mathcal{T}\Phi=\Phi$

spontaneously broken PT-symmetry

$$[\mathcal{P}\mathcal{T}, H] = 0$$
 and $\mathcal{P}\mathcal{T}\Phi \neq \Phi$

$$[\mathcal{P}T, H] \neq 0$$
 and $\mathcal{P}T\Phi \neq \Phi$

What is the behaviour of standard quantities in dynamical systems when they are complexified?

Three different scenarios:

PT-symmetry

$$[\mathcal{P}\mathcal{T}, H] = 0$$
 and $\mathcal{P}\mathcal{T}\Phi = \Phi$

spontaneously broken PT-symmetry

$$[\mathcal{P}\mathcal{T}, H] = 0$$
 and $\mathcal{P}\mathcal{T}\Phi \neq \Phi$

$$[\mathcal{P}\mathcal{T}, H] \neq 0$$
 and $\mathcal{P}\mathcal{T}\Phi \neq \Phi$

0000

Quantities of interest:

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] dx = \oint_{\Gamma} \mathcal{H}[u(x)] \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

0000

Quantities of interest:

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] dx = \oint_{\Gamma} \mathcal{H}[u(x)] \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

0000

Quantities of interest:

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] dx = \oint_{\Gamma} \mathcal{H}[u(x)] \frac{du}{u_{x}}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] dx = \oint_{\Gamma} \mathcal{H}[u(x)] \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] dx = \oint_{\Gamma} \mathcal{H}[u(x)] \frac{du}{u_{x}}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Dynamical systems in three different settings

Quantities of interest:

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] dx = \oint_{\Gamma} \mathcal{H}[u(x)] \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

The KdV system:

Hamiltonian:

$$\mathcal{H}_{\mathsf{KdV}} = -\frac{\beta}{6}u^3 + \frac{\gamma}{2}u_x^2$$
 $\beta, \gamma \in \mathbb{C}$

equation of motion:

$$u_t + \beta u u_x + \gamma u_{xxx} = 0$$

Antilinear symmetries

$$\mathcal{PT}_{+} : X \mapsto -X, t \mapsto -t, i \mapsto -i, u \mapsto u \quad \text{for } \beta, \gamma \in \mathbb{R}$$

$$\mathcal{PT}_{-} : X \mapsto -X, t \mapsto -t, i \mapsto -i, u \mapsto -u \quad \text{for } i\beta, \gamma \in \mathbb{R}$$

The KdV system:

Hamiltonian:

$$\mathcal{H}_{\mathsf{KdV}} = -\frac{\beta}{6}u^3 + \frac{\gamma}{2}u_x^2$$
 $\beta, \gamma \in \mathbb{C}$

equation of motion:

$$u_t + \beta u u_x + \gamma u_{xxx} = 0$$

Antilinear symmetries:

 \mathcal{PT}_{+} : $\mathbf{X} \mapsto -\mathbf{X}, \mathbf{t} \mapsto -\mathbf{t}, \mathbf{i} \mapsto -\mathbf{i}, \mathbf{u} \mapsto \mathbf{u}$ for $\beta, \gamma \in \mathbb{R}$ \mathcal{PT}_{-} : $\mathbf{X} \mapsto -\mathbf{X}, \mathbf{t} \mapsto -\mathbf{t}, \mathbf{i} \mapsto -\mathbf{i}, \mathbf{u} \mapsto -\mathbf{u}$ for $\mathbf{i}\beta, \gamma \in \mathbb{R}$ $\ensuremath{\mathcal{PT}}\xspace$ -symmetric, spontaneously broken and broken solutions

- Integrating twice:

$$u_{\zeta}^2 = \frac{2}{\gamma} \left(\kappa_2 + \kappa_1 u + \frac{c}{2} u^2 - \frac{\beta}{6} u^3 \right) =: \lambda P(u)$$

with integration constants $\kappa_1, \kappa_2 \in \mathbb{C}$

- traveling wave: $u(x,t) = u(\zeta)$ with $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$$

$$u_{\zeta}^{I} = \pm \operatorname{Im} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$$

- the fixed points are the zeros of P(u):

$$u_{\zeta}^{R} = 0$$
$$u_{\zeta}^{I} = 0$$

 $\mathcal{PT} ext{-symmetric},$ spontaneously broken and broken solutions

- Integrating twice:

$$u_{\zeta}^2 = \frac{2}{\gamma} \left(\kappa_2 + \kappa_1 u + \frac{c}{2} u^2 - \frac{\beta}{6} u^3 \right) =: \lambda P(u)$$

with integration constants $\kappa_1, \kappa_2 \in \mathbb{C}$

- traveling wave: $u(x,t) = u(\zeta)$ with $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$$
 $u_{\zeta}^{I} = \pm \operatorname{Im} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$

- the fixed points are the zeros of P(u):

$$u_{\zeta}^{R} = 0$$
$$u_{\zeta}^{I} = 0$$

$\mathcal{P}\mathcal{T}$ -symmetric, spontaneously broken and broken solutions

Integrating twice:

$$u_{\zeta}^2 = \frac{2}{\gamma} \left(\kappa_2 + \kappa_1 u + \frac{c}{2} u^2 - \frac{\beta}{6} u^3 \right) =: \lambda P(u)$$

with integration constants $\kappa_1, \kappa_2 \in \mathbb{C}$

- traveling wave: $u(x,t) = u(\zeta)$ with $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$$

$$u_{\zeta}^{I} = \pm \operatorname{Im} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$$

$$u_{\zeta}^{R} = 0$$

$$u_{\zeta}^{I} = 0$$

- Integrating twice:

$$u_{\zeta}^2 = \frac{2}{\gamma} \left(\kappa_2 + \kappa_1 u + \frac{c}{2} u^2 - \frac{\beta}{6} u^3 \right) =: \lambda P(u)$$

with integration constants $\kappa_1, \kappa_2 \in \mathbb{C}$

- traveling wave: $u(x,t) = u(\zeta)$ with $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$$
 $u_{\zeta}^{I} = \pm \operatorname{Im} \left[\sqrt{\lambda} \sqrt{P(u^{R} + iu^{I})} \right]$

- the fixed points are the zeros of P(u):

$$u_{\zeta}^{R} = 0$$

$$u_{\zeta}^{I} = 0$$

Linearisation at the fixed point u_f :

$$\begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{I} \end{pmatrix} = J(u^{R}, u^{I}) \Big|_{u=u_{f}} \begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{I} \end{pmatrix}$$

with Jacobian matrix

$$J(u^{R}, u^{I})\Big|_{u=u_{f}} = \begin{pmatrix} \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{I}} \\ \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{I}} \end{pmatrix} \Big|_{u=u_{f}}$$

Linearisation theorem: Consider a nonlinear system which possesses a simple linearisation at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of the linear system and its linearisation are qualitatively equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part, i.e. the linearized system is not a centre.

Linearisation at the fixed point u_f :

$$\begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{I} \end{pmatrix} = J(u^{R}, u^{I}) \Big|_{u=u_{f}} \begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{I} \end{pmatrix}$$

with Jacobian matrix

$$J(u^{R}, u^{I})\Big|_{u=u_{f}} = \begin{pmatrix} \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{I}} \\ \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{I}} \end{pmatrix} \Big|_{u=u_{f}}$$

Linearisation theorem: Consider a nonlinear system which possesses a simple linearisation at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of the linear system and its linearisation are qualitatively equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part, i.e. the linearized system is not a centre.

The ten similarity classes for ${\it J}$

$j_i \in \mathbb{R}$	$j_1 > j_2 > 0$	unstable node
	$j_2 < j_1 < 0$	stable node
	$j_2 < 0 < j_1$	saddle point
$j_1 = j_2$, diagonal J	$j_i > 0$	unstable star node
	$j_i < 0$	stable star node
$j_1 = j_2$, nondiagonal J	$j_i > 0$	unstable improper node
	$j_i < 0$	stable improper node
$j_i \in \mathbb{C}$	$\operatorname{Re} j_i > 0$	unstable focus
	$\operatorname{Re} j_i = 0$	centre
	$\operatorname{Re} j_i < 0$	stable focus

Further integration:

$$\pm\sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int du\frac{1}{\sqrt{P(u)}}$$

assume: $P(u) = (u - A)^3$, which is possible for

$$\lambda = -\frac{\beta}{3\gamma}$$
, $\kappa_1 = -\frac{c^2}{2\beta}$, $\kappa_2 = \frac{c^3}{6\beta^2}$ and $A = \frac{c}{\beta}$

then:

$$u(\zeta) = \frac{c}{\beta} - \frac{12\gamma}{\beta(\zeta - \zeta_0)^2}$$

$$E_{a} = -\frac{ac^{2}}{3\beta^{2}}\left(c + \frac{36\gamma}{a^{2} - \zeta_{0}^{2}}\right) + \frac{72\gamma^{2}}{15\beta^{2}}\left[\frac{10c\left(a^{3} + 3a\zeta_{0}^{2}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{3}} - \frac{48\gamma\left(a^{5} + 10a^{3}\zeta_{0}^{2} + 5a\zeta_{0}^{4}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{5}}\right]$$

Further integration:

$$\pm\sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int du\frac{1}{\sqrt{P(u)}}$$

assume: $P(u) = (u - A)^3$, which is possible for

$$\lambda = -rac{eta}{3\gamma}, \quad \kappa_1 = -rac{c^2}{2eta}, \quad \kappa_2 = rac{c^3}{6eta^2} \quad ext{and} \quad A = rac{c}{eta}$$

then:

Introduction

$$u(\zeta) = \frac{c}{\beta} - \frac{12\gamma}{\beta(\zeta - \zeta_0)^2}$$

$$E_{a} = -\frac{ac^{2}}{3\beta^{2}}\left(c + \frac{36\gamma}{a^{2} - \zeta_{0}^{2}}\right) + \frac{72\gamma^{2}}{15\beta^{2}}\left[\frac{10c\left(a^{3} + 3a\zeta_{0}^{2}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{3}} - \frac{48\gamma\left(a^{5} + 10a^{3}\zeta_{0}^{2} + 5a\zeta_{0}^{4}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{5}}\right]$$

Further integration:

$$\pm\sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int du\frac{1}{\sqrt{P(u)}}$$

assume: $P(u) = (u - A)^3$, which is possible for

$$\lambda = -rac{eta}{3\gamma}, \quad \kappa_1 = -rac{c^2}{2eta}, \quad \kappa_2 = rac{c^3}{6eta^2} \quad ext{and} \quad A = rac{c}{eta}$$

then:

Introduction

$$u(\zeta) = \frac{c}{\beta} - \frac{12\gamma}{\beta(\zeta - \zeta_0)^2}$$

$$E_{a} = -\frac{ac^{2}}{3\beta^{2}}\left(c + \frac{36\gamma}{a^{2} - \zeta_{0}^{2}}\right) + \frac{72\gamma^{2}}{15\beta^{2}}\left[\frac{10c\left(a^{3} + 3a\zeta_{0}^{2}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{3}} - \frac{48\gamma\left(a^{5} + 10a^{3}\zeta_{0}^{2} + 5a\zeta_{0}^{4}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{5}}\right]$$

(a) \mathcal{PT} -symmetric: c=1, $\beta=2$, $\gamma=3$, A=1/2 (b) broken \mathcal{PT} -symmetry: c=1, $\beta=2+i2$, $\gamma=3$, $A=\frac{1-i}{4}$

The energy is real for (a) and complex for (b).

 $\ensuremath{\mathcal{P}}\ensuremath{\mathcal{T}}\xspace$ -symmetric, spontaneously broken and broken solutions (trigonometric)

assume: $P(u) = (u - A)^2(u - B)$, which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{A}{2}(\beta A - 2c), \quad \kappa_2 = \frac{A^2}{6}(3c - 2\beta A), \quad B = \frac{3c}{\beta} - 2A$$

then (with one free parameter)

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2} \sqrt{A - B} \sqrt{\lambda} (\zeta - \zeta_0) \right]$$

linearisation: $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$

$$J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$$

with eigenvalues ($\in I\mathbb{R}$ for A < B, $\lambda > 0$ or A > B, $\lambda < 0$)

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

 ${\cal PT}$ -symmetric, spontaneously broken and broken solutions (trigonometric)

assume: $P(u) = (u - A)^2(u - B)$, which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{A}{2}(\beta A - 2c), \quad \kappa_2 = \frac{A^2}{6}(3c - 2\beta A), \quad B = \frac{3c}{\beta} - 2A$$

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2} \sqrt{A - B} \sqrt{\lambda} (\zeta - \zeta_0) \right]$$

linearisation: $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$

$$J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$$

with eigenvalues ($\in i\mathbb{R}$ for A < B, $\lambda > 0$ or A > B, $\lambda < 0$)

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

assume: $P(u) = (u - A)^2(u - B)$, which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{A}{2}(\beta A - 2c), \quad \kappa_2 = \frac{A^2}{6}(3c - 2\beta A), \quad B = \frac{3c}{\beta} - 2A$$

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2} \sqrt{A - B} \sqrt{\lambda} (\zeta - \zeta_0) \right]$$

linearisation: $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$

$$J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos \left[\frac{1}{2} (\theta_{AB} + \theta_{\lambda}) \right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin \left[\frac{1}{2} (\theta_{AB} + \theta_{\lambda}) \right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin \left[\frac{1}{2} (\theta_{AB} + \theta_{\lambda}) \right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos \left[\frac{1}{2} (\theta_{AB} + \theta_{\lambda}) \right] \end{pmatrix}$$

with eigenvalues $(\in i\mathbb{R} \text{ for } A < B, \lambda > 0 \text{ or } A > B, \lambda < 0)$

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

assume: $P(u) = (u - A)^2(u - B)$, which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{A}{2}(\beta A - 2c), \quad \kappa_2 = \frac{A^2}{6}(3c - 2\beta A), \quad B = \frac{3c}{\beta} - 2A$$

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2} \sqrt{A - B} \sqrt{\lambda} \left(\zeta - \zeta_0 \right) \right]$$

linearisation: $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$

$$J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$$

with eigenvalues ($\in i\mathbb{R}$ for A < B, $\lambda > 0$ or A > B, $\lambda < 0$)

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp \left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

Energy for the periodic motion for one period:

$$E_{T} = \oint_{\Gamma} \mathcal{H}\left[u(\zeta)\right] \frac{du}{u_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}\left[u\right]}{\sqrt{\lambda}\sqrt{u - B}(u - A)} du = -\pi\sqrt{\frac{\beta\gamma}{3}} \frac{A^{3}}{\sqrt{A - B}}$$

In general

- $E_T \in \mathbb{R}$ for $\mathcal{P}T$ -symmetric solution
- $E_T \in \mathbb{C}$ for spontaneously broken $\mathcal{P}T$ -symmetric solution
- E_T ∈ \mathbb{C} for broken $\mathcal{P}T$ -symmetric solution

But:

Introduction

$$E_T \in \mathbb{R} \quad ext{for } A = rac{\sin heta_\gamma}{|eta|\sin(heta_\gamma - 2 heta_eta/3)}\exp\left(-irac{ heta_eta}{3}
ight).$$

Energy for the periodic motion for one period:

$$E_{T} = \oint_{\Gamma} \mathcal{H}\left[u(\zeta)\right] \frac{du}{u_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}\left[u\right]}{\sqrt{\lambda}\sqrt{u - B}(u - A)} du = -\pi\sqrt{\frac{\beta\gamma}{3}} \frac{A^{3}}{\sqrt{A - B}}$$

In general:

- $E_T \in \mathbb{R}$ for $\mathcal{P}T$ -symmetric solution
- $E_T \in \mathbb{C}$ for spontaneously broken $\mathcal{P}T$ -symmetric solution
- $E_T \in \mathbb{C}$ for broken $\mathcal{P}T$ -symmetric solution

But:

Introduction

$$E_T \in \mathbb{R}$$
 for $A = \frac{\sin \theta_{\gamma}}{|\beta| \sin (\theta_{\gamma} - 2\theta_{\beta}/3)} \exp \left(-i\frac{\theta_{\beta}}{3}\right)$

Energy for the periodic motion for one period:

$$E_{T} = \oint_{\Gamma} \mathcal{H}\left[u(\zeta)\right] \frac{du}{u_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}\left[u\right]}{\sqrt{\lambda}\sqrt{u - B}(u - A)} du = -\pi\sqrt{\frac{\beta\gamma}{3}} \frac{A^{3}}{\sqrt{A - B}}$$

In general:

- $E_T \in \mathbb{R}$ for $\mathcal{P}T$ -symmetric solution
- $E_T \in \mathbb{C}$ for spontaneously broken $\mathcal{P}T$ -symmetric solution
- E_T ∈ \mathbb{C} for broken $\mathcal{P}T$ -symmetric solution

But:

Introduction

$$E_T \in \mathbb{R} \quad ext{for } A = rac{\sin heta_{\gamma}}{|eta| \sin (heta_{\gamma} - 2 heta_{eta}/3)} \exp \left(-irac{ heta_{eta}}{3}
ight).$$

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

PT-symmetric solution:

(a) periodic:
$$c=$$
 1, $\beta=$ 3/10, $\gamma=$ 3, $A=$ 4, $B=$ 2, $T=$ 2 $\sqrt{15}\pi$

(b) asympt. constant: c = 1, $\beta = 3/10$, $\gamma = -3$, A = 4, B = 2

PT-symmetric solution:

(a) periodic:
$$c = 1$$
, $\beta = 3/10$, $\gamma = 3$, $A = 4$, $B = 2$, $T = 2\sqrt{15}\pi$

(b) asympt. constant: c = 1, $\beta = 3/10$, $\gamma = -3$, A = 4, B = 2

spontaneously broken $\mathcal{P}\mathcal{T}$ -symmetric solution:

(a) periodic: c = 1, $\beta = \frac{3}{10}$, $\gamma = 3$, $A = 4 + \frac{i}{2}$ and B = 2 - i for $\text{Im } \zeta_0 = 0.5$ black, $\text{Im } \zeta_0 = 0.3$ green $\text{Im } \zeta_0 = 0.1$ blue (b) asympt. constant: c = 1, $\beta = \frac{3}{10}$, $\gamma = -3$ for $A = 4 - \frac{i}{2}$, $B = 2 + i \text{ Im } \zeta_0 = -0.5$ black; $A = A^*$, $B = B^*$, $\text{Im } \zeta_0 = 0.5$ blue

spontaneously broken $\mathcal{P}\mathcal{T}$ -symmetric solution:

(a) periodic: c=1, $\beta=\frac{3}{10}$, $\gamma=3$, $A=4+\frac{i}{2}$ and B=2-i for ${\rm Im}\,\zeta_0=0.5$ black, ${\rm Im}\,\zeta_0=0.3$ green ${\rm Im}\,\zeta_0=0.1$ blue (b) asympt. constant: c=1, $\beta=\frac{3}{10}$, $\gamma=-3$ for $A=4-\frac{i}{2}$, $B=2+i {\rm Im}\,\zeta_0=-0.5$ black; $A=A^*$, $B=B^*$, ${\rm Im}\,\zeta_0=0.5$ blue $E_{\mathcal{T}}\in\mathbb{C}$

broken PT-symmetric solution:

(a) periodic: A = 4, B = 2, c = 1, $\beta = \frac{3}{10}$, $\gamma = 3 + \frac{i}{2}$, Im $\zeta_0 = 6$ (b) asympt. constant: A = 4, B = 2, c = 1, $\beta = \frac{3}{10}$, $\gamma = -3 + \frac{i}{2}$, $\text{Im } \zeta_0 = 1/2$

 $\mathcal{P}\mathcal{T}$ -symmetric, spontaneously broken and broken solutions (trigonometric)

broken PT-symmetric solution:

(a) periodic: A=4, B=2, c=1, $\beta=\frac{3}{10}$, $\gamma=3+\frac{i}{2}$, ${\rm Im}\,\zeta_0=6$ (b) asympt. constant: A=4, B=2, c=1, $\beta=\frac{3}{10}$, $\gamma=-3+\frac{i}{2}$, ${\rm Im}\,\zeta_0=1/2$

broken $\mathcal{P}\mathcal{T}$ -symmetric solution:

(a) periodic solution with complex energy $E_T = -10.52 + i1.67$ (b) periodic solution with real energy $E_T = -4\pi$

 $\ensuremath{\mathcal{PT}}\xspace$ -symmetric, spontaneously broken and broken solutions (elliptic)

assume: P(u) = (u - A)(u - B)(u - C), which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{1}{6} \left[\beta (A^2 + AC + C^2) - 3c(A - C) \right]$$

$$\kappa_2 = \frac{AC}{6} [3c - \beta(A + C)] \quad \text{and} \quad B = \frac{3c}{\beta} - (A + C)$$

then (with two free parameter)

$$u(\zeta) = A + (B - A) \operatorname{ns}^{2} \left[\frac{1}{2} \sqrt{B - A} \sqrt{\lambda} (\zeta - \zeta_{0}) \right] \frac{A - C}{A - B}$$

assume: P(u) = (u - A)(u - B)(u - C), which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{1}{6} \left[\beta (A^2 + AC + C^2) - 3c(A - C) \right]$$

$$\kappa_2 = \frac{AC}{6} [3c - \beta(A + C)] \quad \text{and} \quad B = \frac{3c}{\beta} - (A + C)$$

then (with two free parameter):

$$u(\zeta) = A + (B - A) \operatorname{ns}^{2} \left[\frac{1}{2} \sqrt{B - A} \sqrt{\lambda} (\zeta - \zeta_{0}) \left| \frac{A - C}{A - B} \right| \right]$$

PT-symmetric solution:

$$A = 1$$
, $B = 3$, $C = 6$, $c = 1$, $\beta = 3/10$, $\gamma = -3$

spontaneously broken PT-symmetric solution:

(a)
$$-64 \le \zeta \le 18$$
 solid (red) and $18 < \zeta \le 200$ dashed (black) (b) $-200 < \zeta < 1400$

PT-symmetric, spontaneously broken and broken solutions (elliptic)

broken $\mathcal{P}\mathcal{T}$ -symmetric solution:

(a)
$$A = 1$$
, $B = 3$, $C = 6$, $c = 1$, $\beta = 3/10$ and $\gamma = 3 + 2i$ for $-200 \le \zeta \le 200$;

(b)
$$A=1$$
, $B=2+3i$, $C=6$, $c=1$, $\beta=3/10-i/10$ and $\gamma=3$ for $-200 \le \zeta \le 200$

Reduction to quantum mechanical Hamiltonians:

For instance:

$$u \rightarrow x$$
, $\zeta \rightarrow t$, $\kappa_1 = 0$, $\kappa_2 = \gamma E$, $\beta = 6cg$, $\gamma = -c$

converts

Introduction

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left(\kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \frac{\beta}{6} u^{3} \right)$$

into Newton's equations for

$$H = E = \frac{1}{2}p^2 + \frac{1}{2}x^2 - gx^3$$

treated in

[C. Bender, D. Brody, D. Hook, Phys. A41 (2008) 352003]

Soliton solutions:

Hirota's bilinear method $(u(x,t) = \frac{12\gamma}{\beta}(\ln \tau)_{xx})$

$$\frac{6\gamma}{\beta}\left(\gamma D_{x}^{4}+D_{x}D_{t}\right)\tau\cdot\tau=0$$

one soliton solution:

$$u(x,t) = \frac{3\gamma p_1^2}{\beta \cosh^2 \left[\frac{1}{2}(p_1 x - \gamma p_1^3 t + \phi_1)\right]}$$

two soliton solution:

$$u\left(x,t\right) = \frac{24\gamma\sum_{k=0}^{6}c_{k}(-1)^{k}p_{2}^{k}p_{1}^{6-k}}{\beta\left(p_{1}+p_{2}\right)^{4}\left[2\cosh\left(\frac{1}{2}\left(\eta_{1}-\eta_{2}\right)\right)+e^{-\frac{\eta_{1}}{2}-\frac{\eta_{2}}{2}}\left(\frac{e^{\eta_{1}+\eta_{2}}\left(p_{1}-p_{2}\right)^{4}}{\left(p_{1}+p_{2}\right)^{4}}+1\right)\right]^{2}}$$

where we abbreviated $\eta_i = p_i x - \gamma p_i^3 t + \phi_i$ for i = 1, 2 with

$$c_0 = 1 + \cosh \eta_2, \quad c_1 = 4 \sinh \eta_2, \quad c_2 = \cosh \eta_1 + 6 \cosh \eta_2 - 1, \quad c_3 = 4 \left(\sinh \eta_1 + \sinh \eta_2 \right)$$

and
$$c_i(\eta_1, \eta_2) = c_{6-i}(\eta_2, \eta_1)$$

(a) \mathcal{PT} -symmetric solution with $\beta=6, \ \gamma=1, \ p_1=1.2$ for $\phi=i0.3$ blue, $\phi=i0.8$ red, $\phi=i1.1$ black, t=-2 (b) Broken \mathcal{PT} -symmetric solution $\beta=6, \ \gamma=1+i0.4, \ p_1=1.2$ for $\phi=i0.3$ blue, $\phi=i0.8$ red, $\phi=i1.1$ black t=-2

$\mathcal{P}\mathcal{T}$ -symmetric complex one-soliton solution

$$\beta = 6$$
, $\gamma = 1$, $p_1 = 1.2$, $\phi = i0.3$,

Complex one-soliton solution with broken $\mathcal{P}\mathcal{T}$ -symmetry

$$\beta = 6$$
, $\gamma = 1 + i0.4$, $p_1 = 1.2$, $\phi = i0.3$,

We obtain a breather regaining its shape when:

$$u(x + \Delta_x, t) = u(x, t + \Delta_t)$$

with

Introduction

$$\Delta_{t} = \frac{2\pi p_{r}}{(p_{i}^{4} - p_{r}^{4}) \gamma_{i} - 2p_{i}p_{r}(p_{i}^{2} + p_{r}^{2}) \gamma_{r}}$$

$$\Delta_{x} = 2\pi \frac{p_{i}(3p_{r}^{2} - p_{i}^{2}) \gamma_{i} + 2\pi p_{r}(3p_{i}^{2} - p_{r}^{2}) \gamma_{r}}{(p_{i}^{4} - p_{r}^{4}) \gamma_{i} - 2p_{i}p_{r}(p_{i}^{2} + p_{r}^{2}) \gamma_{r}}$$

speed of the soliton:

$$v = -\frac{\Delta_x}{\Delta_t} = \left(3p_i^2 - p_r^2\right)\gamma_r - \frac{p_i\left(p_i^2 - 3p_r^2\right)\gamma_i}{p_r}$$

Complex one-soliton solution with broken PT-symmetry

 $\beta=6,\,\gamma=1+i/2,\,p_1=2,\,\phi=i0.8$ and $\Delta_t=-\pi/2$ for different times $t=-\pi/2$ solid (blue), t=-1 dashed (red), t=0 dasheddot (orange), t=0.7 dotted (green), and $t=\pi/2$ dasheddotdot (black) (a) real part; (b) imaginary part

 $\beta = 6$, $\gamma = 1$, $p_1 = 1.2$, $p_2 = 2.2$, $\phi_1 = i0.1$ and $\phi_2 = i0.2$. (a) t = -2 solid (blue), t = -0.2 dashed (red), t = 0.2 dotted (black); (b) t = 0.3 dotted (black), t = 0.8 dashed (red), t = 2.0 solid (blue)

Two soliton solution with broken PT-symmetry

$$eta=6,\ \gamma=1+i\pi/8,\ p_1=2(2/3)^{1/3},\ p_2=2,\ \phi_1=i0.1$$
 and $\phi_2=i0.2.$ (a) $t=-4$ solid (blue), $t=-3.5$ dashed (red), $t=-2.$ dotted (black); (b) $t=0.7$ solid (blue), $t=2$ dashed (red), $t=8$ dotted (black) $\Delta_t^1=-3,\ \Delta_t^2=-2,$

$\mathcal{P}\mathcal{T}$ -symmetric complex two-soliton solution

Real part for: $\beta = 6$, $\gamma = 1$, $p_1 = 1.2$, $p_2 = 2.2$, $\phi_1 = i0.1$, $\phi_2 = i0.2$

Complex two-soliton solution with broken PT-symmetry

Real part for:
$$\beta = 6$$
, $\gamma = 1 + i\pi/8$, $p_1 = 2(2/3)^{1/3}$, $p_2 = 2$, $\phi_1 = i0.1$ and $\phi_2 = i0.2$

Energy for the one-soliton:

$$E_{1s} = -\frac{36\gamma^3 p_1^5}{5\beta^2}$$

Energy for the two-soliton:

• $\mathcal{P}\mathcal{T}$ -symmetric case:

$$E_{2s} \approx -10.8049 = E_{1s}(p_1) + E_{1s}(p_2)$$

Broken PT-symmetric case:

$$E_{2s} \approx -7.8876 - i9.4327 = E_{1s}(p_1) + E_{1s}(p_2)$$

General deformation prescription:

 $\mathcal{P}\mathcal{T}$ -anti-symmetric quantities:

$$\mathcal{PT}: \phi(\mathbf{x},t) \mapsto -\phi(\mathbf{x},t) \quad \Rightarrow \quad \delta_{\varepsilon}: \phi(\mathbf{x},t) \mapsto -i[i\phi(\mathbf{x},t)]^{\varepsilon}$$

Two possibilities for the KdV Hamiltonian

$$\delta_{\varepsilon}^{+}: u_{\mathsf{X}} \mapsto u_{\mathsf{X},\varepsilon} := -\mathsf{i}(\mathsf{i} u_{\mathsf{X}})^{\varepsilon} \qquad \text{or} \qquad \delta_{\varepsilon}^{-}: u \mapsto u_{\varepsilon} := -\mathsf{i}(\mathsf{i} u)^{\varepsilon},$$

such that

$$\mathcal{H}_{\varepsilon}^{+} = -\frac{\beta}{6}u^{3} - \frac{\gamma}{1+\varepsilon}(iu_{x})^{\varepsilon+1} \qquad \mathcal{H}_{\varepsilon}^{-} = \frac{\beta}{(1+\varepsilon)(2+\varepsilon)}(iu)^{\varepsilon+2} + \frac{\gamma}{2}u_{x}^{2}$$

with equations of motion

$$u_t + \beta u u_x + \gamma u_{xxx,\varepsilon} = 0$$
 $u_t + i\beta u_{\varepsilon} u_x + \gamma u_{xxx} = 0$

The $\mathcal{H}_{\varepsilon}^+$ -models

Integrating twice yields now:

$$u_{\zeta}^{(n)} = \exp\left[\frac{i\pi}{2(\varepsilon+1)}(1-\varepsilon+4n)\right][\lambda_{\varepsilon}P(u)]^{\frac{1}{1+\varepsilon}}$$

Again we can construct systematically solutions by assuming:

$$P(u) = (u - A)^{3},$$

$$P(u) = (u - A)^{2}(u - B),$$

$$P(u) = (u - A)(u - B)(u - C)$$

but now we have branch cuts

For instance:

The $\mathcal{H}_{\varepsilon}^+$ -models

Integrating twice yields now:

$$u_{\zeta}^{(n)} = \exp\left[\frac{i\pi}{2(\varepsilon+1)}(1-\varepsilon+4n)\right] [\lambda_{\varepsilon}P(u)]^{\frac{1}{1+\varepsilon}}$$

Again we can construct systematically solutions by assuming:

$$P(u) = (u - A)^3,$$

 $P(u) = (u - A)^2(u - B),$
 $P(u) = (u - A)(u - B)(u - C)$

but now we have branch cuts.

For instance:

Different Riemann sheets for A = (1 - i)/4, c = 1, $\beta = 2 + 2i$ and $\gamma = 3$

- (a) $u^{(1)}$
- (h) $u^{(2)}$

PT-symmetric trigonometric/hyperbolic solutions

$$A = 4, B = 2, c = 1, \beta = 2 \text{ and } \gamma = 3$$

- (a) $\mathcal{H}^+_{-1/2}$ (b) $\mathcal{H}^+_{-2/3}$

Broken $\mathcal{P}\mathcal{I}$ -symmetric trigonometric solutions for $\mathcal{H}^+_{-1/2}$

- (a) Spontaneously broken $\mathcal{P}\mathcal{T}$ -symmetry with A=4+i, B = 2 - 2i, c = 1, $\beta = 3/10$ and $\gamma = 3$
- (b) broken \mathcal{PT} -symmetry with A=4, B=2, c=1, $\beta=3/10$ and $\gamma = 3 + i$

Elliptic solutions for $\mathcal{H}_{-1/2}^+$:

- (a) \mathcal{PT} -symmetric with A=1, B=3, C=6, $\beta=3/10$, $\gamma=-3$ and c=1
- (b) spontaneously broken PT-symmetry with A = 1 + i, B = 3 - i, C = 6, $\beta = 3/10$, $\gamma = -3$ and c = 1

The $\mathcal{H}_{\varepsilon}^{-}$ -models

Integrating twice gives now:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left(\kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \beta \frac{i^{\varepsilon}}{(1+\varepsilon)(2+\varepsilon)} u^{2+\varepsilon} \right) =: \lambda Q(u)$$

where

$$\lambda = -\frac{2\beta i^{\varepsilon}}{\gamma(1+\varepsilon)(2+\varepsilon)}$$

For $\kappa_1 = \kappa_2 = 0$

$$u(\zeta) = \left(\frac{c(\varepsilon+1)(\varepsilon+2)}{i^{\varepsilon}\beta \left[\cosh\left(\frac{\sqrt{c}\varepsilon(\zeta-\zeta_0)}{\sqrt{\gamma}}\right)+1\right]}\right)^{1/\varepsilon}$$

- H₂⁻:
 ≡ complex version of the modified KdV-equation
- \mathcal{H}_4^- : assume $Q(u) = u^2(u^2 B^2)(u^2 C^2)$, possible for

$$\kappa_1 = \kappa_2 = 0$$
, $B = iC$ and $C^4 = \frac{15C}{\beta}$

eigenvalues of Jacobian:

$$j_{1} = \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[\frac{i}{2} (4\theta_{B} + \theta_{\lambda}) \right]$$

$$j_{2} = \mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[-\frac{i}{2} (4\theta_{B} + \theta_{\lambda}) \right]$$

- H₂:
 ≡ complex version of the modified KdV-equation
- \mathcal{H}_4^- : assume $Q(u) = u^2(u^2 B^2)(u^2 C^2)$, possible for

$$\kappa_1 = \kappa_2 = 0,$$
 $B = iC$ and $C^4 = \frac{15c}{\beta}$

eigenvalues of Jacobian

$$j_{1} = \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[\frac{i}{2} (4\theta_{B} + \theta_{\lambda}) \right]$$

$$j_{2} = \mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[-\frac{i}{2} (4\theta_{B} + \theta_{\lambda}) \right]$$

- H₂:
 ≡ complex version of the modified KdV-equation
- \mathcal{H}_4^- : assume $Q(u) = u^2(u^2 B^2)(u^2 C^2)$, possible for

$$\kappa_1 = \kappa_2 = 0,$$
 $B = iC$ and $C^4 = \frac{15c}{\beta}$

eigenvalues of Jacobian:

$$j_{1} = \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[\frac{i}{2} (4\theta_{B} + \theta_{\lambda}) \right]$$

$$j_{2} = \mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[-\frac{i}{2} (4\theta_{B} + \theta_{\lambda}) \right]$$

Broken $\mathcal{P}\mathcal{T}$ -symmetric solution for \mathcal{H}_4^- :

- (a) star node at the origin for c=1, $\beta=2+i3$, $\gamma=1$ and $B=(15/2+i3)^{1/4}$
- (b) centre at the origin for c = 1, $\beta = 2 + i3$, $\gamma = -1$ and $B = (30/13 i45/13)^{1/4}$

Reduction to quantum mechanical Hamiltonians:

Again we can relate to simple quantum mechanical models: The identification

$$u \to x$$
, $\zeta \to t$, $\kappa_1 = 0$, $\kappa_2 = \gamma E$, and $\beta = \gamma g(1+\varepsilon)(2+\varepsilon)$

relates $\mathcal{H}_{\varepsilon}^{-}$ to

$$H = E = \frac{1}{2}p^2 - \frac{c}{2\gamma}x^2 + gx^2(ix)^{\varepsilon}$$

For c=0 these are the "classical models" studied in [C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]

Reduction of the \mathcal{H}_2^- -model

$$\mathcal{H}_2^-[u] = \frac{\beta}{12}u^4 + \frac{\gamma}{2}u_x^2$$

Twice integrated equation of motion:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left(\kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} + \beta \frac{1}{12} u^{4} \right) =: \lambda Q(u)$$

Reduction $u \to x$, $\zeta \to x$

$$\kappa_1 = -\gamma \tau$$
, $\kappa_2 = \gamma E_x$, $\beta = -3\gamma g$ and $c = -\gamma \omega^2$

Quartic harmonic oscillator of the form

$$H = E_X = \frac{1}{2}p^2 + \tau X + \frac{\omega^2}{2}X^2 + \frac{g}{4}X^4$$

Boundary cond.: $\kappa_1 = \tau = 0$, $\lim_{\zeta \to \infty} u(\zeta) = 0$, $\lim_{\zeta \to \infty} u_X(\zeta) = \sqrt{2E_X}$

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note: $E_{\scriptscriptstyle X}
eq E_{\scriptscriptstyle U}(a)$

Reduction of the \mathcal{H}_2^- -model

$$\mathcal{H}_2^-[u] = \frac{\beta}{12}u^4 + \frac{\gamma}{2}u_x^2$$

Twice integrated equation of motion:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left(\kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} + \beta \frac{1}{12} u^{4} \right) =: \lambda Q(u)$$

Reduction $u \rightarrow x$, $\zeta \rightarrow t$

$$\kappa_1 = -\gamma \tau$$
, $\kappa_2 = \gamma E_x$, $\beta = -3\gamma g$ and $c = -\gamma \omega^2$

Quartic harmonic oscillator of the form

$$H = E_x = \frac{1}{2}p^2 + \tau x + \frac{\omega^2}{2}x^2 + \frac{g}{4}x^4$$

Boundary cond.: $\kappa_1 = \tau = 0$, $\lim_{\zeta \to \infty} u(\zeta) = 0$, $\lim_{\zeta \to \infty} u_{\mathsf{X}}(\zeta) = \sqrt{2E_{\mathsf{X}}}$

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note:
$$E_x
eq E_u(a)$$

Reduction of the \mathcal{H}_2^- -model

$$\mathcal{H}_2^-[u] = \frac{\beta}{12}u^4 + \frac{\gamma}{2}u_x^2$$

Twice integrated equation of motion:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left(\kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} + \beta \frac{1}{12} u^{4} \right) =: \lambda Q(u)$$

Reduction $u \rightarrow x$, $\zeta \rightarrow t$

$$\kappa_1 = -\gamma \tau$$
, $\kappa_2 = \gamma E_x$, $\beta = -3\gamma g$ and $c = -\gamma \omega^2$

Quartic harmonic oscillator of the form

$$H = E_x = \frac{1}{2}p^2 + \tau x + \frac{\omega^2}{2}x^2 + \frac{g}{4}x^4$$

Boundary cond.: $\kappa_1 = \tau = 0$, $\lim_{\zeta \to \infty} u(\zeta) = 0$, $\lim_{\zeta \to \infty} u_{\mathsf{X}}(\zeta) = \sqrt{2E_{\mathsf{X}}}$

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note:
$$E_x \neq E_u(a)$$

Assuming:
$$Q(u) = (u - A)^2 (u - B)(u - C)$$

$$u(\zeta) = A + \frac{3(\vartheta - 2c)}{\vartheta e^{\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)} - A\beta - e^{-\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)}\beta/8}$$

$$\vartheta := 3c + \beta A^2$$

Reduced solution:

$$\vartheta = 0$$
 $E_x = -\frac{\omega^4}{4g}$ and $A = i\frac{\omega}{\sqrt{g}}$

$$x(t) = \frac{\omega}{\sqrt{-g}} \tanh \left[\frac{\omega(t + t_0)}{\sqrt{2}} \right]$$

Assuming:
$$Q(u) = (u - A)^2(u - B)(u - C)$$

$$u(\zeta) = A + \frac{3(\vartheta - 2c)}{\vartheta e^{\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)} - A\beta - e^{-\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)}\beta/8}$$

$$\vartheta := 3c + \beta A^2$$

Reduced solution:

$$\vartheta = 0$$
 $E_x = -\frac{\omega^4}{4g}$ and $A = i\frac{\omega}{\sqrt{g}}$

$$x(t) = \frac{\omega}{\sqrt{-g}} \tanh \left[\frac{\omega(t + t_0)}{\sqrt{2}} \right]$$

Linearisation about the fixed point *A*: Eigenvalues of the Jacobian matrix

$$j_1 = \pm r_A \sqrt{r_\lambda} \exp\left[\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$$
 $j_2 = \pm r_A \sqrt{r_\lambda} \exp\left[-\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$

Recall: $E_X = -\frac{\omega^4}{4g}$, $\lambda = \frac{\beta}{6\gamma}$

Condition for A to be a centre: $2\theta_A + \theta_\lambda = \pi$ Condition for F_{τ} to be real: $4\theta_{\tau} - \theta_{\tau} = 0$

All possible scenarios exist:

periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies $\begin{array}{l} \text{for } \omega \in i\mathbb{R}, g \in \mathbb{R} \\ \text{for } \omega \in i\mathbb{R}, g \notin \mathbb{R} \\ \text{for } \omega \notin i\mathbb{R}, \omega^4/g \in \mathbb{R} \\ \text{for } \omega \notin i\mathbb{R}, \omega^4/g \notin \mathbb{R} \end{array}$

Linearisation about the fixed point *A*: Eigenvalues of the Jacobian matrix

$$j_1 = \pm r_A \sqrt{r_\lambda} \exp\left[\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$$
 $j_2 = \pm r_A \sqrt{r_\lambda} \exp\left[-\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$

Recall: $E_X = -\frac{\omega^4}{4g}$, $\lambda = \frac{\beta}{6\gamma}$

Condition for *A* to be a centre: $2\theta_A + \theta_\lambda = \pi$ Condition for E_x to be real: $4\theta_\omega - \theta_\alpha = 0, \pi$

All possible scenarios exist:

periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies for $\omega \in i\mathbb{R}, g \in \mathbb{R}$ for $\omega \in i\mathbb{R}, g \notin \mathbb{R}$ for $\omega \notin i\mathbb{R}, \omega^4/g \in \mathbb{R}$ for $\omega \notin i\mathbb{R}, \omega^4/g \notin \mathbb{R}$

Linearisation about the fixed point *A*: Eigenvalues of the Jacobian matrix

$$j_1 = \pm r_A \sqrt{r_\lambda} \exp\left[\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$$
 $j_2 = \pm r_A \sqrt{r_\lambda} \exp\left[-\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$

Recall: $E_X = -\frac{\omega^4}{4g}$, $\lambda = \frac{\beta}{6\gamma}$

Condition for *A* to be a centre: $2\theta_A + \theta_\lambda = \pi$ Condition for E_x to be real: $4\theta_\omega - \theta_\alpha = 0, \pi$

All possible scenarios exist:

periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies for $\omega \in i\mathbb{R}, g \in \mathbb{R}$ for $\omega \in i\mathbb{R}, g \notin \mathbb{R}$ for $\omega \notin i\mathbb{R}, \omega^4/g \in \mathbb{R}$ for $\omega \notin i\mathbb{R}, \omega^4/g \notin \mathbb{R}$

(a) Periodic orbits E=-25/4 for g=4, $\omega=i\sqrt{10}$ (b) Periodic orbits E=-5+i5/2 for g=4+2i, $\omega=i\sqrt{10}$

- (a) Nonperiodic orbits E=-25/4 for g=-4, $\omega=e^{i\pi/4}\sqrt{10}$
- (b) Nonperiodic orbits E=25/4i for g=-4i, $\omega=\sqrt{10}$

The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u - A)(u - B)(u - C)(u - D)

Two free parameters in solution:

$$u(\zeta) = \frac{B(A-D) + A(D-B) \operatorname{sn} \left[\frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{A - D + (D-B) \operatorname{sn} \left[\frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}$$

$$x(t) = A \operatorname{sn} \left[(t + t_0) A \sqrt{2E_x} \right] - \frac{A^4 g}{4E_x}$$

$$x(t) = x(t + n\omega_1 + m\omega_2)$$
 for $n, m \in \mathbb{Z}$,

$$\omega_{1} = \frac{4\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[\frac{-A^{2}g}{gA^{2} + 2\omega^{2}} \right] \quad \omega_{2} = \frac{i2\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[\frac{2A^{2}g + 2\omega^{2}}{gA^{2} + 2\omega^{2}} \right]$$

Assuming: Q(u) = (u - A)(u - B)(u - C)(u - D)

Two free parameters in solution:

$$u(\zeta) = \frac{B(A-D) + A(D-B) \operatorname{sn} \left[\frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{A - D + (D-B) \operatorname{sn} \left[\frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}$$

Reduction:

$$x(t) = A \operatorname{sn} \left[(t + t_0) A \sqrt{2E_x} \right] - \frac{A^4 g}{4E_x}$$

Square root singularity ⇒ no linearisation, alternatively [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.482]

$$x(t) = x(t + n\omega_1 + m\omega_2)$$
 for $n, m \in \mathbb{Z}$,

$$\omega_{1} = \frac{4\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[\frac{-A^{2}g}{gA^{2} + 2\omega^{2}} \right] \quad \omega_{2} = \frac{i2\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[\frac{2A^{2}g + 2\omega^{2}}{gA^{2} + 2\omega^{2}} \right]$$

Assuming: Q(u) = (u - A)(u - B)(u - C)(u - D)

Two free parameters in solution:

$$u(\zeta) = \frac{B(A-D) + A(D-B) \operatorname{sn} \left[\frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{A - D + (D-B) \operatorname{sn} \left[\frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}$$

Reduction:

Introduction

$$x(t) = A \operatorname{sn} \left[(t + t_0) A \sqrt{2E_x} \right] - \frac{A^4 g}{4E_x}$$

Square root singularity \Rightarrow no linearisation, alternatively

$$x(t) = x(t + n\omega_1 + m\omega_2) \quad \text{for } n, m \in \mathbb{Z},$$

$$\omega_1 = \frac{4\sqrt{2}}{\sqrt{gA^2 + 2\omega^2}} K \left[\frac{-A^2 g}{gA^2 + 2\omega^2} \right] \quad \omega_2 = \frac{i2\sqrt{2}}{\sqrt{gA^2 + 2\omega^2}} K \left[\frac{2A^2 g + 2\omega^2}{gA^2 + 2\omega^2} \right]$$

$$n \operatorname{Im} \omega_1 + m \operatorname{Im} \omega_2 = 0$$

Note:

Introduction

One needs
$$t \to t + it_0$$
, $t_0 \in \mathbb{R}$ to avoid pole $t = (n\omega_1 + m\omega_2)/2$

Ito type systems and its deformations

Coupled nonlinear system

$$u_t + \alpha v v_x + \beta u u_x + \gamma u_{xxx} = 0, \qquad \alpha, \beta, \gamma \in \mathbb{C},$$

$$v_t + \delta(uv)_x + \phi v_{xxx} = 0, \qquad \delta, \phi \in \mathbb{C}$$

Hamiltonian for $\delta = \alpha$

$$\mathcal{H}_{I} = -\frac{\alpha}{2}uv^{2} - \frac{\beta}{6}u^{3} + \frac{\gamma}{2}u_{x}^{2} + \frac{\phi}{2}v_{x}^{2}$$

PT-symmetries:

$$\mathcal{PT}_{++}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto v \qquad \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R}$$

$$\mathcal{PT}_{+-}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto -v \qquad \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R}$$

$$\mathcal{PT}_{-+}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto v \qquad \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R}$$

$$\mathcal{PT}_{--}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto -v \qquad \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R}$$

Ito type systems and its deformations

Coupled nonlinear system

$$u_t + \alpha v v_x + \beta u u_x + \gamma u_{xxx} = 0,$$
 $\alpha, \beta, \gamma \in \mathbb{C},$ $v_t + \delta(uv)_x + \phi v_{xxx} = 0,$ $\delta, \phi \in \mathbb{C}$

Hamiltonian for $\delta = \alpha$

$$\mathcal{H}_{I} = -\frac{\alpha}{2}uv^{2} - \frac{\beta}{6}u^{3} + \frac{\gamma}{2}u_{x}^{2} + \frac{\phi}{2}v_{x}^{2}$$

PT-symmetries:

$$\mathcal{PT}_{++}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto v \qquad \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R}$$

$$\mathcal{PT}_{+-}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto -v \qquad \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R}$$

$$\mathcal{PT}_{-+}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto v \qquad \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R}$$

$$\mathcal{PT}_{-+}: x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto -v \qquad \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R}$$

Ito type systems and its deformations

Coupled nonlinear system

$$u_t + \alpha v v_x + \beta u u_x + \gamma u_{xxx} = 0, \qquad \alpha, \beta, \gamma \in \mathbb{C},$$

$$v_t + \delta(u v)_x + \phi v_{xxx} = 0, \qquad \delta, \phi \in \mathbb{C}$$

Hamiltonian for $\delta = \alpha$

$$\mathcal{H}_{I} = -\frac{\alpha}{2}uv^{2} - \frac{\beta}{6}u^{3} + \frac{\gamma}{2}u_{x}^{2} + \frac{\phi}{2}v_{x}^{2}$$

PT-symmetries:

$$\begin{array}{lll} \mathcal{PT}_{++}: \textbf{\textit{X}} \mapsto -\textbf{\textit{X}}, \textbf{\textit{t}} \mapsto -\textbf{\textit{t}}, \textbf{\textit{i}} \mapsto -\textbf{\textit{i}}, \textbf{\textit{u}} \mapsto \textbf{\textit{u}}, \textbf{\textit{v}} \mapsto \textbf{\textit{v}} & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{+-}: \textbf{\textit{X}} \mapsto -\textbf{\textit{X}}, \textbf{\textit{t}} \mapsto -\textbf{\textit{t}}, \textbf{\textit{i}} \mapsto -\textbf{\textit{i}}, \textbf{\textit{u}} \mapsto \textbf{\textit{u}}, \textbf{\textit{v}} \mapsto -\textbf{\textit{v}} & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{-+}: \textbf{\textit{X}} \mapsto -\textbf{\textit{X}}, \textbf{\textit{t}} \mapsto -\textbf{\textit{t}}, \textbf{\textit{i}} \mapsto -\textbf{\textit{i}}, \textbf{\textit{u}} \mapsto -\textbf{\textit{u}}, \textbf{\textit{v}} \mapsto \textbf{\textit{v}} & \text{for } i\alpha, \textbf{\textit{i}}\beta, \gamma, \phi \in \mathbb{R} \end{array}$$

$$\mathcal{PT}_{--}: \mathbf{X} \mapsto -\mathbf{X}, \mathbf{t} \mapsto -\mathbf{t}, \mathbf{i} \mapsto -\mathbf{i}, \mathbf{u} \mapsto -\mathbf{u}, \mathbf{v} \mapsto -\mathbf{v} \quad \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R}$$

Deformed models

$$\mathcal{H}_{\varepsilon,\mu}^{++} = -\frac{\alpha}{2}uv^{2} - \frac{\beta}{6}u^{3} - \frac{\gamma}{1+\varepsilon}(iu_{x})^{\varepsilon+1} - \frac{\phi}{1+\mu}(iv_{x})^{\mu+1}$$

$$\mathcal{H}_{\varepsilon,\mu}^{+-} = \frac{\alpha}{1+\mu}u(iv)^{\mu+1} - \frac{\beta}{6}u^{3} - \frac{\gamma}{1+\varepsilon}(iu_{x})^{\varepsilon+1} + \frac{\phi}{2}v_{x}^{2}$$

$$\mathcal{H}_{\varepsilon,\mu}^{-+} = -\frac{\alpha}{2}uv^{2} - \frac{i\beta}{(1+\varepsilon)(2+\varepsilon)}(iu)^{2+\varepsilon} + \frac{\gamma}{2}u_{x}^{2} - \frac{\phi}{1+\mu}(iv_{x})^{\mu+1}$$

$$\mathcal{H}_{\varepsilon,\mu}^{--} = \frac{\alpha}{1+\mu}u(iv)^{\mu+1} - \frac{i\beta}{(1+\varepsilon)(2+\varepsilon)}(iu)^{2+\varepsilon} + \frac{\gamma}{2}u_{x}^{2} + \frac{\phi}{2}v_{x}^{2}$$

with equations of motion

$$u_{t} + \alpha v v_{x} + \beta u u_{x} + \gamma u_{xxx,\varepsilon} = 0, \quad u_{t} + \alpha v_{\mu} v_{x} + \beta u u_{x} + \gamma u_{xxx,\varepsilon} = 0,$$

$$v_{t} + \alpha (u v)_{x} + \phi v_{xxx,\mu} = 0, \quad v_{t} + \alpha (u v_{\mu})_{x} + \phi v_{xxx} = 0,$$

$$u_{t} + \alpha v v_{x} + \beta u_{\varepsilon} u_{x} + \gamma u_{xxx} = 0, \quad u_{t} + \alpha v_{\mu} v_{x} + \beta u_{\varepsilon} u_{x} + \gamma u_{xxx} = 0,$$

$$v_{t} + \alpha (u v)_{x} + \phi v_{xxx,\mu} = 0, \quad v_{t} + \alpha (u v_{\mu})_{x} + \phi v_{xxx} = 0.$$

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v) = v(v A)^2(v B)^2$
- eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[\cos \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \cos \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$

$$+ i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[\sin \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \sin \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$

energy:

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v}(v-A)(v-B)} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[cA^2 + \kappa_2 A + \frac{\beta}{3} \left(\frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v) = v(v A)^2(v B)^2$
- eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[\cos \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \cos \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$
$$+ i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[\sin \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \sin \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$

energy:

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v}(v-A)(v-B)} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[cA^2 + \kappa_2 A + \frac{\beta}{3} \left(\frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v) = v(v A)^2(v B)^2$
- eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[\cos \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \cos \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$
$$+ i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[\sin \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \sin \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$

energy:

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v}(v-A)(v-B)} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[cA^2 + \kappa_2 A + \frac{\beta}{3} \left(\frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v) = v(v A)^2(v B)^2$
- eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[\cos \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \cos \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$
$$+ i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[\sin \left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2} \right) r_{A} - \sin \left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2} \right) r_{B} \right]$$

• energy:

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}\left[v(\zeta)\right] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}\left[v\right]}{\sqrt{\lambda}\sqrt{v}(v-A)(v-B)} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[cA^2 + \kappa_2 A + \frac{\beta}{3} \left(\frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

Periodic trajectories for type II broken PT-symmetry 0.3 1.0 0.2 0.1 -0.5 -0.1-1.0 -0.20.4 0.6

 $E_{T_A} \approx -0.4275$ (a) v-field

- (b) u-field

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken $\mathcal{P}\mathcal{T}$ -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken \mathcal{PT} -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken $\mathcal{P}\mathcal{T}$ -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken $\mathcal{P}\mathcal{T}$ -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken \mathcal{PT} -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken PT-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

• the type of trajectory does not tell which scenario we are in

- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken \mathcal{PT} -symmetry with real energies
- solitons as in real case, broken $\mathcal{P}\mathcal{T}$ -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken \mathcal{PT} -symmetry with real energies
- solitons as in real case, broken \mathcal{PT} -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken PT-symmetry ⇒ breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken \mathcal{PT} -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken \mathcal{PT} -symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- ullet possible to have broken $\mathcal{P}\mathcal{T}$ -symmetry with real energies
- solitons as in real case, broken PT-symmetry ⇒ breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Thank you for your attention