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Dynamical systems in three different settings

What is the behaviour of standard quantities in dynamical
systems when they are complexified?
Three different scenarios:

PT -symmetry

[PT ,H] = 0 and PT Φ = Φ

spontaneously broken PT -symmetry

[PT ,H] = 0 and PT Φ 6= Φ

broken PT -symmetry

[PT ,H] 6= 0 and PT Φ 6= Φ
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Dynamical systems in three different settings

Quantities of interest:
energy

E =

∫ a

−a
H [u(x)] dx =

∮
Γ
H [u(x)]

du
ux

fixed points
asymptotic behaviour
k-limit cycles
bifurcations
chaos
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Complex KdV equation

The KdV system:
Hamiltonian:

HKdV = −β
6

u3 +
γ

2
u2

x β, γ ∈ C

equation of motion:

ut + βuux + γuxxx = 0

Antilinear symmetries:

PT + : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ u for β, γ ∈ R
PT − : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ −u for iβ, γ ∈ R
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PT -symmetric, spontaneously broken and broken solutions

- Integrating twice:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 − β

6
u3
)

=: λP(u)

with integration constants κ1, κ2 ∈ C
- traveling wave: u(x , t) = u(ζ) with ζ = x − ct
- view this as a 2 dimensional dynamical systems:

uR
ζ = ±Re

[√
λ
√

P(uR + iuI)

]
uI
ζ = ± Im

[√
λ
√

P(uR + iuI)

]
- the fixed points are the zeros of P(u):

uR
ζ = 0

uI
ζ = 0
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PT -symmetric, spontaneously broken and broken solutions

Linearisation at the fixed point uf :(
uR
ζ

uI
ζ

)
= J(uR,uI)

∣∣∣
u=uf

(
uR
ζ

uI
ζ

)
with Jacobian matrix

J(uR,uI)
∣∣∣
u=uf

=

 ±∂ Re[
√
λ
√

P(u)]

∂uR ±∂ Re[
√
λ
√

P(u)]

∂uI

±∂ Im[
√
λ
√

P(u)]

∂uR ±∂ Im[
√
λ
√

P(u)]

∂uI

∣∣∣∣∣∣
u=uf

Linearisation theorem: Consider a nonlinear system which
possesses a simple linearisation at some fixed point. Then in a
neighbourhood of the fixed point the phase portraits of the
linear system and its linearisation are qualitatively equivalent, if
the eigenvalues of the Jacobian matrix have a nonzero real
part, i.e. the linearized system is not a centre.
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PT -symmetric, spontaneously broken and broken solutions

The ten similarity classes for J

ji ∈ R j1 > j2 > 0 unstable node
j2 < j1 < 0 stable node
j2 < 0 < j1 saddle point

j1 = j2, diagonal J ji > 0 unstable star node
ji < 0 stable star node

j1 = j2, nondiagonal J ji > 0 unstable improper node
ji < 0 stable improper node

ji ∈ C Re ji > 0 unstable focus
Re ji = 0 centre
Re ji < 0 stable focus
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PT -symmetric, spontaneously broken and broken solutions (rational)

Further integration:

±
√
λ (ζ − ζ0) =

∫
du

1√
P(u)

assume: P(u) = (u − A)3, which is possible for

λ = − β

3γ
, κ1 = − c2

2β
, κ2 =

c3

6β2 and A =
c
β

then:
u (ζ) =

c
β
− 12γ

β (ζ − ζ0)2

energy:

Ea = −
ac2

3β2

(
c +

36γ

a2 − ζ2
0

)
+

72γ2

15β2

 10c
(

a3 + 3aζ2
0

)
(

a2 − ζ2
0

)3 −
48γ

(
a5 + 10a3ζ2

0 + 5aζ4
0

)
(

a2 − ζ2
0

)5


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PT -symmetric, spontaneously broken and broken solutions (rational)

(a) PT -symmetric: c = 1, β = 2, γ = 3, A = 1/2
(b) broken PT -symmetry: c = 1, β = 2 + i2, γ = 3, A = 1−i

4

The energy is real for (a) and complex for (b).
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

assume: P(u) = (u − A)2(u − B), which is possible for

λ = − β

3γ
, κ1 =

A
2

(βA−2c), κ2 =
A2

6
(3c−2βA), B =

3c
β
−2A

then (with one free parameter):

u (ζ) = B + (A− B) tanh2
[

1
2

√
A− B

√
λ (ζ − ζ0)

]
linearisation: (A− B = rABeiθAB , λ = rλeiθλ)

J(A) =

(
±
√

rABrλ cos
[1

2(θAB + θλ)
]
∓
√

rABrλ sin
[1

2(θAB + θλ)
]

±
√

rABrλ sin
[1

2(θAB + θλ)
]
±
√

rABrλ cos
[1

2(θAB + θλ)
] )

with eigenvalues (∈ iR for A < B, λ > 0 or A > B, λ < 0)

j1 = ±
√

rABrλ exp
[

i
2

(θAB + θλ)

]
j2 = ±

√
rABrλ exp

[
− i

2
(θAB + θλ)

]
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

Energy for the periodic motion for one period:

ET =

∮
Γ
H [u(ζ)]

du
uζ

=

∮
Γ

H [u]√
λ
√

u − B(u − A)
du = −π

√
βγ

3
A3

√
A− B

In general:
- ET ∈ R for PT -symmetric solution
- ET ∈ C for spontaneously broken PT -symmetric solution
- ET ∈ C for broken PT -symmetric solution

But:

ET ∈ R for A =
sin θγ

|β| sin (θγ − 2θβ/3)
exp

(
−i
θβ
3

)
.
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

Energy for the periodic motion for one period:

ET =

∮
Γ
H [u(ζ)]

du
uζ

=

∮
Γ

H [u]√
λ
√

u − B(u − A)
du = −π

√
βγ

3
A3

√
A− B

In general:
- ET ∈ R for PT -symmetric solution
- ET ∈ C for spontaneously broken PT -symmetric solution
- ET ∈ C for broken PT -symmetric solution

But:

ET ∈ R for A =
sin θγ

|β| sin (θγ − 2θβ/3)
exp

(
−i
θβ
3

)
.
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

PT -symmetric solution:

(a) periodic: c = 1, β = 3/10, γ = 3, A = 4, B = 2, T = 2
√

15π
(b) asympt. constant: c = 1, β = 3/10, γ = −3, A = 4, B = 2
ET ∈ R
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

PT -symmetric solution:

(a) periodic: c = 1, β = 3/10, γ = 3, A = 4, B = 2, T = 2
√

15π
(b) asympt. constant: c = 1, β = 3/10, γ = −3, A = 4, B = 2
ET ∈ R
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

spontaneously broken PT -symmetric solution:

(a) periodic: c = 1, β = 3
10 , γ = 3, A = 4 + i

2 and B = 2− i for
Im ζ0 = 0.5 black, Im ζ0 = 0.3 green Im ζ0 = 0.1 blue
(b) asympt. constant: c = 1, β = 3

10 , γ = −3 for A = 4− i
2 ,

B = 2 + i Im ζ0 = −0.5 black; A = A∗, B = B∗, Im ζ0 = 0.5 blue
ET ∈ C
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

spontaneously broken PT -symmetric solution:

(a) periodic: c = 1, β = 3
10 , γ = 3, A = 4 + i

2 and B = 2− i for
Im ζ0 = 0.5 black, Im ζ0 = 0.3 green Im ζ0 = 0.1 blue
(b) asympt. constant: c = 1, β = 3

10 , γ = −3 for A = 4− i
2 ,

B = 2 + i Im ζ0 = −0.5 black; A = A∗, B = B∗, Im ζ0 = 0.5 blue
ET ∈ C
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

broken PT -symmetric solution:

(a) periodic: A = 4, B = 2, c = 1, β = 3
10 , γ = 3 + i

2 , Im ζ0 = 6
(b) asympt. constant: A = 4, B = 2, c = 1, β = 3

10 , γ = −3 + i
2 ,

Im ζ0 = 1/2
ET ∈ C
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PT -symmetric, spontaneously broken and broken solutions (trigonometric)

broken PT -symmetric solution:

(a) periodic: A = 4, B = 2, c = 1, β = 3
10 , γ = 3 + i

2 , Im ζ0 = 6
(b) asympt. constant: A = 4, B = 2, c = 1, β = 3

10 , γ = −3 + i
2 ,

Im ζ0 = 1/2
ET ∈ C



Introduction Complex KdV equations Deformations of the KdV equation Ito type systems Conclusions

PT -symmetric, spontaneously broken and broken solutions (trigonometric)

broken PT -symmetric solution:

(a) periodic solution with complex energy ET = −10.52 + i1.67
(b) periodic solution with real energy ET = −4π
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PT -symmetric, spontaneously broken and broken solutions (elliptic)

assume: P(u) = (u − A)(u − B)(u − C), which is possible for

λ = − β

3γ
, κ1 =

1
6

[
β(A2 + AC + C2)− 3c(A− C)

]
κ2 =

AC
6

[3c − β(A + C)] and B =
3c
β
− (A + C)

then (with two free parameter):

u (ζ) = A + (B − A) ns 2
[

1
2

√
B − A

√
λ (ζ − ζ0)

∣∣∣∣A− C
A− B

]
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PT -symmetric, spontaneously broken and broken solutions (elliptic)

PT -symmetric solution:

A = 1, B = 3, C = 6, c = 1, β = 3/10, γ = −3
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PT -symmetric, spontaneously broken and broken solutions (elliptic)

spontaneously broken PT -symmetric solution:

(a) −64 ≤ ζ ≤ 18 solid (red) and 18 < ζ ≤ 200 dashed (black)
(b) −200 < ζ < 1400
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PT -symmetric, spontaneously broken and broken solutions (elliptic)

broken PT -symmetric solution:

(a) A = 1, B = 3, C = 6, c = 1, β = 3/10 and γ = 3 + 2i for
−200 ≤ ζ ≤ 200;
(b) A = 1, B = 2 + 3i , C = 6, c = 1, β = 3/10− i/10 and γ = 3
for −200 ≤ ζ ≤ 200
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Relation to quantum mechanical Hamiltonians

Reduction to quantum mechanical Hamiltonians:
For instance:

u → x , ζ → t , κ1 = 0, κ2 = γE , β = 6cg, γ = −c

converts

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 − β

6
u3
)

into Newton’s equations for

H = E =
1
2

p2 +
1
2

x2 − gx3

treated in
[C. Bender, D. Brody, D. Hook, Phys. A41 (2008) 352003]
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PT -symmetric, spontaneously broken and broken solutions (solitons)

Soliton solutions:
Hirota’s bilinear method (u (x , t) = 12γ

β (ln τ)xx )

6γ
β

(
γD4

x + DxDt

)
τ · τ = 0

one soliton solution:

u (x , t) =
3γp2

1

β cosh2 [1
2(p1x − γp3

1t + φ1)
]

two soliton solution:

u (x, t) =
24γ

∑6
k=0 ck (−1)k pk

2 p6−k
1

β (p1 + p2) 4
[

2 cosh
(

1
2 (η1 − η2)

)
+ e−

η1
2 −

η2
2

(
eη1+η2 (p1−p2)4

(p1+p2)4 + 1
)]2

where we abbreviated ηi = pix − γp3
i t + φi for i = 1,2 with

c0 = 1 + cosh η2, c1 = 4 sinh η2, c2 = cosh η1 + 6 cosh η2 − 1, c3 = 4 (sinh η1 + sinh η2)

and ci(η1, η2) = c6−i(η2, η1)
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PT -symmetric, spontaneously broken and broken solutions (solitons)

PT -symmetric complex one-soliton solution

(a) PT -symmetric solution with β = 6, γ = 1, p1 = 1.2 for
φ = i0.3 blue, φ = i0.8 red, φ = i1.1 black, t = −2
(b) Broken PT -symmetric solution β = 6, γ = 1 + i0.4, p1 = 1.2
for φ = i0.3 blue, φ = i0.8 red, φ = i1.1 black t = −2
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PT -symmetric, spontaneously broken and broken solutions (solitons)

PT -symmetric complex one-soliton solution

β = 6, γ = 1, p1 = 1.2, φ = i0.3,
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PT -symmetric, spontaneously broken and broken solutions (solitons)

Complex one-soliton solution with broken PT -symmetry

β = 6, γ = 1 + i0.4, p1 = 1.2, φ = i0.3,
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PT -symmetric, spontaneously broken and broken solutions (solitons)

We obtain a breather regaining its shape when:

u (x + ∆x , t) = u (x , t + ∆t )

with

∆t =
2πpr(

p4
i − p4

r
)
γ i − 2pipr

(
p2

i + p2
r
)
γr

∆x = 2π
pi
(
3p2

r − p2
i
)
γ i + 2πpr

(
3p2

i − p2
r
)
γr(

p4
i − p4

r
)
γ i − 2pipr

(
p2

i + p2
r
)
γr

speed of the soliton:

v = −∆x

∆t
=
(

3p2
i − p2

r

)
γr −

pi
(
p2

i − 3p2
r
)
γ i

pr
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PT -symmetric, spontaneously broken and broken solutions (solitons)

Complex one-soliton solution with broken PT -symmetry

β = 6, γ = 1 + i/2, p1 = 2, φ = i0.8 and ∆t = −π/2 for different
times t = −π/2 solid (blue), t = −1 dashed (red), t = 0
dasheddot (orange), t = 0.7 dotted (green), and t = π/2
dasheddotdot (black) (a) real part; (b) imaginary part
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PT -symmetric, spontaneously broken and broken solutions (solitons)

PT -symmetric two soliton solution

β = 6, γ = 1, p1 = 1.2, p2 = 2.2, φ1 = i0.1 and φ2 = i0.2. (a)
t = −2 solid (blue), t = −0.2 dashed (red), t = 0.2 dotted
(black); (b) t = 0.3 dotted (black), t = 0.8 dashed (red), t = 2.0
solid (blue)
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PT -symmetric, spontaneously broken and broken solutions (solitons)

Two soliton solution with broken PT -symmetry

β = 6, γ = 1 + iπ/8, p1 = 2(2/3)1/3, p2 = 2, φ1 = i0.1 and
φ2 = i0.2. (a) t = −4 solid (blue), t = −3.5 dashed (red),
t = −2. dotted (black); (b) t = 0.7 solid (blue), t = 2 dashed
(red), t = 8 dotted (black)
∆1

t = −3, ∆2
t = −2,
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PT -symmetric, spontaneously broken and broken solutions (solitons)

PT -symmetric complex two-soliton solution

Real part for: β = 6, γ = 1, p1 = 1.2, p2 = 2.2, φ1 = i0.1,
φ2 = i0.2
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PT -symmetric, spontaneously broken and broken solutions (solitons)

Complex two-soliton solution with broken PT -symmetry

Real part for: β = 6, γ = 1 + iπ/8, p1 = 2(2/3)1/3, p2 = 2,
φ1 = i0.1 and φ2 = i0.2
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PT -symmetric, spontaneously broken and broken solutions (solitons)

Energy for the one-soliton:

E1s = −
36γ3p5

1

5β2

Energy for the two-soliton:

PT -symmetric case:

E2s ≈ −10.8049 = E1s(p1) + E1s(p2)

Broken PT -symmetric case:

E2s ≈ −7.8876− i9.4327 = E1s(p1) + E1s(p2)
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General deformation prescription:
PT -anti-symmetric quantities:

PT : φ(x , t) 7→ −φ(x , t) ⇒ δε : φ(x , t) 7→ −i[iφ(x , t)]ε

Two possibilities for the KdV Hamiltonian

δ+
ε : ux 7→ ux ,ε := −i(iux )ε or δ−ε : u 7→ uε := −i(iu)ε,

such that

H+
ε = −β

6
u3− γ

1 + ε
(iux )ε+1 H−ε =

β

(1 + ε)(2 + ε)
(iu)ε+2+

γ

2
u2

x

with equations of motion

ut + βuux + γuxxx ,ε = 0 ut + iβuεux + γuxxx = 0
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TheH+
ε -models

The H+
ε -models

Integrating twice yields now:

u(n)
ζ = exp

[
iπ

2(ε+ 1)
(1− ε+ 4n)

]
[λεP(u)]

1
1+ε

Again we can construct systematically solutions by assuming:

P(u) = (u − A)3,
P(u) = (u − A)2(u − B),
P(u) = (u − A)(u − B)(u − C)

but now we have branch cuts.

For instance:
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[λεP(u)]

1
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Again we can construct systematically solutions by assuming:
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but now we have branch cuts.
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TheH+
ε -models

Broken PT -symmetric rational solutions for H+
1/3

Different Riemann sheets for A = (1− i)/4, c = 1, β = 2 + 2i
and γ = 3
(a) u(1)

(b) u(2)
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TheH+
ε -models

PT -symmetric trigonometric/hyperbolic solutions

A = 4,B = 2, c = 1, β = 2 and γ = 3
(a) H+

−1/2

(b) H+
−2/3
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TheH+
ε -models

Broken PT -symmetric trigonometric solutions for H+
−1/2

(a) Spontaneously broken PT -symmetry with A = 4 + i ,
B = 2− 2i , c = 1, β = 3/10 and γ = 3
(b) broken PT -symmetry with A = 4, B = 2, c = 1, β = 3/10
and γ = 3 + i
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TheH+
ε -models

Elliptic solutions for H+
−1/2:

(a) PT -symmetric with A = 1, B = 3, C = 6, β = 3/10, γ = −3
and c = 1
(b) spontaneously broken PT -symmetry with A = 1 + i ,
B = 3− i , C = 6, β = 3/10, γ = −3 and c = 1
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TheH−ε -models

The H−ε -models
Integrating twice gives now:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 − β iε

(1 + ε)(2 + ε)
u2+ε

)
=: λQ(u)

where
λ = − 2βiε

γ(1 + ε)(2 + ε)

For κ1 = κ2 = 0

u (ζ) =

 c(ε+ 1)(ε+ 2)

iεβ
[
cosh

(√
cε(ζ−ζ0)√

γ

)
+ 1
]
1/ε
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TheH−ε -models

H−2 :
≡ complex version of the modified KdV-equation
H−4 :
assume Q(u) = u2(u2 − B2)(u2 − C2), possible for

κ1 = κ2 = 0, B = iC and C4 =
15c
β

eigenvalues of Jacobian:

j1 = ±i
√

rλr2
B exp

[
i
2

(4θB + θλ)

]
j2 = ∓i

√
rλr2

B exp
[
− i

2
(4θB + θλ)

]
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TheH−ε -models

Broken PT -symmetric solution for H−4 :

(a) star node at the origin for c = 1, β = 2 + i3, γ = 1 and
B = (15/2 + i3)1/4

(b) centre at the origin for c = 1, β = 2 + i3, γ = −1 and
B = (30/13− i45/13)1/4
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Relation to quantum mechanical Hamiltonians

Reduction to quantum mechanical Hamiltonians:
Again we can relate to simple quantum mechanical models:
The identification

u → x , ζ → t , κ1 = 0, κ2 = γE , and β = γg(1+ε)(2+ε)

relates H−ε to

H = E =
1
2

p2 − c
2γ

x2 + gx2(ix)ε

For c = 0 these are the "classical models" studied in
[C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Relation to quantum mechanical Hamiltonians

Reduction of the H−2 -model

H−2 [u] =
β

12
u4 +

γ

2
u2

x

Twice integrated equation of motion:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 + β
1

12
u4
)

=: λQ(u)

Reduction u → x , ζ → t

κ1 = −γτ, κ2 = γEx , β = −3γg and c = −γω2

Quartic harmonic oscillator of the form

H = Ex =
1
2

p2 + τx +
ω2

2
x2 +

g
4

x4

Boundary cond.: κ1 = τ = 0, lim
ζ→∞

u(ζ) = 0, lim
ζ→∞

ux (ζ) =
√

2Ex

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note: Ex 6= Eu(a)
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The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u − A)2(u − B)(u − C)

u(ζ) = A +
3 (ϑ− 2c)

ϑe
√
ϑ−2c
γ

(ζ−ζ0) − Aβ − e−
√
ϑ−2c
γ

(ζ−ζ0)
β/8

ϑ := 3c + βA2

Reduced solution:

ϑ = 0 Ex = −ω
4

4g
and A = i

ω
√

g

x(t) =
ω√
−g

tanh
[
ω(t + t0)√

2

]
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The quartic harmonic oscillator from complex modified KDV

Linearisation about the fixed point A:
Eigenvalues of the Jacobian matrix

j1 = ±rA
√

rλ exp
[

i
2

(2θA + θλ)

]
j2 = ±rA

√
rλ exp

[
− i

2
(2θA + θλ)

]
Recall: Ex = −ω4

4g , λ = β
6γ

Condition for A to be a centre: 2θA + θλ = π
Condition for Ex to be real: 4θω − θg = 0, π

All possible scenarios exist:

periodic orbits with real energies for ω ∈ iR,g ∈ R
periodic orbits with nonreal energies for ω ∈ iR,g /∈ R
nonperiodic orbits with real energies for ω /∈ iR, ω4/g ∈ R
nonperiodic orbits with nonreal energies for ω /∈ iR, ω4/g /∈ R
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The quartic harmonic oscillator from complex modified KDV
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j2 = ±rA

√
rλ exp

[
− i

2
(2θA + θλ)

]
Recall: Ex = −ω4

4g , λ = β
6γ

Condition for A to be a centre: 2θA + θλ = π
Condition for Ex to be real: 4θω − θg = 0, π

All possible scenarios exist:

periodic orbits with real energies for ω ∈ iR,g ∈ R
periodic orbits with nonreal energies for ω ∈ iR,g /∈ R
nonperiodic orbits with real energies for ω /∈ iR, ω4/g ∈ R
nonperiodic orbits with nonreal energies for ω /∈ iR, ω4/g /∈ R
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The quartic harmonic oscillator from complex modified KDV

(a) Periodic orbits E = −25/4 for g = 4, ω = i
√

10
(b) Periodic orbits E = −5 + i5/2 for g = 4 + 2i , ω = i

√
10
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The quartic harmonic oscillator from complex modified KDV

(a) Nonperiodic orbits E = −25/4 for g = −4, ω = eiπ/4
√

10
(b) Nonperiodic orbits E = 25/4i for g = −4i , ω =

√
10
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The quartic harmonic oscillator from complex modified KDV

Assuming: Q(u) = (u − A)(u − B)(u − C)(u − D)
Two free parameters in solution:

u(ζ) =

B(A− D) + A(D − B) sn
[√

λ(B−C)(A−D)

2 (ζ − ζ0)| (A−C)(B−D)
(B−C)(A−D)

]2

A− D + (D − B) sn
[√

λ(B−C)(A−D)

2 (ζ − ζ0)| (A−C)(B−D)
(B−C)(A−D)

]2

Reduction:

x(t) = A sn
[
(t + t0)A

√
2Ex

∣∣∣ −A4g
4Ex

]
Square root singularity⇒ no linearisation, alternatively

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

x(t) = x(t + nω1 + mω2) for n,m ∈ Z,

ω1 =
4
√

2√
gA2 + 2ω2

K
[
−A2g

gA2 + 2ω2

]
ω2 =

i2
√

2√
gA2 + 2ω2

K
[

2A2g + 2ω2

gA2 + 2ω2

]
n Imω1 + m Imω2 = 0
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The quartic harmonic oscillator from complex modified KDV

Note:
One needs t → t + it0, t0 ∈ R to avoid pole t = (nω1 + mω2)/2
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The undeformed model

Ito type systems and its deformations
Coupled nonlinear system

ut + αvvx + βuux + γuxxx = 0, α, β, γ ∈ C,
vt + δ(uv)x + φvxxx = 0, δ, φ ∈ C

Hamiltonian for δ = α

HI = −α
2

uv2 − β

6
u3 +

γ

2
u2

x +
φ

2
v2

x

PT -symmetries:

PT ++ : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ u, v 7→ v for α, β, γ, φ ∈ R
PT +− : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ u, v 7→ −v for α, β, γ, φ ∈ R
PT −+ : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ −u, v 7→ v for iα, iβ, γ, φ ∈ R
PT −− : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ −u, v 7→ −v for iα, iβ, γ, φ ∈ R
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Deformed models

Deformed models

H++
ε,µ = −α

2
uv2 − β

6
u3 − γ

1 + ε
(iux )ε+1 − φ

1 + µ
(ivx )µ+1

H+−
ε,µ =

α

1 + µ
u(iv)µ+1 − β

6
u3 − γ

1 + ε
(iux )ε+1 +

φ

2
v2

x

H−+
ε,µ = −α

2
uv2 − iβ

(1 + ε)(2 + ε)
(iu)2+ε +

γ

2
u2

x −
φ

1 + µ
(ivx )µ+1

H−−ε,µ =
α

1 + µ
u(iv)µ+1 − iβ

(1 + ε)(2 + ε)
(iu)2+ε +

γ

2
u2

x +
φ

2
v2

x

with equations of motion

ut + αvvx + βuux + γuxxx ,ε = 0, ut + αvµvx + βuux + γuxxx ,ε = 0,
vt + α(uv)x + φvxxx ,µ = 0, vt + α(uvµ)x + φvxxx = 0,

ut + αvvx + βuεux + γuxxx = 0, ut + αvµvx + βuεux + γuxxx = 0,
vt + α(uv)x + φvxxx ,µ = 0, vt + α(uvµ)x + φvxxx = 0.
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Deformed models

Solution procedure
• similar as for KdV, but the degrees of the polynomials is higher
• type II R(v) = v(v − A)2(v − B)2

• eigenvales of the Jacobian:

jk = ±
√

rArλ

[
cos

(
3θA

2
+
θλ
2

)
rA − cos

(
θA

2
+ θB +

θλ
2

)
rB

]
+i(−1)k√rArλ

[
sin
(

3θA

2
+
θλ
2

)
rA − sin

(
θA

2
+ θB +

θλ
2

)
rB

]
• energy:

ETA =

∮
Γ
H [v(ζ)]

dv
vζ

=

∮
Γ

H [v ]√
λ
√

v(v − A)(v − B)
dv

= −π
√
−γκ2

α
√

A(A− B)

[
cA2 + κ2A +

β

3

( c
α

+
κ2

αA

)3
]
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Deformed models

Periodic trajectories for type II broken PT -symmetry

ETA ≈ −0.4275
(a) v -field
(b) u-field
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Conclusions:
the type of trajectory does not tell which scenario we are in
all types of fixed points occur (except saddle points)
there is no chaos by Poincaré-Bendixson theorem
not Hamiltonian in Re(u), Im(u)

energies can be computed effectively in complex models
possible to have broken PT -symmetry with real energies
solitons as in real case, broken PT -symmetry⇒ breather
deformed models extend over several Riemann sheets
new features in Ito systems, such as kink or cusp solutions
quantum mechanical models result from simple reductions
we expect similar behaviour for other nonlinear equations
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Thank you for your attention
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