Geometry & Vectors

Coursework 1

(Hand in the solutions to all questions by Tuesday 28/02/06 16:00)

- 1) (5 marks) What is meant by an axiom, a theorem, a lemma, a corollary and a proposition? Provide a short definition for each of these notions.
- 2) (15 marks) The vectors $\vec{i}, \vec{j}, \vec{k}$ constitute an orthonormal basis. Given are the two arbitrary vectors

 $\vec{u} = -\vec{i} + \lambda \vec{j} + \vec{k}$ and $\vec{v} = 2\vec{j} - \vec{k}$ with $\lambda \in \mathbb{R}$.

- i) Find all vectors which are perpendicular to the plane which contains \vec{u} and \vec{v} . Subsequently determine λ such that these vectors have length 3.
- ii) Determine the constant λ , such that the angle between the vectors \vec{u} and \vec{v} is $\pi/6$.
- iii) For $\lambda = 1$ verify the Cauchy-Schwarz and the triangle inequality

 $-\left|\vec{u}\right|\left|\vec{v}\right| \leq \vec{u} \cdot \vec{v} \leq \left|\vec{u}\right|\left|\vec{v}\right| \qquad \text{and} \qquad \left|\vec{u} + \vec{v}\right| \leq \left|\vec{u}\right| + \left|\vec{v}\right|,$

respectively. Can one find a λ such that the equal signs holds in these identities?

- **3)** (10 marks) Given are three arbitrary vectors \vec{u} , \vec{v} and \vec{w} .
 - i) Prove that

$$\vec{u} \times \vec{v} \cdot \vec{u} = 0$$

ii) Use the identity in i) to simplify the expression

$$(\vec{u} + \vec{v}) \cdot (\vec{v} + \vec{w}) \times (\vec{w} + \vec{u})$$

4) (10 marks) By evaluating the cross product between two unit vectors prove the two identities

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta.$$

5) (10 marks) ABC constitutes a triangle. The point D is on the line \overrightarrow{BC} between the points B and C, the point E is on the line \overrightarrow{AC} between the points A and C and the point F is on the line \overrightarrow{AB} between the points A and B. The following ratios hold

$$\frac{BD}{BC} = \frac{CE}{CA} = \frac{AF}{AB} = \frac{2}{3}$$

Sketch the corresponding figure and show that

$$\overrightarrow{AD} = \overrightarrow{EB} + \overrightarrow{FC}.$$