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@ Extended Calogero-Moser-Sutherland models
© From constraint field equations
© Deformed Calogero-Moser-Sutherland models
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Extended Calogero-Moser-Sutherland models

Calogero-Moser-Sutherland models (extended)

BK =5t 5 2,915 i#k (q; — qk)? 92 iz (g qo)”

with g, g € R, g, p € R+1
[B. Basu-Mallick, A. Kundu, Phys. Rev. B62 (2000) 9927]
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Extended Calogero-Moser-Sutherland models

Calogero-Moser-Sutherland models (extended)

BK =5t 5 2,915 i#k (q; — qk)? 92 iz (g qo)”

with g, g € R, g, p € R+1
[B. Basu-Mallick, A. Kundu, Phys. Rev. B62 (2000) 9927]

@ Representation independent formulation?

© Other potentials apart from the rational one?

© Other algebras apart from Ay, B, or Coxeter groups?
Q Is it possible to include more coupling constants?

©@ Are the extensions still integrable?



Constructing invariant CMS-models
oe
Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
HH_Z 2Z€Agﬂzv(a q)+llu p

- Now A is any root system

p=1/2% ca daf(a-qla, f(x) =1/x V(x) = 3(x)
[A. F, Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
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Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
HH_Z 2Z€Agﬂzv(a q)+llu p

- Now A is any root system
1=1/2% caGaf(a-qa, f(x) =1/x V(x) = f3(x)
[A. F., Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
- Not so obvious that one can re-write
Hy 2(P+’M ZZeAQa V(a-q), Qa—{ P+ 023 acl,

= H,=n"hcan  with n=e 9
- integrability follows trivially L = [L, M]: L(p) — L(p + in)
- computing backwards for any CMS-potential

1, 1 . : 1
Hu= g+ 5 0 f OV (e a) Finep— i

-2 =0a282 Y V(a-q)+a2g? > V(a-q)only for V rational
a€ls aEl
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Constrained field equations — complex Calogero models

@ From real fields to complex particle systems

i)
e.g. Benjamin-Ono equation
Ur + Uly + AHuy, =0 )
H = Hilbert transform, i.e. Hu(x) = £ [*° %X gz

Then

A i i
2;( X — Zg xz,f) €R
satisfies (*) iff zx obeys the A,-Calogero equ. of motion
Z = X > (z-2z)°
k=7 2.(54-2)
ki

[H. Chen, N. Pereira, Phys. Fluids 22 (1979) 187]
[talk by J. Feinberg, PHHQP workshop VI, 2007, London ]
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Constrained field equations — complex Calogero models

i) restrict to submanifold
Theorem: [Airault, McKean, Moser, CPAM, (1977) 95 ]
Given a Hamiltonian H(x, ..., Xn, X1, ..., Xn) With flow
Xj = OH/0x; and X = —0H/0x; i=1,....n
and conserved charges /; in involution with H.i.e.
{l;, H} = 0. Then the locus of grad / = 0 is invariant.
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Constrained field equations — complex Calogero models

i) restrict to submanifold
Theorem: [Airault, McKean, Moser, CPAM (1977) 95 ]
Given a Hamiltonian H(x, ..., Xn, X1, ..., Xn) With flow

Xj = OH/0x; and X = —0H/0x; i=1,....n

and conserved charges /; in involution with H.i.e.
{l;, H} = 0. Then the locus of grad / = 0 is invariant.
Example: Boussinesq equation

vie = a( Vz)xx + BViyxx + Vx ")

Xt—CZ (x —z¢)~

satisfies (**) iff b=1/12, c=-a/2 and Zy obeys

Then

. . oOH
_ ) -3 _
Zy = 2 E #k(z/ — Zk) Sz = ~ 9z

Z = 1—Zj¢k(zj—zk)*2 & grad(lb— 1) =0
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Constrained field equations — complex Calogero models
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[P. Assis and A.F., J. Phys. A42 (2009) 425206]
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Calogero-Moser-Sutherland models (deformed)

Consider

Antilinearly invariant deformed Calogero model

2 m? . 1 .
Hproms = %Jrﬁ Z(Q'Q)2+§ZQQV(@'Q)7 m, g € R

aEAg acA
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (Az)

g1 — G =qjcoshe +ivV3(qe — gs)sinhe
g — & =qcoshe +iv3(gs — gi)sinhe
g — &5 =qscoshe +ivV3(gs — g»)sinhe
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (Az)

g1 — &1 =qjcoshe +iv3(qe — gs)sinhe

g — & =qcoshe +iv3(gs — gi)sinhe

g — &5 =qscoshe +ivV3(gs — g»)sinhe
With standard 3D representation for the simple A-roots
oy ={1,-1,0}, ap = {0,1, -1}, gj :== g; — g; compute

~ /3 .
@1-q = Q2c08he — \?3(%3 + @o3) sinh e,
~ 1 .
az-q = Qezcoshe — \/é(cm + @a1) sinhe,
~ 2
(1 +a2)-q = —

coshe + + sinhe.
g3 \@(012 Q32)
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (Az)
g1 — &1 =qjcoshe +iv3(qe — gs)sinhe
g — & =qcoshe +iv3(gs — gi)sinhe
g — &5 =qscoshe +ivV3(gs — g»)sinhe
With standard 3D representation for the simple A-roots
oy ={1,-1,0}, ap = {0,1, -1}, gj :== g; — g; compute

a1-q = @ coshe — —— (913 + go3) sinhe
1 12 /3 8T e ’
~ (3
. = coshe — — + sinhe,
az-q Qo3 \@(%1 31)

(v +a2)-q = gyzgcoshe+ \%3(%2 + gs2) sinhe.

Symmetries:

Sy Qi < G2, Q3 < Q3,1 — —1,
Sy Q2 <> Q3, Q1 <> Q1,1 — —1.
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Unbroken P7-symmetry guarantees real eigenvalues

@ P7T-symmetry: P7T: X— —X p—p |i— —i
(P:x——x,p——p; T:X—X,p— —p,i — —I)
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recall

Unbroken P7-symmetry guarantees real eigenvalues

@ P7T-symmetry: P7T: X— —X p—p |i— —i
(P:x——x,p——p; T:X—X,p— —p,i — —I)
@ PT is an anti-linear operator:

PT (AP + pV) = N*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7-symmetry:
[H,PT]=0 A PTd=0d =c=c" forHO=:cd

@ Proof:
ed =HS =HPTS =PTHS =PTcd
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recall

Unbroken P7-symmetry guarantees real eigenvalues

@ P7T-symmetry: P7T: X— —X p—p |i— —i
(P:x——x,p——p; T:X—X,p— —p,i — —I)
@ PT is an anti-linear operator:

PT(A® + pV) = X*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7-symmetry:
[H,PT]=0 A PTd=0 =c=c" forH®=cd

@ Proof:
ed=HO =HPTO =PTHS =PTecd=c*PTo
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Unbroken P7-symmetry guarantees real eigenvalues

@ P7T-symmetry: P7T: X— —X p—p |i— —i
(P:x——x,p——p; T:X—X,p— —p,i — —I)
@ PT is an anti-linear operator:

PT (AP + pV) = N*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7-symmetry:
[H,PT]=0 A PTd=0 =ec=c" forH®=¢cd

@ Proof:
ed=HO=HPTO=PTHS=PTecb=c*"PTd=c*0
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Unbroken P7-symmetry guarantees real eigenvalues

@ P7T-symmetry: P7T: X— —X p—p |i— —i
(P:x——x,p——p; T:X—X,p— —p,i — —I)
@ PT is an anti-linear operator:

PT (AP + pV) = N*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7-symmetry:
[H,PT]=0 A PTd=0¢ =c=c" forHO=¢0

@ Proof:
eP=HO=HPTD=PTHDP =PTcd =c*PTb=c"0

PT-symmetry is only an example of an antilinear involution
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Constructing invariant CMS-models
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Unbroken P7-symmetry guarantees real eigenvalues

@ P7T-symmetry: P7T: X— —X p—p |i— —i
(P:x——x,p——p; T:X—X,p— —p,i — —I)
@ PT is an anti-linear operator:

PT (AP + pV) = N*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7-symmetry:
[H,PT]=0 A PTd=0 =c=c" forH®=cd

@ Proof:
ed=HO=HPTO=PTHS=PTcdb=c*"PTd=c*

PT-symmetry is only an example of an antilinear involution
[E. Wigner, J. Math. Phys. 1 (1960) 409]
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Note, this Hamiltonian also results from deforming the roots:

a1 — &y = aqcoshe +iv3sinhels
as — Qo = ascoShe — ivV3sinhe)y
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Calogero-Moser-Sutherland models (deformed)

Note, this Hamiltonian also results from deforming the roots:

a1 — &y = aqcoshe +iv3sinhels
ap — d&o = apcoshe — iv3sinhe);

Thus
o> mP 5. ) 1 .
Hproms = 5 + 35 > (@ +§ZQaV(Oé'Q)7 m,ga € R
aclg aclA
2
_ P ﬂ 41 5
= S +1g ZA: 2§gav(a d), mga €R
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Calogero-Moser-Sutherland models (deformed)

Note, this Hamiltonian also results from deforming the roots:

a1 — &y = aqcoshe +iv3sinhels
as — Qo = ascoShe — ivV3sinhe)y

Thus
p2 m? 5 2 1 .
Hproms = ?Jrﬁz : +§ZgaV(04'Q)a m,gs € R
achs aeh
2 2
_ P ﬂ L1 y

Symmetries:

o] 1 Gy =0y, 8= 01+02 & Q1 Qe, Gz Q31— —0

05 1 Gp e =G, 04— a1 +h2 & Qe g1 ghr— —
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General strategy, the construction procedure

Construction of antilinear deformations
@ Involution € W = Coxeter group = deform in antilinear way
@ Find a linear deformation map:

§: A — Ae) a— & =0.a

e ACR", &i(e)eAle) cR"@R", eceR
@ Find a second map that leaves A(e) invariant

w: Ae) — A(e), & — wh

(1) @:a=pjar + ppaz — pjwar + pzwaz for py, py € C
(ii) wow =1
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General strategy, the construction procedure

Make the following assumptions
(i) w decomposes as

Ww=TW=QT
with & € W, &? =T and complex conjugation 7
(if) there are at least two different w; with i =12, ...
(iii) there is a similarity transformation

wi =000 =70, fori=1,...,k>2

(iv) 6. is an isometry for the inner products on A(e) therefore

0> =6-" and  detd. = +1

(v) inthe limit ¢ — 0 we recover the undeformed case

limé@. =1
e—0 c
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Solutions for complex root systems

Many solutions were constructed
A(e) for As

0. =l + ro? + 11 (U — 03)

with explicit representation

-1 00 1 1 0
o1 = 1 1 O , 00 = O —1 0 )
0 0 1 o 1 1
10 O -1 -1 0
o3 = (01 1 ]eo=( 1 1 1],
00 —1 0 -1 —1
0O_ =0103,04 = 02,0 =0_04
o — i —2ur - — I
0. = 2u1 o — e + 211 2u1

- — I —2u1y rn — iR
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Solutions for complex root systems

all constraints require

(ro+r2) [(ro+f2)2—4"12} = 1
rh—rh+2rn = (fo—f2—|-2f1)(ro+r2)
(h+n) = (fo—r)?—4r

these are solved by

ro(e) = coshe, ri(e) = +1/cosh?s —coshe, ra(c) = 1—coshe
= simple deformed roots

& =cosheaq + (coshe — 1)az—1v/2V/cosh e sinh (%) (a1 +2a2+ag3)

3

&p=(2coshe — 1)ap + 21v/2V/cosh e sinh (2) (1 + o + a3),

&z=cosheag + (coshe — 1)ag —1v/2V/coshe sinh (%) (1 +2a2+a3)

remaining positive roots
Q4 = Q1 + Go, G5 := Gp + O3, O 1= O + G + a3.
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Solutions for complex root systems

A(e) for Ay,_1-subseries
closed solution

0. =gl + fopo®™ + ity (U” — O'_n) ,

-With oy =1 =19, 1y = £4/12 — 1y
- useful choice ry = coshe
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Solutions for complex root systems

A(e) for Ay,_1-subseries
closed solution

0. =gl + fopo®™ + ity (U” — O'_n) ,

-With oy =1 =19, 1y = £4/12 — 1y
- useful choice ry = coshe

A(e) for Eg
o —2uh 0 —2uh -2
21 Iy + b 2ur 21 2ur
0. — 0 2 Iy + 2uh 4irp 3ur
£ —2ir  —2ih e ro — 5urp P
2ur> 2ur 3ur dur, o + 21>
—h —2uh —2ih —2ih 0

r,==+1/V3y/r8 —1,rp=coshe

—h
2
2
—2uh
0
fo
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Solutions for complex root systems

A(e) for Ay,_1-subseries
closed solution

0. =gl + fopo®™ + ity (U” — O'_n) ,

-With oy =1 =19, 1y = £4/12 — 1y
- useful choice ry = coshe

A(e) for Eg
o —2uh 0 —2uh -2 —1r
21 Iy + b 2ur 21 2ur 2
0. — 0 2 Iy + 2uh 4irp 3ur 2
£ —2ir  —2ih e ro — 5urp P —2ih
2 2 3ur dary ro + 2> 0
—h —2uh —2ih —2ih 0 o

r,==+1/V3y/r8 —1,rp=coshe

A(e) for By, 1-subseries
no solution based on factorisation of the Coxeter element



Constructing invariant CMS-models
[e]e]e] ]

Solutions for complex root systems

with different w; we find for instance for By, 1

¢
642!'_1 = cosh Qi1 + isinhe -1+ 2 Z ok forj=1,
k=2j
2j+2
dpj = cosheag —isinhe [ > ay+2 Z 20y | forj=1,
k=2j k=2j+3
&y_4 = cosh 6(04571 + Ozg) —ayp —isinhe (ag,g +op_1 + Oég) ,

Qp = Q.
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Solutions for complex root systems

with different w; we find for instance for By, 1

¢
Qoj_q = cosh eagj_1+ isinhe i1+ 2 Z Qk forj=1,
k=2j
2j+2
dpj = cosheag —isinhe [ > ay+2 Z 20 | forj=1,
k=2j k=2j+3
&y_4 = cosh 6(04571 + Ozg) —ayp —isinhe (ag,g +op_1 + Oég) ,
Qpy = .
in dual space
R
R 0 he isinh
6: — R with R = ( 20She rsinne
0 _ —isinhe coshe
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Construction of new models

For any model based on roots, these deformed roots can be
used to define new invariant models simply by

o — (.

For instance Calogero models:



Properties of invariant CMS-models
o
Three particle system is solved

e Physical properties (As, Go)
@ The deformed model can be solved by separation of
variables as the undeformed case.

@ Some restrictions cease to exist, as the wavefunctions are
now regularized.

@ = modified energy spectrum:

E=2Jw|(n++1)

becomes

EL =2w|[2n+6(kg + ki +£)+1]  forn, ¢ € Ny,

with w3, = (1 £ /T + 49s/1)/4

[A. Fring and M. Znojil, J. Phys. A41 (2008) 194010]
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The generic case

e generalized Calogero Hamiltionian (undeformed)

He(p, Q) —+—Zaq +Z

27
aeAt €A+ )

e define the variables
1

z:=[[(a-q) and rPi=— (o q)2,
acAt

h = dual Coxeter number, t, = ¢-th symmetrizer of /
e Ansatz:

W(q) = ¥(z,r) = 27 2p(r)
= solution for k = 1/2,/1 + 4g.

0n(r) = Crexp (\/ /7212; 2) L2 ( hztéwr2> .

L3(x) = Laguerre polynomial, a = (2 +h+hy/1+ 4g) 1/4 —1
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[e] le]e]

The generic case

e eigenenergies

1 ht
En:—{(2+h+h\/1+4g>l+8n] oy
4 2
e anyonic exchange factors

W(q1,---, G, Q) - - Gn) = €7%(G1, ..., G}, i .. Qn), For1 <ij<n,

with
sf1 1 144
~2732 g

" r is symmetric and z antisymmetric
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[e]e] o]

The generic case

The construction is based on the identities:

a-f B a?
2 (a-q)B-q) 2 (a-q)?

a,BeAT aEAT
(a-q) hhe
. = —1,
2 DG T 7t
Y. (@ Bfa-qB-q = bty (a7
a,BEAT aEAT
Z Ct2 = gi’ltg.
acAt

Strong evidence on a case-by-case level, but no rigorous proof.
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The generic case

e antilinearly deformed Calogero Hamiltionian

Haac(p; q —*+*Z - q)° + 27

acA+ aeATt

e define the variables

e Ansatz
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The generic case

e antilinearly deformed Calogero Hamiltionian

Hadc(p: q —*+*Z a-q)>+ Z

acA+ aeATt

e define the variables

e Ansatz
Y(q) — (2, F) = 2%¢(F)
when identies still hold =

»(q) = U(2,1) = Z%py(r)

eigenenergies with different constraints (only performed for
ground state)



Properties of invariant CMS-models

@00

Anyonic exchange factors

Deformed As-models

e potential from deformed Coxeter group factors
a; ={1,-1,0,0}, ap ={0,1,-1,0}, a3 = {0,0,1, -1}

&1-9 = Qaz+coshe(giz+ gas) —1V/2coshesinh %(Chs + Qo4)
Go-q = Qua(2coshe —1)+12v2coshesinh %qm

d3-q = Qo1 +coshe(giz + gaa) — 1v/2coshesinh E(‘1713 + Qos)
G4-9q = Qa2+coshe(qis+ Qog) + 1w/2coshesinh = (C712 + Q34)
d5-q = Qa1 +CoShe(Qrs + Goa) + 1v/2cOSh e sinh = 5 (G2 + Gaa)
G6-q = qua(2coshe—1)—1v/2coshesinh = 5023

notation g; = q; — q,
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Anyonic exchange factors

Deformed As-models

e potential from deformed Coxeter group factors
a; ={1,-1,0,0}, ap ={0,1,-1,0}, a3 = {0,0,1, -1}

&1-9 = Qaz+coshe(giz+ gas) —1V/2coshesinh %(Chs + Qo4)
Go-q = Qua(2coshe —1)+12v2coshesinh %qm

d3-q = Qo1 +coshe(giz + gaa) — 1v/2coshesinh E(C713 + Qos)
G4-9q = Qa2+coshe(qis+ Qog) + 1w/2coshesinh = (C712 + Q34)
d5-q = Qa1 +CoShe(Qrs + Goa) + 1v/2cOSh e sinh = 5 (G2 + Gaa)
G6-q = qua(2coshe—1)—1v/2coshesinh = 5023

notation q; = q; — q;, No longer singular for g; = 0
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Anyonic exchange factors

e PT-symmetry for &

O-i: &1 _)_&15&2_)&6a6‘3_>_&3,&4_>&55 &5_)6‘4a 6‘6_>&I
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Anyonic exchange factors

e PT-symmetry for &

oc &1 _)_&15&2_)&6a6‘3_>_&3,&4_>&55 &5_)6‘4a 6‘6_>&I

0% 1 Gy — g, Gp — —0g, G3 — &5, g — G4, G5 — &3, G — Gp
e PT-symmetry in dual space

0% Q1 — G2, G2 — Q1,93 — Qa, Q4 — Q3,1 — —1
01— Q1, G2 — G3, g3 — Qo, Qs — G4, 1t — —1
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Anyonic exchange factors

e PT-symmetry for &

0-6— : &1 - _&15 622 _)&Ga &3 - _&3, 6‘4 _>&55 625 _)6‘4a 6‘6 - &I
0% 1 84 — Oy, Gp — —0p, 3 — G5, G4 — G4, G5 — O3, g — (g

e PT-symmetry in dual space

oS Q1 — Q2,2 — 1, Q3 — Qa, Qs — Q3,0 — —1

01— Q1, G2 — G3, g3 — Qo, Qs — G4, 1t — —1

0°2(q1,92,03,94) = Z°(Q2,Q1,94,93) = Z(q1, Q2. Q3, Qa)
052(91,92,93,94) = Z°(q1,93,92,Q4) = —2(q1, G2, G3, Ga)

¥(q1, 92, G3, qs) = €7°Y(q2, G4, G1, G3).
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Anyonic exchange factors in the 4-particle scattering process
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a1 gz a3 Qa qz Qa a1 aqs
X y z X z
° P — ems P ._

Qs a3
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

w X y z w X z

° ° ° = s ° ° °

a1 gz a3 Qa qz Qa a1 aqs

X y z X z

° « ° = g8 ° o

a1 g2 =Qqs3 Q4 Q2 g1 = Q4 a3
y X y

( . — e’lﬂ's ._ .

aqs Q> = Qs
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

w X y z w X z
° ° ° = s ° ° °
a1 gz a3 Qa qz Qa a1 aqs
X y z X z
° « ° = g8 ° o
a1 g2 =Qqs3 Q4 Q2 g1 = Q4 a3
X y X y
¢ ™ = 78 ® °
a1 =Qqe gz = Q4 g1 =Qqs Q> = Qs
X X y
- ° = ° -
i =Qq2=0Qqs Q4 Qs g1 =02=0Q3
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[ ]}

Hermitian isospectral counterparts and metric
Find Hermitian counterpart h, Dyson map n and metric p:
h=nHn™ " =h' = ")TH'" & H'p=pH with p =’y
Some B,-models correspond to complex rotations

Z =R %) =n; ()i . — ef(XiPi—Xipi)

For instance for:
R

0* R with B — < coshe isinhe )

—isinhe coshe

we have
HO(p> X) = UHE(F% X)77_1
with

T
= "T12"M34"56 - - - T(p_2)(¢0—1)
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oe

Hermitian isospectral counterparts and metric

For Bs
o —id i 1-rp O
i o 1—-n - 0
9; = - 1-n i) i 0
1—-rn, W -9 rp O
0 0 0 0 1
we find

< - . - , 1 1
X =0:x = Ry RigRaaRiy x = nxn~ ', with = 15, m13m34775 -

In general this is an open problem.
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Conclusions
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Deformed CMS models have interesting new properties
@ less singular = new energy spectral
@ configuration space is not separated = exchange factors

Open problems
@ construction based on different assumptions

@ solve generic case
@ proof of identities involved
@ generic h, Dyson map 7 and metric p

@ different types of models, e.g. Toda
[A.F.,M. Smith arXiv:1108.1719]
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Thank you for your attention
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