Entanglement Entropy and Quantum Field Theory

Pasquale Calabrese Oxford University

Outline:

- Entanglement Entropy in QFT
- Path integral formula for the entropy
- Exact calculations with CFT in 1+1 dimensions
- Non critical 1 + 1-dimensional systems
- Unitary dynamics of entanglement

[P. Calabrese and J. Cardy, hep-th/0405152] [cond-mat/0503393]

London 23/04/2005

Entanglement Entropy and QFT

Quantum system in the ground state $|\Psi\rangle$

The density matrix is $\rho = |\Psi\rangle\langle\Psi|$ (Tr $\rho = 1$)

A measures a subset, B the remainder:

Reduced density matrix $\rho_A = \text{Tr}_B \rho$ ($\rho_B = \text{Tr}_A \rho$)

Entanglement Entropy \equiv Von Neumann entropy of ρ_A :

$$S_A = -\operatorname{Tr} \rho_A \ln \rho_A$$

[note $S_A = S_B$]

Historical review:

• Srednicki '93: Area Law in a d+1 critical T=0 QFT $S_A \propto \mathcal{A} \Rightarrow S \propto \mathcal{A} \wedge^{d-1}$ and for d=1? $S \propto \ln \Lambda \Rightarrow S \propto \ln \ell \Lambda$

Non extensive

• Holzhey, Larsen, Wilczek '94: In a 1+1D T=0 CFT

$$S_A = \frac{c}{3} \ln \frac{\ell}{a}$$

Entropy and path integral

Lattice QFT in 1+1 dimensions

 $\{\widehat{\phi}(x)\}$ a set of fundamental fields with eigenvalues $\{\phi(x)\}$ and eigenstates $\otimes_x |\{\phi(x)\}\rangle$

The density matrix at temperature β^{-1} is

$$\rho(\{\phi(x'')''\}|\{\phi(x')'\}) = Z^{-1}\langle\{\phi(x'')''\}|e^{-\beta\hat{H}}|\{\phi(x')'\}\rangle$$

 $Z = \operatorname{Tr} e^{-\beta \hat{H}}$ is the partition function.

Euclidean path integral:

$$\rho = \begin{pmatrix} \beta & \phi \\ \beta & \phi \end{pmatrix} = \tau = 0$$

$$\frac{1}{Z} \int [d\phi(x,\tau)] \prod_{x} \delta(\phi(x,0) - \phi(x')') \prod_{x} \delta(\phi(x,\beta) - \phi(x'')'') e^{-S_E}$$

$$S_E = \int_0^{\beta} L_E d au$$
, with L_E the Euclidean Lagrangian

The trace has the effect of sewing together the edges along $\tau=0$ and $\tau=\beta$ to form a cylinder of circumference β .

 $A=(u_1,v_1),\ldots,(u_N,v_N)$: ρ_A sewing together only those points x which are not in A. This will have the effect of leaving open cuts, one for each interval (u_j,v_j) , along the the line $\tau=0$.

$$\rho_{A} = \begin{pmatrix} \phi' & \text{cuts} \\ \phi'' & & \end{pmatrix} \int_{x \in B}^{\tau} [d\phi(x,0)] \delta(\phi(x,\beta) - \phi(x,0)) \rho$$

"Replica trick"

$$S_A = -\operatorname{Tr}\rho_A \log \rho_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr}\rho_A^n$$

 $\operatorname{Tr} \rho_A^n$ (for integer n) is the partition function on n of the above cylinders attached to form an n-sheeted Riemann surface

 $\operatorname{Tr} \rho_A^n$ has a unique analytic continuation to $\operatorname{Re} n > 1$ and that its first derivative at n=1 gives the required entropy:

$$S_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \frac{Z_n(A)}{Z^n}$$

Continuum limit: $a \rightarrow 0$ [Most of UV div cancel in the ratio]

Entropy and CFT

O. Single interval (u, v). We need $Z_n/Z^n = \langle 0|0\rangle_{\mathcal{R}_n}$. Thus we have to compute $\langle T(w)\rangle_{\mathcal{R}_n}$

Under a conformal transformation $w \rightarrow z$

$$T(w) = \left(\frac{dz}{dw}\right)^2 T(z) + \frac{c}{12} \frac{z'''z' - 3/2z''^2}{z'^2}$$

Thus

$$w \to \zeta = \frac{w-u}{w-v}$$
; $\zeta \to z = \zeta^{1/n} \Rightarrow w \to z = \left(\frac{w-u}{w-v}\right)^{1/n}$

But $\langle T(z)\rangle_{\rm C}=0 \Rightarrow$

$$\langle T(w)\rangle_{\mathcal{R}_n} = \frac{c(1-(1/n)^2)}{24} \frac{(v-u)^2}{(w-u)^2(w-v)^2}$$

To be compared with the Conformal Ward identities:

$$\frac{\langle T(w)\Phi_n(u)\Phi_{-n}(v)\rangle_{\mathcal{C}}}{\langle \Phi_n(u)\Phi_{-n}(v)\rangle_{\mathcal{C}}} = \frac{\Delta_{\Phi}(v-u)^2}{(w-u)^2(w-v)^2}$$

 Z_n/Z^n transforms under conformal transformations (acting identically on each sheet) as nth power of the two point function of a (fake) primary field on the complex plane with scaling dimension

$$\Delta_{\Phi} = \overline{\Delta}_{\Phi} = \frac{c}{24} \left(1 - \frac{1}{n^2} \right)$$

Recall that $\langle \phi(x)\phi(y)\rangle = |x-y|^{-4\Delta_{\Phi}}$

$$\operatorname{Tr}
ho_A^n=rac{Z_n}{Z^n}=c_n\left(rac{v-u}{a}
ight)^{-(c/6)(n-1/n)}$$

Finally with the replica trick $(v - u = \ell)$

$$S_A = \frac{c}{3} \ln \frac{\ell}{a} + c_1'$$

Generalizations

1. Finite temperature: map the plane into a cylinder

$$S_A(\beta) \sim \frac{c}{3} \log \left(\frac{\beta}{\pi a} \sinh \frac{\pi \ell}{\beta} \right) + c_1'.$$

$$S_A \simeq \begin{cases} \frac{\pi c}{3} \frac{\ell}{\beta} \,, & \ell \gg \beta & \text{classical extensive} \\ \\ \frac{c}{3} \log \frac{\ell}{a} \,, & \ell \ll \beta & T = 0 \text{ non } - \text{ extensive} \end{cases}$$

2. Finite size: orient the branch cut perpendicular to the axis $\beta \to L$ and $w \to iw$

$$S_A \sim \frac{c}{3} \log \left(\frac{L}{\pi a} \sin \frac{\pi \ell}{L} \right) + c_1'$$

It is symmetric under $\ell \to L - \ell$. It is maximal when $\ell = L/2$

3. Open boundaries: semi-infinite system

If $L=\infty$ and T=0, it is uniformised by $z=\left(\frac{w-i\ell}{w+i\ell}\right)^{1/n}$

$$\operatorname{Tr} \rho_A^n \simeq \tilde{c}_n \left(\frac{2\ell}{a}\right)^{(c/12)(n-1/n)} \Rightarrow S_A \simeq \frac{c}{6} \log \frac{2\ell}{a} + \tilde{c}_1'$$

and at finite temperature β^{-1} and finite size

$$S_A(\beta) \simeq \frac{c}{6} \log \left(\frac{\beta}{\pi a} \sinh \frac{2\pi \ell}{\beta} \right) + \tilde{c}'_1$$

$$S_A(L) \simeq \frac{c}{6} \log \left(\frac{2L}{\pi a} \sin \frac{\pi \ell}{L} \right) + \tilde{c}'_1$$

Note: $\tilde{c}_1' - c_1' = g$ boundary entropy [Affleck, Ludwig]

4. General case:

$$u_1$$
 v_1 u_2 v_2 u_3 v_3 \cdots u_n v_n

Uniformised by $z=\prod_i (w-w_i)^{\alpha_i}$, with $\sum_i \alpha_i=0$ $(w_k=u_i \text{ or } v_j)$

$$S_A = \frac{c}{3} \left(\sum_{j \le k} \log \frac{v_k - u_j}{a} - \sum_{j < k} \log \frac{u_k - u_j}{a} - \sum_{j < k} \log \frac{v_k - v_j}{a} \right) + Nc_1'$$

A similar expression holds in the case of a boundary, with half of the w_i corresponding to the image points

Entropy in non critical systems

Question: What about the entanglement entropy in the so-called critical domain, where $g \neq g_c$, but $|g-g_c| \ll 1$, i.e. the correlation length $\xi = |g-g_c|^{-\nu}$ is large but finite?

Following the line of the c-theorem proof, we showed

$$S_A = \mathcal{A} \frac{c}{6} \log \frac{\xi}{a}$$

where \mathcal{A} is the number of boundary points between A and B (1D area).

We checked this result in some cases with A=1

- Gaussian Massive FT
- Ising model in a transverse magnetic field

$$H_{I} = -\sum_{n=1}^{L-1} \sigma_{n}^{x} - \lambda \sum_{n=1}^{L-1} \sigma_{n}^{z} \sigma_{n+1}^{z}$$

by means of the corner transfer matrix $(\epsilon = \epsilon(\lambda))$

$$S_A = egin{cases} \epsilon \sum_{j=0}^{\infty} rac{2j}{1 + e^{2j\epsilon}} + \sum_{j=0}^{\infty} \log(1 + e^{-2j\epsilon}) \,, & \lambda > 1 \ \epsilon \sum_{j=0}^{\infty} rac{2j+1}{1 + e^{(2j+1)\epsilon}} + \sum_{j=0}^{\infty} \log(1 + e^{-(2j+1)\epsilon}) \,, & \lambda < 1 \end{cases}$$

For
$$\lambda o 1$$

$$S \simeq \frac{1}{12}\log \xi + C_1$$

- XXZ model, similar results but c=1
- In the finite slit geometry (i.e. A = 2), it was exactly calculated by Its et al. and Peschel for the XY chain, finding agreement!

Dynamics of Entanglement

How entanglement evolves when the system is prepared in a state that is *not* an eigenstate?

EG: Ising model in a transverse field with H(h):

- Prepare the system in a pure state $|h_0\rangle$ (ground state of $H(h_0)$)
- Let it evolve according to H(h) with $h \neq h_0$ (ie at t = 0 the field has been quenched)

$$|\psi(t)\rangle = e^{-iH(h)t}|h_0\rangle$$

$$\downarrow \downarrow$$

$$\rho_A(t) = \operatorname{Tr}_B e^{-iH(h)t}|\psi_0\rangle\langle\psi_0|e^{iH(h)t}$$

 Tr_B and H do not "commute" \Rightarrow non trivial evolution Note: the system does <u>not</u> relax to the ground state How can we study this problem with QFT?

Matrix elements of the density matrix at time t $\langle \psi''(x'')|\rho(t)|\psi'(x')\rangle=Z_1^{-1}\langle \psi''(x'')|e^{-itH-\epsilon H}|\psi_0(x)\rangle\langle \psi_0(x)|e^{+itH-\epsilon H}|\psi'(x')\rangle$ We use $e^{-\epsilon H}$ to make the path integral convergent! Important: We'll see at the end if it is justified to remove ϵ

Each of the factors may be represented by an analytically continued path integral in imaginary time:

CFT results

In CFT the calculation is done in imaginary times τ_1 and τ_2 , and then it is analytically continued to $\tau_1 = \epsilon - it$, $\tau_2 = -\epsilon - it$

The strip geometry is obtained by transforming the upper half-plane with $w=(2\epsilon/\pi)\log z$

In the upper half-plane with boundary

$$\operatorname{Tr} \rho_A^n = \langle \Phi_n \Phi_{-n} \rangle \sim c_n \left(\frac{|z_1 - \overline{z}_2| |z_2 - \overline{z}_1|}{|z_1 - z_2| |\overline{z}_1 - \overline{z}_2| |z_1 - \overline{z}_1| |z_2 - \overline{z}_2|} \right)^{2n\Delta_n}$$

$$z_1 =
ho^{-1} e^{i\pi au_1/2\epsilon} = z_2^{-1}$$
 where $ho = e^{\pi \ell/4\epsilon}$

Algebra ... ℓ/ϵ and $t/\epsilon \gg 1$...

$$c_n(\pi/2\epsilon)^{4n\Delta_n} \left(\frac{e^{\pi\ell/2\epsilon} + e^{\pi t/\epsilon}}{e^{\pi\ell/2\epsilon} \cdot e^{\pi t/\epsilon}}\right)^{2n\Delta_n}$$

Differentiating wrt n

$$S_A(t) \sim \begin{cases} \dfrac{\pi c t}{6\epsilon} & (t < \ell/2), \\ \dfrac{\pi c \, \ell}{12\epsilon} & (t > \ell/2), \end{cases}$$

 $S_A(t)$ increases linearly until it saturates at $t = \ell/2$.

 ϵ enters in an essential way: in a continuum FT a state like $|\psi_0\rangle$ has infinitely large mean energy

Physical Interpretation

 $|\psi_0\rangle$ has a very high energy relative to the ground state \Rightarrow acts as a source of "particles" propagating at the speed of light

Particles emitted from different points are incoherent, but pairs of particles moving to the left or right from a given point are highly entangled

The field at some point x in A will be entangled with that at a point $x' \in B$ if a left (right) moving particle arriving at x is entangled with a right (left) moving particle arriving at x', and this can happen only if $x \pm t \sim x' \mp t$

 $S_{\ell}(t)$ is proportional to the length of the interval in x for which this is true, reproducing the CFT result

Generalizable to the case when A consists of several disjoint intervals. $S_A(t)$ is not always non-decreasing:

EG, A = regular array of intervals $\Rightarrow S_{\ell}$ oscillates in a saw-tooth fashion

Lattice calculation

We considered the transverse Ising chain

$$H_I(h) = -\frac{1}{2} \sum_j \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right]$$

 $t \to \infty$, Analytic calculations

...very cumbersome ...

$$S_{\ell} = \frac{\ell}{2\pi} \int_{0}^{2\pi} d\varphi H \left(\frac{1 - \cos\varphi(h + h_0) + hh_0}{\sqrt{(h^2 + 1 - 2h\cos\varphi)(h_0^2 + 1 - 2h_0\cos\varphi)}} \right)$$

with $H(x) = -\frac{1+x}{2} \log \frac{1+x}{2} - \frac{1-x}{2} \log \frac{1-x}{2}$

always linear in ℓ , not only at the critical point

Curiosity: $S_{\ell}(\infty)$ is symmetric under the exchange of h and h_0 $(\ref{eq:constraint})$

Finite time: numerical calculations

 $h_0 = \infty$, h = 1:

Linear for $t < \ell/2$!!

But does not saturate at $\ell/2$ (??)

General h, h_0 :

- Crossover at $t^* = \ell/2$!!
- ullet Different approach to the asymptotic value for h and h_0 interchanged

Discussions

 $S_{\ell}(t)$ increases linearly with time up to $t^* = \ell/2$, but (as a difference with CFT and the previous argument)

$$R \equiv \frac{(\partial S_A/\partial t)_{t < t^*}}{2(\partial S_A/\partial \ell)_{t \gg t^*}} \neq 1$$

How we can match these (apparently) different results?

There are other excitations traveling with speed v < 1

Suppose that the rate of production of pair of particles of momenta (p', p'') is f(p', p'')

with dispersion relation $E = E(p) \Rightarrow v_p = dE/dp \le 1$

When A is the interval of length ℓ

$$S_A(t) \propto t \int_{-\infty}^0 dp' \int_{\ell-(v_{-p'}+v_{p''})t>0}^0 dp' + v_{p''}) + \ell \int_{-\infty}^0 dp' \int_{\ell-(v_{-p'}+v_{p''})t<0}^0 dp' \int_{\ell-(v_{-p'}+v_{p''}+v_{p''})t<0}^0 dp' \int_{\ell-(v_{-p'}+v_{p''}+v_{p''})t<0}^0 dp' \int_{\ell-(v_{-p'}+v_{p''}+v_{p''}$$

 $|v_p| \le 1 \Rightarrow 2^{\text{nd}}$ term is zero if $t < \ell/2 \Rightarrow S_A(t) \propto t$

For $t \to \infty$, the first term is negligible $\Rightarrow S_A \propto \ell$

Unless |v|=1 everywhere (CFT) $S_A \not \sim \ell$ for all $t>t^*$

$$R = \frac{\int_{-\infty}^{0} dp' \int_{0}^{\infty} dp'' f(p', p'') [v_{-p'} + v_{p''}]}{2 \int_{-\infty}^{0} dp' \int_{0}^{\infty} dp'' f(p', p'')} \le 1$$

The correction term is a power law $S_\ell \propto \ell (1-(\ell/t)^{lpha})$

Future directions

Consider $|\psi_0\rangle$ having a finite energy above the ground state. Will it relax to $c/3\log\ell$? How?