Entanglement Entropy and
Quantum Field Theory

Pasquale Calabrese

Oxford University

Outline:

e Entanglement Entropy in QFT

e Path integral formula for the entropy

e Exact calculations with CFT in 141 dimensions
e Non critical 1 4+ 1—dimensional systems

e Unitary dynamics of entanglement

[P. Calabrese and J. Cardy, hep-th/0405152]
[cond-mat/0503393]

London 23/04/2005



Entanglement Entropy and QFT
Quantum system in the ground state |W)
The density matrix is p = |[WY(WV| (Trp=1)
A measures a subset, B the remainder:

B | A | B
Reduced density matrix pg = Trgp (pp = Trap)

Entanglement Entropy = Von Neumann entropy of p4:

Sa=—Trpalnpy

[note S4 = Sg]

Historical review:

e Srednicki '93: Area Law
inad-+ 1 critical T =0 QFT
Spox A= S x AN

and ford =17
SxInA=S5xIniA

Non extensive

e Holzhey, Larsen, Wilczek '94: Ina 141D T =0 CFT
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Entropy and path integral
Lattice QFT in 141 dimensions

{#(x2)} a set of fundamental fields with eigenvalues
{¢(z)} and eigenstates ®.|{¢(z)})

The density matrix at temperature g1 is
p({o(=")" {¢(@')'}) = Z7H{{p(@")"He P {¢(2")'})
7 = TrePH is the partition function.

Euclidean path integral:

%/[dﬁb(xv T)] H 5(¢(33, O)—qb(ajl)l) H 5(¢(33, ﬂ)—qb(a:")") e_SE

Sp = foﬁ Lgdr, with Lg the Euclidean Lagrangian

The trace has the effect of sewing together the edges
along 7 =0 and m = @ to form a cylinder of circum-
ference g.

A = (ur,v1),...,(un,vny): pa Sewing together only
those points = which are not in A. This will have
the effect of leaving open cuts, one for each interval
(uj,vj), along the the line 7 = 0.

T

oA = —
(p xeB




“Replica trick”

0
Sp= —Trpalogps = — lim —Trp
n—1 On

Trp" (for integer n) is the partition function on n of
the above cylinders attached to form an n—sheeted
Riemann surface

— w tj gk Kkl lin
="PAPAPAPS

Trp’s has a unique analytic continuation to Ren > 1
and that its first derivative at n = 1 gives the required
entropy:

. .0 Zn(A)
o4 = _'ILI—Q on Zm

Continuum limit: ¢ — 0 [Most of UV div cancel in the
ratio]



Entropy and CFT

0. Single interval (u,v). We need Z,/Z™ = (0|0)%, .
Thus we have to compute (T'(w))xr,

Under a conformal transformation w — z

2\ 2 c My — Z//2
T(w) = (;l_w) () + 2,2/2
Thus
w— (=2 (s z=(Ys w2 = (z:g)l/n
u v 0
But <T(Z)>C =0=
_c(1-(1/n)?) (v —u)?
<T(w)>Rn - 24 (w — u)2(w — v)?
To be compared with the Conformal Ward identities:
(T(W)Pn(W)P_n(v))c _  Do(v—u)?
(Pn(u)P_n(v))c (w —u)2(w —v)?

U

Zn/Z™ transforms under conformal transformations (acting iden-
tically on each sheet) as nth power of the two point function of a
(fake) primary field on the complex plane with scaling dimension

fo =B = (1= %)

Recall that (¢(z)¢(y)) = |z — y| 44

. Zn v — u\ —(¢/6)(n=1/n)
Trpy = Zn = cp

a

Finally with the replica trick (v —u = ¥)

¢
Si=—In=+d
3 a



Generalizations

1. Finite temperature: map the plane into a cylinder

w— w ="-Ilnw
2T

2. Finite size: orient the branch cut perpendicular to
the axis 8 — L and w — 1w

c L . nt
Sa ~ 5Iog (—smf) +

mTa

It is symmetric under £ — L — £. It is maximal when £ = L/2



3. Open boundaries: semi-infinite system

A, B
0 I L

.\ 1/n
If L =00 and T = 0, it is uniformised by z = (;‘)’;ﬁ)

oY (c/12)(n—1/n) oY
) :>SA:§|og—+5’1
a

Trpi ~ ¢, (—
a

and at finite temperature 8~! and finite size

2l
Sa(B) :Elog ﬁsinhi + &
6 Ta I5]
2L 14
Sa(L) ~ < log [ — sin =)+ 1
6 Ta L

Note: ¢] — ¢} = g boundary entropy [Affleck, Ludwig]

4. General case:

U Vi U V%, U, - U, V.

Uniformised by z = [ [,(w — wi)™, with Y a; =0 (w; = u; or v;)

_c Vp —Uj Up —uj Vk — Uy /
814_3<Zlog - Zlog - Zlog - )—}—Ncl

i<k i<k i<k

A similar expression holds in the case of a boundary,
with half of the w; corresponding to the image points



Entropy in non critical systems

Question: What about the entanglement entropy in the so-called
critical domain, where g # g, but |g—g.] < 1, i.e. the correlation
length & = |g — g.|7" is large but finite?

Following the line of the c-theorem proof, we showed

Sy = Aglogé

where A is the number of boundary points between A and B (1D
area).

We checked this result in some cases with A =1
e Gaussian Massive FT
e Ising model in a transverse magnetic field

L-1 L-1
J— x A"
HI__E an—)\g Th0 11
n=1 n=1

by means of the corner transfer matrix (e = ¢(\))

4 00 00
2-7 —2j€
— =0 j=0
SA - < o0

27 +1 . —(2j+1)c
GZHe@HnﬁZ'og(He ), A<

[ =0 j=0

For A —1

1
S~ —lo C
12 gé&+ Ch

n I I I I I I
0 0.2 0.4 0.6 0.8 1 12 14 16

A

e XXZ model, similar results but c =1

e In the finite slit geometry (i.e. A = 2), it was exactly calculated
by Its et al. and Peschel for the XY chain, finding agreement!
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Dynamics of Entanglement

How entanglement evolves when the system is pre-
pared in a state that is not an eigenstate?

EG: Ising model in a transverse field with H(h):

e Prepare the system in a pure state |hg) (ground
state of H(hg))

e Let it evolve according to H(h) with h # hg (ie
at t = 0 the field has been quenched)

() = e~ M hg)
pA(t) = Trp e_iH(h)t|¢o)(¢o|eiH(h)t
Trp and H do not “commute” = non trivial evolution
Note: the system does not relax to the ground state
How can we study this problem with QFT?

Matrix elements of the density matrix at time ¢
<’¢"(m")|p(t)|’(b'(m')> — Zl_l<’¢"(m”)|e_itH_€H|¢o($)><¢o($)|€+itH_€H|¢'(w')>
We use e~ to make the path integral convergent!

Important: We’'ll see at the end if it is justified to remove ¢

Each of the factors may be represented by an an-
alytically continued path integral in, imaginary time:

0 E-It

% —€-it



CFT results

In CFT the calculation is done in imaginary times
and 7, and then it is analytically continued to r, =
€ —t, m = —e — 1t

The strip geometry is obtained by transforming the
upper half-plane with w = (2¢/7) log z

In the upper half-plane with boundary

|21 — Z2||22 — 21 >2nA”

Trpy = (P P_y) ~cp ( — — — —
|21 — 22[|Z1 — 22]|21 — Z1][22 — 22

21 = p—leiﬂ'Tl/QE — Z2—l where p = eﬂ—g/4€

Algebra ... ¢/eand t/e > 1 ...

eml/2¢ . omt/e

wl/2e wt/e 2nA,
en(m/26) 48 ( e )

Differentiating wrt n

( et

— (t<t/2),
b6¢

Sa(t) ~ < ,
TC
— t>1/2
T @>y2).

Sa(t) increases linearly until it saturates at t = £/2.

e enters in an essential way: in a continuum FT a
state like |¢0) has infinitely large mean energy
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Physical Interpretation
|10) has a very high energy relative to the ground state

= acts as a source of “particles” propagating at the
speed of light

Particles emitted from different points are incoherent,
but pairs of particles moving to the left or right from
a given point are highly entangled

The field at some point x in A will be entangled with
that at a point '’ € B if a left (right) moving particle
arriving at x is entangled with a right (left) moving
particle arriving at z’, and this can happen only if x 4+
t~2' Ft

B 2t e <2t B

Si(t) is proportional to the length of the interval in x
for which this is true, reproducing the CFT result

Generalizable to the case when A consists of several
disjoint intervals. S4(t) is not always non-decreasing:

EG, A = regular array of intervals
= Sy oscillates in a saw-tooth fashion
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Lattice calculation

We considered the transverse Ising chain

1 xr xr z
Hi(h) = 3 > lofois + hojl
J
t — oo, Analytic calculations

...Vvery cumbersome ...

¢ [ 1 — coso(h + ho) + hho
2r |/, /(A% + 1 — 2hcosp)(h3 + 1 — 2hg cos )
. _ 14z 14z 1—=x 1—x
with H(z) = —=F*log =3+ — 5% log =5
@ e,

0.3

jn e R RS B N
o o o o o
2N P
© P

8

0.1

always linear in ¢, not only at the critical point

Curiosity: S¢(oco) is symmetric under the exchange of
h and hg (?7)
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Finite time: numerical calculations

hoZOO,h:].I

C T T T T T ]
- — L=100
. — - L=60 n
ol l 101, o
S| - 0 20 40 60 80 100 = -
20— - —
10+ s
0 | | | | | | | | |
0 20 40 60 80 100

Linear for t < ¢/2 !

But does not saturate at ¢/2 (77)
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General h, hg:

20 40 60 80 100 20 40 60 80 100
T T | T | == —
il

30
25
20
15
10

N
o
(o231
o
oo H
o
=
b4
o

(G2l

R e
I 1
POINR R

jun pien gl B en 3
o

I|I|I|I|I|I|I|III|II|II|II|II|II|I|I|I|I|I|O

o b~ 0

0 20 40 60 80 100
e Crossover at t* =¢/2 !l

e Different approach to the asymptotic value for h
and hg interchanged
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Discussions

S¢(t) increases linearly with time up to t* = ¢/2, but
(as a difference with CFT and the previous argument)

_ (0Sa/0t)t<s
o 2(8SA/8€)t>>t*

=1

How we can match these (apparently) different re-
sults?

There are other excitations traveling with speed v < 1

Suppose that the rate of production of pair of particles
of momenta (p',p") is f(p',p")

with dispersion relation £ = E(p) = v, =dFE/dp <1

Sa(t) %/dm'/ dz” /dm/f(p',p")dp'dp"5<m'—m—vp/t)5<m"—:1:—fuput)
r'EA z"eB —0c0

When A is the interval of length £
0 0

Sa(t) oct/ dp'/dp"f(p',p")(v—pf+vp~)+€/ dp'/dp"f(p',p")
—oo O—(v_p+v,u)t>0 —o0 C—(v_p+v,u)t<0

lvp] < 1 = 2"9 term is zero if t < £/2 = Sa(t) ot
For t — oo, the first term is negligible = S4 o ¢
Unless |v| = 1 everywhere (CFT) Sap¢¢ ¢ for all t > t*
I°_dp Jo dp" f(p', p")[v—p + vy]
2 [° _dp' [>dp"f(p/,p")
The correction term is a power law Sy o< £(1 — (£/t)%)
Future directions

Consider i) having a finite energy above the ground
state. Will it relax to ¢/3log{¢? How?
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