A new viewpoint on form factors and correlation functions in the Ising field theory at finite temperature

Benjamin Doyon

Rudolf Peierls Centre for Theoretical Physics, Oxford University, UK supported by EPSRC postdoctoral fellowship

Correlation functions and form factors

Euclidean correlation functions at zero temperature:

$$\begin{split} &\langle \mathcal{O}(x,\tau)\mathcal{O}(0,0)\rangle = \sum_{k=0}^{\infty} \int \frac{d\theta_1 \cdots d\theta_k}{k!} e^{-Mr\sum_j \cosh(\theta_j)} \times \\ &\times \langle \mathrm{vac}|\mathcal{O}(0,0)|\theta_1, \ldots, \theta_k\rangle_{in} \ _{in} \langle \theta_1, \ldots, \theta_k|\mathcal{O}(0,0)|\mathrm{vac}\rangle \end{split}$$
 where $r = \sqrt{x^2 + \tau^2}$.

Useful representation in integrable models because:

- form factors $\langle \text{vac} | \mathcal{O}(0,0) | \theta_1, \dots, \theta_k \rangle_{in}$ of local fields can be evaluated (up to normalization) by solving a Riemann-Hilbert problem in rapidity space;
- the first few terms (k = 0, 1, 2, ...) in the expression above give a good description of correlation functions at large (and also not too large) distances;
- in condensed matter applications, for instance, the most relevant region is the large-distance one (low energy).

Finite (non-zero) temperature

Goal:

Find a **large-distance expansion** of finite-temperature correlation functions, and compute the terms ("form factors") involved.

Must take statistical average as well:

$$\langle\langle \mathcal{O}(x,\tau)\mathcal{O}(0,0)\rangle\rangle_L = \frac{\operatorname{Tr}\left(e^{-LH}\mathcal{O}(x,\tau)\mathcal{O}(0,0)\right)}{\operatorname{Tr}\left(e^{-LH}\right)}.$$

Not a vacuum-vacuum matrix element: no obvious simple form factor decomposition.

Geometrically, the trace represents a theory on a $\mbox{cylinder of circumference } L$ where time is around the cylinder and space is along it.

 Different quantization scheme for the same theory: take time along the cylinder and space around the cylinder,

$$\langle\langle \mathcal{O}(x,\tau)\cdots\rangle\rangle_L = {}_L\langle \operatorname{vac}|e^{i\pi s/2}\mathcal{O}_L(-\tau,x)\cdots|\operatorname{vac}\rangle_L$$

where s is the spin of \mathcal{O} and \mathcal{O}_L is the operator on the cylinder associated to \mathcal{O} .

Correlation functions and form factors on the cylinder

Form factor decomposition on the cylinder (integrable models):

$$L\langle \operatorname{vac}|\mathcal{O}_{L}(x,\tau)\mathcal{O}_{L}(0,0)|\operatorname{vac}\rangle_{L} = \sum_{k=0}^{\infty} \sum_{n_{1},\dots,n_{k}} e^{\sum_{j} n_{j} \frac{2\pi i x}{L} - E_{n_{1},\dots,n_{k}} \tau} \times L\langle \operatorname{vac}|\mathcal{O}_{L}(0,0)|n_{1},\dots,n_{k}\rangle\langle n_{1},\dots,n_{k}|\mathcal{O}_{L}(0,0)|\operatorname{vac}\rangle_{L}$$

Problems:

- ullet Spectrum $E_{\{n\}}$ is complicated in interacting models;
- Form factors $_L\langle \mathrm{vac}|\mathcal{O}_L(0,0)|n_1,\ldots,n_k\rangle$ depend on **discrete variables**: no obvious "analytical way" of evaluating them.

What has been done

On the cylinder:

Form factors of spin fields in the Ising field theory:

- A. I. Bugrij: hep-th/0011104, hep-th/0107117.
- A. B. Zamolodchikov and P. Fonseca: hep-th/0112167.

Also, spectrum in interacting integrable models by various numerical means (TBA, NLIE, ...)

"Finite temperature form factor" approach:

- A. Leclair, F. Lesage, S. Sachdev, H. Saleur: Nucl. Phys. B482 [FS] 1996, 579.
- A. Leclair, G. Mussardo: Nucl. Phys. B552 1999, 624.
- H. Saleur: Nucl. Phys. B567 2000, 602.
- G. Delfino: J. Phys. A 34, 2001, L161.
- G. Mussardo: J. Phys. A 34 2001, 7399.
- O. A. Castro-Alvaredo and A. Fring: Nucl. Phys. B636
 [FS] 2002, 611
- R. A. J. van Elburg and K. Schoutens: cond-mat/0007226.

General idea

Find a construction where the trace

$$\frac{\operatorname{Tr}\left(e^{-LH}\mathcal{O}(x,\tau)\mathcal{O}(0,0)\right)}{\operatorname{Tr}\left(e^{-LH}\right)}.$$

is a vacuum expectation value in some vector space and where eigenvalues of the momentum operator are described by continuous variables (for instance, by rapidities θ_j).

ullet [Ising field theory] Find a measure $ho(\{\theta\})$ in

$$\mathbf{1} = \int \frac{\{d\theta\}}{n!} \rho(\{\theta\}) |\{\theta\}\rangle \langle \{\theta\}|$$

such that form factors of uninteracting local fields, $\langle \text{vac} | \mathcal{O}(0,0) | \{\theta\} \rangle$, are **entire functions** of the rapidities $\{\theta\}$;

 Calculate form factors on the cylinder by analytical continuation in the rapidity variables to the positions of the poles of the measure ρ:

$$_L\langle \operatorname{vac}|\mathcal{O}_L(0,0)|\{n\}\rangle \propto \sqrt{\operatorname{Res}\rho} \langle \operatorname{vac}|\mathcal{O}(0,0)|\{\alpha_n \pm i\pi/2\}\rangle$$

Ising field theory

Free Majorana fermion operators on the line:

$$\psi(x,\tau) = \frac{1}{2} \sqrt{\frac{m}{\pi}} \int d\theta \, e^{\theta/2} \left(a(\theta) \, e^{ip_{\theta}x - E_{\theta}\tau} + a^{\dagger}(\theta) \, e^{-ip_{\theta}x + E_{\theta}\tau} \right)$$

$$\bar{\psi}(x,\tau) = \frac{i}{2} \sqrt{\frac{m}{\pi}} \int d\theta \, e^{-\theta/2} \left(a(\theta) \, e^{ip_{\theta}x - E_{\theta}\tau} - a^{\dagger}(\theta) \, e^{-ip_{\theta}x + E_{\theta}\tau} \right)$$

$$\{ a^{\dagger}(\theta), a(\theta') \} = \delta(\theta - \theta') ,$$

$$p_{\theta} = m \sinh \theta , \quad E_{\theta} = m \cosh \theta .$$

Satisfy equations of motion and equal-time canonical anti-commutation relations

$$\bar{\partial}\psi(x,\tau) \equiv \frac{1}{2} (\partial_x + i \,\partial_\tau) \,\psi = \frac{m}{2} \bar{\psi}$$

$$\partial\bar{\psi}(x,\tau) \equiv \frac{1}{2} (\partial_x - i \,\partial_\tau) \,\bar{\psi} = \frac{m}{2} \psi$$

$$\{\psi(x), \psi(x')\} = \delta(x - x') \,, \quad \{\bar{\psi}(x), \bar{\psi}(x')\} = \delta(x - x') \,.$$

Hilbert space \mathcal{H} : Fock space over mode algebra.

Hamiltonian:

$$H = m \int d\theta \cosh(\theta) a^{\dagger}(\theta) a(\theta) .$$

Space of operators

Consider the vector space \mathcal{L} of operators of the theory:

• Vacuum:

$$|\mathrm{vac}_{\mathcal{L}}\rangle \equiv \mathbf{1}_{\mathcal{H}}$$

• Complete basis:

$$|\theta_1, \dots, \theta_N\rangle_{\epsilon_1, \dots, \epsilon_N}^{\sim} \equiv a^{\epsilon_1}(\theta_1) \cdots a^{\epsilon_N}(\theta_N)$$

 $\theta_1 > \theta_2 > \dots > \theta_N$

where ϵ_j are signs (\pm : "particles / holes") and $a^+(\theta) = a^\dagger(\theta), \ a^-(\theta) = a(\theta).$

ullet Inner product on ${\cal L}$

$$\langle u|v\rangle \equiv \langle \langle U^{\dagger}V\rangle \rangle_L$$
, if $u\equiv U,\ v\equiv V$.

• Operators \mathcal{O} on the Hilbert space \mathcal{H} can be seen also as operators on \mathcal{L} : acting by left-action

Two-point function is a **vacuum expectation value** on \mathcal{L} :

$$\langle \langle \mathcal{O}(x)\mathcal{O}(0) \rangle \rangle_L = \langle \text{vac}_{\mathcal{L}} | \mathcal{O}(x)\mathcal{O}(0) | \text{vac}_{\mathcal{L}} \rangle$$

Finite-temperature form factors

Normalized set of states on \mathcal{L} :

$$|\theta_1, \dots, \theta_N\rangle_{\epsilon_1, \dots, \epsilon_N} \equiv \prod_{j=1}^N (1 + e^{-\epsilon_j L E_{\theta_j}}) a^{\epsilon_1}(\theta_1) \cdots a^{\epsilon_N}(\theta_N)$$

with $|\theta_1, \dots, \theta_N\rangle_{\epsilon_1, \dots, \epsilon_N} = 0$ if $\theta_i = \theta_j$ for some $i \neq j$.

Finite-temperature form factors:

$$f_{\epsilon_1,\ldots,\epsilon_N}^{\mathcal{O}}(\theta_1,\ldots,\theta_N) = \langle \operatorname{vac}_{\mathcal{L}}|\mathcal{O}(0)|\theta_1,\ldots,\theta_N\rangle_{\epsilon_1,\ldots,\epsilon_N}$$

Decomposition of the identity:

Note that

$$\langle\langle a(\theta)a^{\dagger}(\theta')\rangle\rangle_{L} = \frac{\delta(\theta-\theta')}{1+e^{-LE_{\theta}}}, \,\langle\langle a^{\dagger}(\theta)a(\theta')\rangle\rangle_{L} = \frac{\delta(\theta-\theta')}{1+e^{LE_{\theta}}}$$

Then

$$_{\epsilon}\langle\theta|\theta'\rangle_{\epsilon'} = (1 + e^{-\epsilon LE_{\theta}})\delta(\theta - \theta')\delta_{\epsilon,\epsilon'}$$

In general, we have

$$\mathbf{1} = \sum_{\{\epsilon\}} \int \frac{\{d\theta\}}{N!} \prod_{j=1}^{N} \frac{1}{1 + e^{-\epsilon_j L E_{\theta_j}}} |\{\theta\}\rangle_{\{\epsilon\}} |\{\epsilon\}\rangle \langle \{\theta\}|$$

Large-distance expansion?

Can write two-point function as

$$\langle \langle \mathcal{O}(x)\mathcal{O}(0) \rangle \rangle_{L} = \sum_{\{\epsilon\}} \int \frac{\{d\theta\}}{N!} \prod_{j=1}^{N} \frac{e^{i\epsilon_{j}p_{\theta_{j}}x}}{1 + e^{-\epsilon_{j}LE_{\theta_{j}}}} f_{\{\epsilon\}}^{\mathcal{O}}(\{\theta\})^{*} f_{\{\epsilon\}}^{\mathcal{O}}(\{\theta\})$$

In the limit $L \to \infty$:

 The finite-temperature form factors become the usal form factors:

$$\lim_{L \to \infty} f^{\mathcal{O}}_{+,\dots,+,-,\dots,-}(\theta_1,\dots,\theta_{N_+},\theta_{N_++1},\dots,\theta_N) = \langle \theta_N,\dots,\theta_{N_++1} | \mathcal{O}(0) | \theta_1,\dots,\theta_{N_+} \rangle$$

$$(\theta_i \neq \theta_j \ \forall \ i \in \{1,\dots,N_+\}, \ j \in \{N_++1,\dots,N\});$$

 The expansion above becomes the usual form factor expansion.

But, as in the zero-temperature case, we need to do analytical continuation in θ in order to get workable large-x expansion.

Form factors on the cylinder from finite-temperature form factors

Remark:

$$f_{\epsilon_1,\dots,\epsilon_N}^{\mathcal{O}}(\theta_1,\dots,\theta_N) = \langle \langle \{a^{\epsilon_1}(\theta_1), [a^{\epsilon_2}(\theta_2), \{\cdots, \mathcal{O}(0)\cdots\}]\} \rangle \rangle_L$$

Local uninteracting fields \mathcal{O}_i :

$$[\psi(x), \mathcal{O}_i(x')] = \sum_j c_i^j \ \mathcal{O}_j(x') \ \delta^{(d_i - d_j - \frac{1}{2})}(x - x')$$

Modes in terms of local fermi fields:

$$a^{\pm}(\theta) = \frac{1}{2} \sqrt{\frac{m}{\pi}} \int_{-\infty}^{\infty} dx \, e^{\pm ip_{\theta}x} \left(e^{\theta/2} \psi(x) \mp i e^{-\theta/2} \bar{\psi}(x) \right)$$

 \Rightarrow finite-temperature form factors of local uninteracting fields are entire functions of θ_i 's. Then (spinless fields):

$$L\langle \operatorname{vac}|\mathcal{O}_{L}(0)|n_{1},\ldots,n_{k}\rangle = \sum_{\{\epsilon\}} \left(\frac{i\pi}{mL}\right)^{\frac{k}{2}} \prod_{j=1}^{k} \frac{1}{\sqrt{\cosh(\theta_{n_{j}})}} f_{\epsilon_{1},\ldots,\epsilon_{k}}^{\mathcal{O}}(\alpha_{n_{1}} + \frac{i\pi\epsilon_{1}}{2},\ldots)$$

where $mL \sinh(\alpha_n) = 2\pi n, \ n \in \mathbb{Z} + \frac{1}{2}$.

Finite-temperature form factors of uninteracting fields: mixing

At zero temperature: **form factors of uninteracting fields are also entire functions of rapidities**. Are they the same as the finite-temperature form factors?

No, in general:

$$f_{\{+\}}^{\mathcal{O}}(\{\theta\}) = \langle \operatorname{vac}|(\mathcal{O}(0) + \ldots)|\{\theta\}\rangle$$

where . . . contains local fields at x=0 of lower dimension than that of $\mathcal O$ and of equal or lower spin.

For instance: Casimir energy ${\mathcal E}$

$$\langle \operatorname{vac}_{\mathcal{L}} | T(0) | \operatorname{vac}_{\mathcal{L}} \rangle = \langle \operatorname{vac} | (T(0) + \mathcal{E} \mathbf{1}) | \operatorname{vac} \rangle$$
.

In general, the mixing can be described by a **mixing** operator M acting on \mathcal{L} :

$$|\mathcal{O}(0) + \ldots\rangle = M|\mathcal{O}(0)\rangle \in \mathcal{L}$$

This is a generalization of the CFT situation, where $\mathcal{L}\simeq\mathcal{H}$ and M is written in terms of Virasoro generators and makes a transformation to the cylinder.

Spin (or twist) operators

The Majorarana theory has \mathbb{Z}_2 global symmetry $\psi\mapsto -\psi,\ \bar{\psi}\mapsto -\bar{\psi}.$ There are two associated spin fields (twist fields): σ and μ (with non-zero form factors for even and odd particle number respectively).

On the geometry of the cylinder, every spin operator has **two realizations**: σ_{\pm} and μ_{\pm} , with branch cut on the right (+) or on the left (-) of the position of the operator. For instance:

$$\psi(x,\tau)\mu_{+}(0) \mapsto (\psi(x,\tau)\mu(0))_{+} (\tau > 0)$$

$$\mu_{+}(0)\psi(x,\tau) \mapsto -(\psi(x,\tau)\mu(0))_{+} (\tau < 0)$$

and

$$\psi(x,\tau)\mu_{+}(0) \mapsto \mathcal{C}_{\tau'=0^{+}\to\tau}(\psi(x,\tau')\mu(0))_{+} \quad (\tau<0)$$

$$\mu_{+}(0)\psi(x,\tau) \mapsto -\mathcal{C}_{\tau'=0^{-}\to\tau}(\psi(x,\tau')\mu(0))_{+} \quad (\tau>0)$$

where $\mathcal C$ means analytical continuation and $(\psi(x,\tau)\mu(0))_+$ is a field that defines, inside correlation functions, a function of x and τ that has a branch cut at $\tau=0,\,x>0.$

Finite-temperature form factors of spin operators: Riemann-Hilbert problem

Consider

$$f(\theta_1,\ldots,\theta_k)=f_{\{+\}}^{\sigma_+,\mu_+}(\theta_1,\ldots,\theta_k).$$

Then,

1.
$$f(\ldots, \theta_i, \ldots, \theta_j, \ldots) = -f(\ldots, \theta_j, \ldots, \theta_i, \ldots)$$

$$f(heta_1,\dots, heta_k)$$
 has poles at $heta_j=lpha_n+rac{i\pi}{2},\ n\in\mathbb{Z}$ and has zeroes at $heta_j=lpha_n+rac{i\pi}{2},\ n\in\mathbb{Z}+rac{1}{2}$

3.
$$f(\theta_1, \dots, \theta_k + 2i\pi) = -f(\theta_1, \dots, \theta_k)$$

4.
$$f(\theta_1, \dots, \theta_k) \sim \frac{(-1)^{k-1}}{\pi} \frac{1 + e^{-LE_{\theta_{k-1}}}}{1 - e^{-LE_{\theta_{k-1}}}} \frac{f(\theta_1, \dots, \theta_{k-2})}{\theta_k - \theta_{k-1} - i\pi}$$

5. $f(\theta_1,\ldots,\theta_k)$ does not have poles for ${
m Im}(\theta_j)\in[-i\pi,i\pi]$ except those mentionned above

Also, we have in general

$$\underline{P}f_{\epsilon_1,\ldots,\epsilon_k}^{\mathcal{O}}(\theta_1,\ldots,\theta_k+i\pi) = i\underline{P}f_{\epsilon_1,\ldots,-\epsilon_k}^{\mathcal{O}}(\theta_1,\ldots,\theta_k)$$

where \underline{P} means principal value.

What next to do?

- Compute explicitly form factors of descendant spin fields, including mixing;
- Generalize to interacting integrable models:
 - Riemann-Hilbert problem for finite-temperature form factors?
 - gives a way of computing energy spectrum on the cylinder?
 - gives another numerically useful representation of finite-temperature correlation functions?