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Correlation functions and form factors

Euclidean correlation functions at zero temperature:

oo
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(O, 1)00.0) = 3, [ =—e Mt
k=0 '

x (vac|O(0,0)[01,...,0k)in in(01,-...,0,|O(0,0)|vac)
where r = V2 + 72.

Useful representation in integrable models because:

e form factors (vac|(0(0,0)|61, ..., 0)y, of local
fields can be evaluated (up to normalization) by solving

a Riemann-Hilbert problem in rapidity space;

e the first few terms (k = 0, 1, 2, ...) in the expression
above give a good description of correlation

functions at large (and also not too large) distances;

e in condensed matter applications, for instance, the most

relevant region is the large-distance one (low
energy).
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/ Finite (non-zero) temperature \

Goal:
Find a large-distance expansion of finite-temperature
correlation functions, and compute the terms (“form factors”)
involved.

e Must take statistical average as well:

(O(2,)0(0,0))) . = — (e Tr(?éf;%o 0.0)

Not a vacuum-vacuum matrix element: no obvious

simple form factor decomposition.

Geometrically, the trace represents a theory on a
cylinder of circumference L where time is around the
cylinder and space is along it.

e Different quantization scheme for the same theory: take
time along the cylinder and space around the

cylinder,
UO(z. 7) Ny = vacle™/ 20, (—r. 2) - |lvac)
AW \ / [/ L L\ | 1/ \ Vi | / L
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where s is the spin of O and Oy, is the operator on the

\ cylinder associated to O. /




4 N

Correlation functions and form factors on the cylinder

Form factor decomposition on the cylinder (integrable
models):

L<VaC|OL (CIZ, T)OL (07 O)|VaC>L —
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k=0 ni,...,Ng

X L<V&C|OL(O,O)|N1, ce ,nk><n1, ce ,nk‘OL(0,0)|VaC>L

Problems:
e Spectrum E{n} is complicated in interacting models;

e Form factors 1 (vac|Op(0,0)|ny,...,nk) depend
on discrete variables: no obvious “analytical way” of

evaluating them.
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/ What has been done \

On the cylinder:
Form factors of spin fields in the Ising field theory:
e A. l. Bugrij: hep-th/0011104, hep-th/0107117.
e A. B. Zamolodchikov and P. Fonseca: hep-th/0112167.

Also, spectrum in interacting integrable models by various
numerical means (TBA, NLIE, ...)

“Finite temperature form factor” approach:

e A. Leclair, F. Lesage, S. Sachdev, H. Saleur: Nucl. Phys.
B482 [FS] 1996, 579.

e A. Leclair, G. Mussardo: Nucl. Phys. B552 1999, 624.
e H. Saleur: Nucl. Phys. B567 2000, 602.

e G. Delfino: J. Phys. A 34, 2001, L161.

e G. Mussardo: J. Phys. A 34 2001, 7399.

e O. A. Castro-Alvaredo and A. Fring: Nucl. Phys. B636
[FS] 2002, 611
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e R. A. J. van Elburg and K. Schoutens:

K cond-mat/0007226. /




/ General idea \

e Find a construction where the trace
Tr (e *7O(z,7)0(0,0))
Tr (e~ LH) '

is a vacuum expectation value in some vector space

and where eigenvalues of the momentum operator
are described by continuous variables (for instance, by

rapidities 0,).

e [Ising field theory] Find a measure p({0}) in

1= [ qopion oy

such that form factors of uninteracting local fields,
(vac|O(0,0)[{0}), are entire functions of the
rapidities {6} ;

e Calculate form factors on the cylinder by analytical
continuation in the rapidity variables to the positions of
the poles of the measure p:

£ (vac|Or(0,0)|{n}) x v/Res p (vac|O(0,0)|{a,xim/2}
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Free Majorana fermion operators on the line:

_3 E —0/2 ipgr—EoT —ipgx+FEgT
2“7r /d@e (a(@)e a'(f)e >

Satisfy equations of motion and

equal-time canonical anti-commutation relations
dh(w,m) = 5 (Oetidn)h =20
OU(e,T) = (B —id)d ="

{’QD(I.)) 770(513/)} — 5(£U o QZ‘/) ) {@Z(QE), Tvz(xl)} — 5(33 o CB/) .
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Ising field theory \

T) =
V/— /d9 ef/? (a(@) ePor—HoT | aT(H) eﬂpeﬂHE@T)

{a"(0),a(0")} =60 —0),

po = msinh6, Fy= mcosh@.

bert space H: Fock space over mode algebra.

H=m / d0 cosh(0)a" (0)a(6) .
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/ Space of operators \

Consider the vector space L of operators of the theory:

e Vacuum:
lvac,) = 1y
e Complete basis:
‘(91, ce ’9N>;\J17---,€N = g ((91) A ((9]\7)

01 > 605> --->0xn

where €; are signs (= : “particles / holes”) and

at(0) =a'(0), a=(0) = a(b).
e Inner product on L

(ulv) = UV, ifu=sU v=V.

e Operators O on the Hilbert space H can be seen
also as operators on L: acting by left-action

Two-point function is a vacuum expectation value on L:

({O(x)0(0))) L = (vacc|O(z)O(0)|vace)
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/ Finite-temperature form factors \

Normalized set of states on L:

N

00, ONYer ey = [ [(1He 9% )a (01) - a™N (O)

with |61, ..., 0n)e,

Finite-temperature form factors:

e(?,...,eN (917 K 791\7) — <V&C£‘O(O)‘91, “e 79N>€1,---7€N

ey = 0if0; = 0 for some ¢ # j.

.....

Decomposition of the identity:

Note that
(a@al @) = 20Tt @)a@)s = 200
Then

(00 = (14 e )50 — '), o

In general, we have

r (1

n N 4
s [ 1) 1
L= / i ezl CUCRCA
) '

Jj=1
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Large-distance expansion?

Can write two-point function as
((O(2)0(0))) 1 =
5 / {do)} ﬁ e
v
PR =R

In the limit L — oco:

L€ Py . T

— e JO O FH ({eD)

€

e The finite-temperature form factors become the usal

form factors:

Hmr—oo f§ . o (01, 0N, 0N, 41, .., 0N) =
On,...,0n, +1]0(0)]01,...,0N,)
(0:i #0;Vie{l,...,N.}, je{Ny+1,...,N});

e The expansion above becomes the usual form factor

expansion.

But, as in the zero-temperature case, we need to do
analytical continuation in @ in order to get workable
large-x expansion.
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Form factors on the cylinder from
finite-temperature form factors

Remark:

rO (0. 0.\ —

J61,...,€N \U].) AR V]\/} -

(({a"(01), [ (62),{--- , O(0) -~ }}))r

Local uninteracting fields O;:

(@), 05(a")] =Y el O(a’) 6472 (z — o)
J
Modes in terms of local fermi fields:

a*(6) = ;/? /_OO dx P07 (924 () Fie ™"/ ()

—> finite-temperature form factors of local uninteracting
fields are entire functions of 6,’s. Then (spinless fields):

Uk K X .
17T O 17TE]
j V] (,m,. \ / fela"')ek:(anl —|_ 's) 7"')
J = | 2

where mL sinh(a,) = 27n, n € Z + 5.
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/Finite-temperature form factors of uninteracting fields:\

mixing

At zero temperature: form factors of uninteracting fields
are also entire functions of rapidities. Are they the same

as the finite-temperature form factors?

No, in general:

fy ({01) = (vacl(O(0) + .. ) [{6})

where . . . contains local fields at x = 0 of lower

dimension than that of O and of equal or lower spin.

For instance: Casimir energy &
(vac,|T'(0)|vacs) = (vac|(T(0) + £1)|vac) .

In general, the mixing can be described by a mixing
operator M acting on L:

00) +...) = M|O0)) €L

This is a generalization of the CFT situation, where £ ~ H

and M is written in terms of Virasoro generators and makes

\atransformation to the cylinder. /
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Spin (or twist) operators

The Majorarana theory has Zs global symmetry
Y — —, 1) — —1b. There are two associated spin fields
(twist fields): o and 1 (with non-zero form factors for even

and odd particle number respectively).

On the geometry of the cylinder, every spin operator has two
realizations: o4+ and 4, with branch cut on the right (+)
or on the left (—) of the position of the operator. For
instance:

(x, 7)p(0)
p+(0)9(z, 7)

and

— (Y, 7)p(0))+ (7> 0)
—  —((z,7)u0))+ (7 <0)
(@, T)u(0) = Cr—ot . (¥(z, 7)(0))+ (1 <0)
pr(0)Y(z,7) = —Cro- - (P(z, 7)u(0)+ (7 >0)

where C means analytical continuation and

n

(¢ (x, 7)pe(0)) . is afield that defines, inside correlati

o

functions, a function of x and 7 that has a branch cut at
T=0,z>0.
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/ Finite-temperature form factors of spin operators: \
Riemann-Hilbert problem

Consider

FOr,- . 0k) = FTE (01, 0n)

Then,

L. f(o..,0i...,05,..)=—f(...,05...,0;...)
2. f(01,...,0;) has poles at 0 :oszr%T, n € 7

vVIT

and has zeroes at 0; = «, + 5 n€Z+§
3 Jf(617,8k+2277') w —f(é)hﬁqe,l;)

4. f(01,...,0;) ~
(—1)F 114 e PP £(0y,...,0,_)
74 1 — e_LEek—l 0, — 0,1 —im

5. f(04,...,0};) does not have poles for

Im(60;) € [—im,im] except those mentionned above .

Also, we have in general

Bfe(l),...,ek, ((917 s 79k +7’7T) — ZB © ,— €Lk ((917 s 79k)

€1 4.en

Qhere P means principal value. /




What next to do?

e Compute explicitly form factors of descendant spin

fields, including mixing;

e Generalize to interacting integrable models:

— Riemann-Hilbert problem for finite-temperature form

fartare?
ICAWVILVI WV

— gives a way of computing energy spectrum on the

cylinder?

— gives another numerically useful representation of

finite-temperature correlation functions?




