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Intro to PT-quantum mechanics

Hermiticity is good as it guarantees reality of eigenvalues and conservation of probabilities, but

Hermiticity is only sufficient but not necessary

@ Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0, I]=0 A Zd=0

have a real eigenvalue spectrum.
[E. Wigner, J. Math. Phys. 1 (1960) 409]
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Hermiticity is good as it guarantees reality of eigenvalues and conservation of probabilities, but

Hermiticity is only sufficient but not necessary

@ Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0, I]=0 A Zd=0

have a real eigenvalue spectrum.
[E. Wigner, J. Math. Phys. 1 (1960) 409]

@ By defining a new metric also a consistent quantum
mechanical framework has been developed for theories
involving such operators.

[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74,
C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243,
A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814]

In particular this also holds for O being non-Hermitian.
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Examples for non-Hermitian systems from the literature:

"Recent"” classical example

H= %p2 +x2(ix)s  fore >0
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[C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Examples for non-Hermitian systems from the literature:

An older classical example
@ Lattice Reggeon field theory:

H= Z; [Aa;'r'af—’— iga;r'(a7+ a;‘)ai‘"i_ QZj(a;f*+j— a})(a;ﬁ— a;)

- ;, ar are creation and annihilation operators, A,g,9 € R
[J.L. Cardy, R. Sugar, Phys. Rev. D12 (1975) 2514]
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Examples for non-Hermitian systems from the literature:

An older classical example
@ Lattice Reggeon field theory:

H= Z; [Aa;'r'af—’— iga;r'(a7+ a;[)a;_’_ sz(a;ﬁ— a})(a;ﬁ— a;)

- ;, ar are creation and annihilation operators, A, g,g € R
[J.L. Cardy, R. Sugar, Phys. Rev. D12 (1975) 2514]
- for one site this is almost ix3
H = Aa'a+iga' (a+ aT) a
1 g

- E(b2+)?2—1>+iﬁ()“(3+,62)“(—2$(+ib)

with a = (wX + ip)/V2w, a' = (wX — ip)/V2w
[P. Assis and A.F., J. Phys. A41 (2008) 244001]
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Examples for non-Hermitian systems from the literature:

@ quantum spin chains: (c=-22/5 CFT)
1 N X zZ_Z H z
%:Ezi:10i+)\0i0i+1+lh0i >\7h€R

[G. von Gehlen, J. Phys. A24 (1991) 5371]
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Examples for non-Hermitian systems from the literature:

@ quantum spin chains: (c=-22/5 CFT)
1 N X zZ_Z H z
%:Ezi:10i+)\0i0i+1+lh0i >\7h€R
[G. von Gehlen, J. Phys. A24 (1991) 5371]
° Toda field theory:
2

Nk exp(Bo - @)

£ =3 0" ¢+’;' .

a =1 = conformal field theory (Lie algebras)
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Examples for non-Hermitian systems from the literature:

@ quantum spin chains: (c=-22/5 CFT)
1 N X zZ_Z H z
%:Ezi:10i+)\0i0i+1+lh0i >\7h€R

[G. von Gehlen, J. Phys. A24 (1991) 5371]
@ affineToda field theory:

m2
L =5 qua ¢+ —= P2 ya Tk exp(fak - @)

a = 0 = massive field theory (Kac-Moody algebras)
B8 € R = no backscattering
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Examples for non-Hermitian systems from the litrature:
@ quantum spin chains: (c=-22/5 CFT)
H :% Z:\; of + Xofofq +iho? X heR
[G. von Gehlen, J. Phys. A24 (1991) 5371]

@ affineToda field theory:

m@
5_, $'p+ — 7 2 exp(fak - ¢)

a = 0 = massive field theory (Kac-Moody algebras)
B8 € R = no backscattering
B € iR = backscattering (Yang-Baxter, quantum groups)
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Examples for non-Hermitian systems from the literature:

@ quantum spin chains: (c=-22/5 CFT)
1 N X zZ_Z H z
%:Ezi:10i+)\0i0i+1+lh0i >\7h€R

[G. von Gehlen, J. Phys. A24 (1991) 5371]
@ affineToda field theory:

2

nk exp(Bag - @)

£ =3 0" ¢+’;' .

a = 0 = massive field theory (Kac-Moody algebras)
B8 € R = no backscattering
B € iR = backscattering (Yang-Baxter, quantum groups)

@ strings on AdSs x S°-background
[A. Das, A. Melikyan, V. Rivelles, JHEP 09 (2007) 104]
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Examples for non-Hermitian systems from the literature:

@ deformed space-time structure
- deformed Heisenberg canonical commutation relations

aa' — g?afa= g9V, with N = afa
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Examples for non-Hermitian systems from the literature:

@ deformed space-time structure
- deformed Heisenberg canonical commutation relations

aa' — g?afa= g9V, with N = afa

X:aaT—l—Ba, P:I'YaT_I(Saa Oé,ﬁ,"}’,(SER

[X, P] = ihg®™(as + Bv)

in(g® - 1)
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Examples for non-Hermitian systems from the literature:

@ deformed space-time structure
- deformed Heisenberg canonical commutation relations

aa' — g?afa= g9V, with N = afa

X:aaT—l—Ba, P:I'YaT_I(Saa Oé,ﬁ,"}’,(SER

[X, P] = ihg®™(as + Bv)

in(g® - 1)

2 2 . g
R (5’yX +afB P2+ iadXP mm)

~limit: 8 — a, 6 — 7, g(N) = 0, g — €™, v = 0

X, Pl =i (1+7P?)
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Examples for non-Hermitian systems from the literature:

@ deformed space-time structure
- deformed Heisenberg canonical commutation relations

aa' — g?afa= g9V, with N = afa

X:aaT—l—Ba, P:I'YaT_I(Saa Oé,ﬁ,"}’,(SER

[X, P] = ihg®™(as + Bv)

in(g® - 1)

2 2 . g
R (5’yX +afB P2+ iadXP mm)

- limit: 8 = «, 0 = v, g(N) —» 0, g — e,y =0
X, Pl =i (1+7P?)

- representation: X = (1 +7p2)xo, P = po, [Xo, Po] = ih
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- with the standard inner product X is not Hermitian

X' =X+2rihP  and P =P
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Examples for non-Hermitian systems from the literature:

- with the standard inner product X is not Hermitian
X' =X+2rihP  and P =P

- = H(X, P) is in general not Hermitian
- example harmonic oscillator:

P2 ome? o

2m 2 ’

p5 | mu? p) >

_ ,075 mw? 2\2.2 | o 2

= omt 5 [(1 +7P5) Xo + 2ihTpo(1 +TP0)X0} :

[B. Bagchi and A. Fring, Phys. Lett. A373 (2009) 4307]

Hho =
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Examples for non-Hermitian systems from the literature:

g-dependent coherent states are constructed for:

o gP -1 o 1 5
[X, Pl =ih+iF—r (mwX +P>
q-+1 Mw

Take

xza(AT+A>, and P:iﬁ(AT—A>

with o = 1/2,/1 + g2\/h/(mw), B = 1/2v/1 + g2V hmw

Non-Hermitian representation:

1

A = WDC],

and A'=(1-x)—x(1-qg?Dq

Jackson derivatives Dqf(x) := [f(x) — f(g°X)]/[x(1 — g?)]

S. Dey, A. Fring, L. Gouba; J. Phys. A 45 (2012) 385302

S. Dey, A. Fring; Phys. Rev. D86 (2012) 064038

S. Dey, A. Fring, L. Gouba, P. Castro; Phys. Rev. D 87 (2013) 084033
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Spectral analysis

How to explain the reality of the spectra?

@ Pseudo/Quasi-Hermiticity
© Supersymmetry (Darboux transformations)
©Q PT-symmetry
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positivity of p v v X
p Hermitian v v v
p invertible v X v
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definite metric | guaranteed | guaranteed | not conclusive
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e quasi-Hermiticity: [J. Dieudonné, Proc. Int. Symp. (1961) 115]
[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74]
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Spectral analysis

Pseudo/Quasi-Hermiticity

h=nHn ' =h =@""YHy < Hp=pH p=1'y

H' =pHp™' | H'p=pH | H' =pHp’
positivity of p v v X
p Hermitian v v v
p invertible v X v
terminology gandp quasi-Herm. | pseudo-Herm.
spectrum of H real could be real real
definite metric | guaranteed | guaranteed | not conclusive

e quasi-Hermiticity: [J. Dieudonné, Proc. Int. Symp. (1961) 115]
[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74]

e pseudo-Hermiticity: [M. Froissart, Nuovo Cim. 14 (1959) 197]
[A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814]
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Spectral analysis

Supersymmetry (Darboux transformation)

Decompose Hamiltonian # as:
H=H.aoH_ =QQeQQ
e intertwining operators: QH_ = H,Q and QH, = H_Q
= [HQ=[HQ =0
o realization: Q= & + Wand Q= -2 + W
= Hi=-A+W2tW=-A+V,

e ground state: H_ ¢, =¢,$, and H-¢,, =0
=-isospectral Hamiltonians

HP = —A+ VP + E, HPoE=E0: forn>m
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Spectral analysis

Unbroken P7-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—=>p i——i
P:x——x,p——p; T:X—=Xx,p——p,i = —I)
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Spectral analysis

Unbroken P7-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—=>p i——i
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@ P7T is an anti-linear operator:

PTO® + pu¥) = N*PTé + 1*PTV A\ peC
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@ P7T is an anti-linear operator:
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@ Proof:
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Unbroken P7-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—=>p i——i
P:x——x,p——p; T:X—=Xx,p——p,i = —I)
@ P7T is an anti-linear operator:
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[H,PT]=0 A PTO=0 =ec=c" forHO =cd

@ Proof:
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Spectral analysis

Unbroken P7-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—=>p i——i
P:x——x,p——p; T:X—=Xx,p——p,i = —I)
@ P7T is an anti-linear operator:

PTOAD + uV¥) = N*PTO + 1 PTV A\ueC
@ Real eigenvalues from unbroken PT-symmetry:
[H,PT]=0 A PTP=¢ =c=c" forHd =cd

@ Proof:
ed=HO=HPTS=PTHS=PTecd=c*PTO
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Spectral analysis

Unbroken P7-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—=>p i——i
P:x——x,p——p; T:X—=Xx,p——p,i = —I)
@ P7T is an anti-linear operator:

PT (AP 4+ pV) = X*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken PT-symmetry:
[H,PT]=0 A PTd=0¢ =c=c" forHd =cd

@ Proof:
EQ=HO=HPTP =PTHP=PTecd=c*PTdP=c"0
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Spectral analysis

Unbroken P7-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—=>p i——i
P:x——x,p——p; T:X—=Xx,p——p,i = —I)
@ P7T is an anti-linear operator:

PT (AP 4+ pV) = X*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken PT-symmetry:
[H,PT]=0 A PTP=¢ =c=c" forHd=cd

@ Proof:
eO=HOP=HPTP =PTHP=PTecd=c*PTdP=c"0

PT-symmetry is only an example of an antilinear involution
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Construction of new PT-symmetric models

General deformation prescription:
PT-anti-symmetric quantities:

PT :¢(x, 1) = =o(x,t) = & : ¢(x, 1) = —ilig(x, 1)]°

Two possibilities to deform the KdV Hamiltonian

Hkav = —€U3 - %(Ux)2
67 iUy = Uxe = —i(iuy)®  or 67 i uws U= —i(iu)F,
such that
+:7ﬁ 3 7 i \e+1 - _ /3 inet2, V2
H, 6u —1+€(/ux) H _—(1+€)(2+€)(/u) +2ux

with equations of motion

Ut + Buly + yUyxxe =0 Ut + IBUUyx + YlUxxx = 0
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Construction of new PT-symmetric models

Calogero-Moser-Sutherland models (PT-extended)

’H 7'072—’_(‘0722 2+9722 #_H'”Z 17 ,
ext— 5D T i#k (qi — Qk)? g f#k(qi—qk)p'

with g, g € R, g, p € R
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Construction of new PT-symmetric models

Calogero-Moser-Sutherland models (PT-extended)

Hext = 22‘7' zz#kq L +92,¢k pi

with g, g € R, g, p € R
Calogero-Moser-Sutherland models (PT-deformed)

p? | mP 2 1
Hoet =5 + 75 D (@0 @?+ 5> gaV(a-q), mga €R

aEAg aEA
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Construction of new PT-symmetric models

Calogero-Moser-SutherIand models (PT-extended)

Hext = Z q/ 2 Zl;ék q qk)27L gZ/;ﬁk Pi

with g, g € R, g, p € R
Calogero-Moser-Sutherland models (PT-deformed)

p?  nP o 1 N
Hoot = " + 56 2 (@ 8%+ 5> gaV(a- @), mga€R
aEAs aEA
Define deformed coordinates (A)
g1 — 4 =gjcoshe +ivV3(ge — gz)sinhe

g — o= qecoshe +iv3(gs — gi)sinhe
g — @5 =qscoshe +ivV3(gs — g»)sinhe
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Construction of new PT-symmetric models

Calogero-Moser-Sutherland models (PT-extended)

Hext = 22‘7' zz#kq L +92,¢k pi

with g, g € R, g, p € R
Calogero-Moser-Sutherland models (PT-deformed)

p2 m2 - 2 1 -
Hoet =5 + 75 D (@02 + 5> 0aV(i-q), mga €R
aclAg aEA
or deformed roots:

ay — @&y =aqcoshe +iv3sinhel,
ap — dp = ascoshe — ivV3sinhe)
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Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:

h=nHy™ ' =h' = ") Hy' < Hiplp=nnH
d=nTo gl=1

= H is Hermitian with respect to the new metric
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= H is Hermitian with respect to the new metric
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(V[H®), = (V[1°HO)
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H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:
h=nHn™' = ht = (" Y H' & Higty =nTnH

o=n""¢ 0=y

= H is Hermitian with respect to the new metric
Proof:
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Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:
h=nHn' = ht = (Y H'" & Higly =nTnH

d=nTo gl=gp

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (V[P HP) = (™ |’ Hn~'¢) = (¥ [nHn ™ ¢) =
(¢ |ho)
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Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:
h=nHy™" = ht = (") H'" < Hiy'y =ninH
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= H is Hermitian with respect to the new metric
Proof:
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(¥ |he) = (h| p)
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e Assume pseudo-Hermiticity:
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Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:

h=nHy™ ' =h' = ") Hy' < Hiplp=nnH

d=n"l¢ nl=np

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (V[P HP) = (™ |’ Hn~'¢) = (¥ [nHn~'¢) =
(¥ |he) = (M| @) = (nHn"P|¢) = (HV|ng)
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Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:

h=nHy™ ' =h' = ") Hy' < Hiplp=nnH

b=n"l¢ =g

= H is Hermitian with respect to the new metric
Proof:

(WIH®), = (W [P H®) = (n~"lnHn " ¢) = (& [nHn~"¢) =
(6 |ho) = (hp|g) = (nHi~"lg) = (HW|ng) = (HV|72®)
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Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:

h=nHy™ ' =h' = ") Hy' < Hiplp=nnH

d=nTo gl=gp

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (WP H®) = (n~ p|n?Hn~'¢) = (¥ [nHn~¢) =
(6 [ho) = (hp|6) = (M~ "vlg) = (HY|ne) = (HV|r2®)
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Intro to PT-quantum mechanics

e0

Quantum mechanical framework

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:

h=nHy™ ' =h' = ") Hy' < Hiplp=nnH

d=nTo gl=1

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (V[P HP) = (™ |’ Hn~'¢) = (¥ [nHn~'¢) =
(6 [ho) = (hp|6) = (M~ "vlg) = (HY|ne) = (HV|r2®)
= (HV|®),

= Eigenvalues of H are real, eigenstates are orthogonal
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Observables

@ Observables are Hermitian with respect to the new metric

<<I>|(’)<I>>77 = ((’)<I>|<1>>77
O=n"ony & ot = pop~!

- 0 is an observable in the Hermitian system
- O is an observable in the non-Hermitian system
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Quantum mechanical framework

Observables

@ Observables are Hermitian with respect to the new metric

(|00), = (00|0),
O=n"ony & ot = pop~!

- 0 is an observable in the Hermitian system
- O is an observable in the non-Hermitian system

@ Ambiguities:
Given H the metric is not uniquely defined for unknown h.
= Given only H the observables are not uniquely defined.
This is different in the Hermitian case.
- Fixing one more observable achieves uniqueness.
[Scholtz, Geyer, Hahne, , Ann. Phys. 213 (1992) 74]
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Intro to PT-quantum mechanics
.

Summary of time-independent quantum mechanics

General procedure:

either solve nHn=' =h for n = p=1iy
or solve H' = pHp~' for p =n=/p
@ involves complicated commutation relations

@ often this can only be solved perturbatively

@ Thus, this is not re-inventing or disputing the validity of
quantum mechanics.

@ We only give up the restrictive requirement that
Hamiltonians have to be Hermitian.

[C. Bender, Rep. Prog. Phys. 70 (2007) 947]

[A. Mostafazadeh, Int. J. Geom. Meth. Phys. 7 (2010) 1191]

[C Bender, A Fring, U Glnther, H Jones, J.Phys. A45 (2012) 440301]
[A. Fring, Phil. Trans. R. Soc. A 371 (2013) 20120046]

@ Given H{
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Time-dependent Dyson and quasi-Hermiticity relation

Time-dependent Schrédinger equations for h = hf and H # Hf

h(t)o(t) = ihdip(t)  H(H)W(t) = ihd V(1)
with time-dependent Dyson map 7(t)

o(t) = n()W(t)
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Time-dependent Dyson and quasi-Hermiticity relation

Time-dependent Schrédinger equations for h = hf and H # Hf
h(t)¢(t) = indre(t)  H(t)W(t) = ihdrW(t)
with time-dependent Dyson map 7(t)
o(t) = n(t)V(1)
= time-dependent Dyson relation
h(t) = n(t)H(tyn ™" () + ihden(t)n " (t)
= time-dependent quasi-Hermiticity relation (p(t) := 1 (t)n(t))
HI (t)p(t) — p(t)H(t) = ihdsp(1)

H is not quasi-Hermitian = No-go theorem?
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Time-dependent Schrédinger equations for h = hf and H # Hf
h(t)¢(t) = indre(t)  H(t)W(t) = ihdrW(t)
with time-dependent Dyson map 7(t)
o(t) = n(t)V(1)
= time-dependent Dyson relation
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Time-dependent PT-quantum mechanics
®0000

Time-dependent Dyson and quasi-Hermiticity relation

Time-dependent Schrédinger equations for h = hf and H # Hf
h(t)¢(t) = indre(t)  H(t)W(t) = ihdrW(t)
with time-dependent Dyson map 7(t)
o(t) = n(t)V(1)
= time-dependent Dyson relation
h(t) = n(t)H(tyn ™" () + ihden(t)n " (t)
= time-dependent quasi-Hermiticity relation (p(t) := 1 (t)n(t))
HI (t)p(t) — p(t)H(t) = ihdsp(1)

H is not quasi-Hermitian = No-go theorem? No
e There exist non-trivial solutions.
e Energy operator: H(t) = n~1(t)h(t)n(t) =H(t) + iy~ (t)om(1)



Time-dependent PT-quantum mechanics
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Time-dependent Dyson and quasi-Hermiticity relation

Solutions time-dependent quasi-Hermiticity relation
Time-dependent harmonic oscillator with linear terms

Hp(t) = w(t)a'a+ a(t)a+ B(t)a’

Time-dependent lattice Yang-Lee model
N
Z of + Mt)ojofiq +ik(t)a)

Time-dependent Swanson Hamiltonian
Hs(t) = w(t) (a’fa + 1/2) +a(t)@ + B(t)at?

[A. Fring, M.H.Y. Moussa, Phys. Rev. A 93, 042114 (2016)]
[A. Fring, M.H.Y. Moussa,, Phys. Rev. A 94, 042128 (2016)]
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Time-dependent Dyson and quasi-Hermiticity relation

Time-independent Hamiltonian, time-dependent metric
Instead of solving time-dependent Schrédinger equation:

h(t)o(t) = ihdro(t)
Solve time-independent Schrédinger equation:

HW(t) = ihdv(t)
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Time-dependent Dyson and quasi-Hermiticity relation

Time-independent Hamiltonian, time-dependent metric
Instead of solving time-dependent Schrédinger equation:

h(t)o(t) = ihoro(t)
Solve time-independent Schrédinger equation:
HW(t) = ihosV(t)
and time-dependent quasi-Hermiticity relation

Hip(t) = p(t)H = ihdep(1)
p(t)y = n'(tn(t)



Time-dependent PT-quantum mechanics
[o]e] lele]

Time-dependent Dyson and quasi-Hermiticity relation

Time-independent Hamiltonian, time-dependent metric
Instead of solving time-dependent Schrédinger equation:

h(t)o(t) = ihoro(t)
Solve time-independent Schrédinger equation:
HW(t) = ihosV(t)
and time-dependent quasi-Hermiticity relation

Hip(t) = p(t)H = ihdep(1)
p(t)y = n'(tn(t)

= o(t) =n(t)V(t)
[A. Fring and T. Frith, arXiv:1610.07537]



Time-dependent PT-quantum mechanics

[o]e]e] le]

Time-dependent Dyson and quasi-Hermiticity relation

Rabi-type Hamiltonian < One-site lattice Yang-Lee model

2
ity — —» 2¢

— 1=
2 cUHJF2+fy25in(t¢)—7202 ¢ 7

1 .
H = 5 [WI + 07 + ivo]



Time-dependent PT-quantum mechanics

[o]e]e] le]

Time-dependent Dyson and quasi-Hermiticity relation

Rabi-type Hamiltonian < One-site lattice Yang-Lee model

My - -

202 —
CL)H+ ) — 72 Oz |, (b - 1 -7

2 +~2sin(tg
1 .
H = 5 [WI + 07 + ivo]

Solution of time-independent Schrédinger equation:

_ val Y —iELt _
wi”)_ﬁw1i¢<i(1i¢) )e ==

Solution of time-dependent quasi-Hermiticity relation

(-w£9)

N =

p(t) = D + fysin(¢t)] I+ ¢cos(pt)ox — [1 + sin(ot)] oy.



Time-dependent PT-quantum mechanics

[o]e]e]e] ]

Time-dependent Dyson and quasi-Hermiticity relation

Time-dependent Dyson map:

1 p(t) ~ p_(1

with

[Im[po(t)] ox — Re[po(t)] oy]

pe(t) = /vt +sin(at) £ po(t)
po(t) = 14 sin(¢t) + iocos(opt)



Time-dependent PT-quantum mechanics

[o]e]e]e] ]

Time-dependent Dyson and quasi-Hermiticity relation

Time-dependent Dyson map:

1 p(t) ~ p_(1

with

[Im[po(t)] ox — Re[po(t)] oy]

pe(t) = /vt +sin(at) £ po(t)
po(t) = 14 sin(¢t) + iocos(opt)
Time evolution operator (¢(t) = u(t, ty)o(ty)):

ei9(t) 0
u(t, to) = 0 oE(s+E)-n

with Iy = —ﬁ

w

1— 2 t i
o) =z + 09 Han(Z)]

t —fp) + arctan
(=6 L +(1—¢)2tan (%)

N
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(AA) (AB) = S [{[A B])

it
with (AA) := (A%) — (A)® = (A?), A =

@ Minimal length: Smallest value for AA or AB?
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Consider

(AA) (AB) = S [{[A B])
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with (AA) := (A%) — (A)® = (A?), A =

@ Minimal length: Smallest value for AA or AB?

e commutative space: [A, B] = const
give up information B, i.e. AB — co= AA=0

e noncommutative space: [A, B] ~ B?
give up information B, i.e. AB — 0o = AA = Anin #0

@ Minimal area: Smallest value for AAAB?
@ minimize left hand side
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[ ]
Minimal lengths, areas and volumes

Consider

(AA) (AB) = S [{[A B])

it
with (AA) := (A%) — (A)® = (A?), A =

@ Minimal length: Smallest value for AA or AB?

e commutative space: [A, B] = const
give up information B, i.e. AB — co= AA=0

e noncommutative space: [A, B] ~ B?
give up information B, i.e. AB — 0o = AA = Anin #0

@ Minimal area: Smallest value for AAAB?
@ minimize left hand side

@ Minimal volume: Smallest value for AAABAC?
@ generalization to triple uncertainty relations



Minimal lengths, areas and volumes

Minimal length

Direct minimization:
Define

f(AA,AB) := AAAB — % I([A, B])?
Solve
f(AA,AB) =0, Oppf(AAAB)=0, = AAni



Minimal lengths, areas and volumes

Minimal length

Direct minimization:
Define

f(AA,AB) := AAAB — % I([A, B])?
Solve
f(AA,AB) =0, Oppf(AAAB)=0, = AAni

Examples:
X, Pl =i (14 7P?) = AXain = AV/T\/1 4+ 7 (P)? = /7
[A. Kempf, G. Mangano, R. Mann, Phys. Rev. D52 (1995) 1108]



Minimal lengths, areas and volumes
L]

Minimal length

Direct minimization:
Define

f(AA,AB) := AAAB — % I([A, B])?
Solve
f(AA,AB) =0, Oppf(AAAB)=0, = AAni

Examples:

X, Pl =i (14 7P?) = AXain = AV/T\/1 4+ 7 (P)? = /7
[A. Kempf, G. Mangano, R. Mann, Phys. Rev. D52 (1995) 1108]
[X, Pl = /h(1+rP2 )éAX |n:\/ﬁﬁf~1147ﬁf
(X, P] = ine™ = AXmin = \/;hﬁ ~ 1.166h/7
[B. Bagchi and A. Fring, Phys. Lett. A373 (2009) 4307]



Minimal lengths, areas and volumes
L]

Minimal length

Direct minimization:
Define

f(AA,AB) := AAAB — % I([A, B])?
Solve
f(AA,AB) =0, Oppf(AAAB)=0, = AAni

Examples:

X, Pl =i (14 7P?) = AXain = AV/T\/1 4+ 7 (P)? = /7
[A. Kempf, G. Mangano, R. Mann, Phys. Rev. D52 (1995) 1108]
[X, Pl = /h(1+rP2 )éAX |n:\/ﬁﬁf~1147ﬁf
X.P] = iher = AXnin = \/ §hV/T ~ 1.1665y/7

[B. Bagchi and A. Fring, Phys. Lett. A373 (2009) 4307]
Do the corresponding squeezed states exist?
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Direct method
Assume minimality for equality and solve for |v)

{[A, Bl) N
A—a+ b (B-p)||v)=0

with three free parameters a = (A), 5 = (B), b? = (B?) — (B)?
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Direct method
Assume minimality for equality and solve for |v)

([A, B]) A 1) —
{A —a+ b (B— /3)} [4) =0

with three free parameters a = (A), 5 = (B), b? = (B?) — (B)?

Analytic method
Minimize LHS with Lagrange multiplier for normalization

(;fd) [((wl &2 1) — Wl AlD)?) (6] B w) — (I BI9)?) = m((wlv) - 1)]

= eigenvalue problem

2 _ )2
(A ;20) . (B bj) ] ) =21y)

with four free parameter o, 3, b?, & = (A?) — (A)?
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Re-express the direct method

(A—Oé)2 (B 5)

a2

5 [A B
“lA.B)

= two schemes agree if and only if |) is an eigenstate of [A, B]

¥) = [¥)
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Re-express the direct method

(A—Oé)2 (B 5)

a2

, [AB
2 1A B)

= two schemes agree if and only if |) is an eigenstate of [A, B]

¥) = [¥)

The analytic method
@ is valid when [A, B] is not a c-number
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Re-express the direct method

(A—Oé)2 (B 5)

a2

, [AB
2 1A B)

= two schemes agree if and only if |) is an eigenstate of [A, B]

¥) = [¥)

The analytic method
@ is valid when [A, B] is not a c-number
@ is valid when minimum is not reached at equality



Minimal lengths, areas and volumes
0e00

Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Re-express the direct method

, [AB
2 1A B)

= two schemes agree if and only if |) is an eigenstate of [A, B]

(A—Oé)2 (B 5)

a2

¥) = [¥)

The analytic method
@ is valid when [A, B] is not a c-number
@ is valid when minimum is not reached at equality
@ allows generalization to AAABAC

(A-a)? (B-pf  (C—1)

a2 b? c?

) =3 ¥)

two additional free parameters v = (C), ¢ = (C?) — (C)?
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Minimal length and states from direct method:
Recall:
X, Pl =i (1+7P?)
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Minimal length and states from direct method:
Recall:
X, Pl =i (1+7P?)

Representations in terms of standard canonical variables:

X1y = (1+7p°)x, Pay =p,
Xy = (1+70°)"2x(1+7p%)"%, Py =p,
1
Xoy = X, Ploy = 7 tan (V7p)

Xay = x(1+ Tp2)1/25 Pa4y = —ip(1 +Tp2)_1/2
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Minimal length and states from direct method:
Recall:
X, Pl =i (1+7P?)

Representations in terms of standard canonical variables:

Xay = (1+7P°)x, Py =p,
Xoy = (1+7P°)"2x(1 +7p%)2, Py = p,
1
Xe = X Pe) = —=tan (\V7p)
Xay = x(1+ Tp2)1/25 Py = —ip(1 + sz)_1/2

For M1y in momentum space

14762+ 78

ih (14 7p?) 9p + ik o2

(p—B)—alvg(p)=0



Minimal lengths, areas and volumes
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Normalized solution (8 = 0)

VT (3 + 58)
VT (3 + zg2)

for quasi-Hermitian inner product

1/2 .
1 __1 t
Ya(p) = [ ] (1 + sz) 4?4 exp _mm;'\;’?(p\/;)

wi), = | o) (p)p)dp = 1,

— 00

with metric operator p = (1 + sz)_1
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Normalized solution (8 = 0)

VAT (3 + 25) h/'T

for quasi-Hermitian inner product

1/2
VT 34 T1 -1, iccarctan T
Va(p) = [(22b2) (1 _|_7-p2) 47b exp ——(pﬂ

oo

(W), = / p(p)" (P)(p)dlp = 1,

with metric operator p = (1 + sz)_1
Using (.), = (¢4l - [¢4), We compute

R (1 22
=a, <X2>p:a2+7( +Tb), (P),=0, (P%) =0b

X ap?

p
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Normalized solution (8 = 0)

VAT (3 + 25) h/'T

for quasi-Hermitian inner product

1/2
VT 34 T1 -1, i arctan
Va(p) = [(22b2) (1 _|_7-p2) 47b exp —a—(p\/ﬂ

oo

wle), = [ o)’ (P)(p)dp = 1.
with metric operator p = (1 + sz)_1
Using (.), = (¢4l - [¢4), We compute

R2(1 4 7b%)?
=, <X2>p:a2+T’ <P>p:07 <P2>p:b2

Minimizing (AX)? we find b = 1/./7, such that
AXmin = h/\ﬁ AXninAPrin = R

(X)

p
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Direct versus analytic method [R. Jackiw, J. Math. Phys. 9 (1968) 339]

Normalized solution (8 = 0)

1/2
VT (8 + 52%) PR N | iccarctan (p/7)

= |—F—=C 147 o texp | - ——————
%(P) [ﬁr(;+2:&) ( ,0) p fL\/’F
for quasi-Hermitian inner product

wle), = [ o)’ (P)(p)dp = 1.
with metric operator p = (1 + 7p?) "
Using (.), = (¢4l - [¢4), We compute
R2(1 + 7b?)?
(X), =0, (X?), =a®+——Fp", (P),=0, (P =t
Minimizing (AX)? we find b = 1/./7, such that
AXmin = h/\ﬁ AXninAPrin = h # (AXAP)m/‘n

Agrees with previous result.
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Minimal area

Minimal area from analytic method:

+2

a2 a2 a2 b?

2 2)2 92 ] ?
[h (1 + TP ) a/D + 2h(la+hp7') (1 + 7P )89 a? (,0—5)2 7/}a(p) =0
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Minimal area

Minimal area from analytic method:

a2 a2 a2 b?

+2

2 2)2 92 ] ?
[h (1 + TP ) a/D + 2h(la+hp7') (1 + 7P )89 a? (,0—5)2 7/}a(p) =0

Solution (8 = 0)

Valp) = exp |~ XNV 1, prn(ip /) + 0,0 (ip/7)]
G
PJ’(x) = associated Legendre polynomials
QJ(x) = Legendre functions of the second kind

with ¢ = 422 + 12r2B2 /(2brh) — 1/2 and m = av/1 + 2762/ (brh)
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Minimal area

Minimal area from analytic method:

+2] Ya(p) =0

a2 a2 a2 b?

[h? (1+7p?)° 3 | 2h(iathpr) (1 £ 7090 o (p—B)°

Solution (8 = 0)

valp) = exp |- CHE VI (6, Pr(ipy7) + O (Ipv7)]
VT
PJ’(x) = associated Legendre polynomials
QJ(x) = Legendre functions of the second kind
with £ = v4a2 + h2t2b2/(2brh) — 1/2 and m = av/1 + 27b2/(bTh)
First meaningful solutions for small integers ¢ =1, m = 2 fixes a, b
Suitably normalized

g8 rl/4 icvarctan (p/7)
ValP) =\ 37 1 O [h\ﬁ



Minimal lengths, areas and volumes

(o] ]
Minimal area

We compute

0, =0 (0 a2+ T gy, 0, () -]
so that

1

V371
with A = 2/v3 ~ 1.15



Minimal lengths, areas and volumes

[ Jolele]

Minimal volume

Minimal volume from analytic method:
Consider 3D flat noncommutative space

X.Y] = i6y, [Z.X|=i0s  [V.Z]=i0s,
[X7PX] = [Y>PY]:[Z7PZ]:Ih

Bopp shifted representation

0 0 0
X = X—%‘Ipy’ Y = y—fspz’ Z = Z+E2pX7 PX = Px, Py = py, PZ = pz



Minimal lengths, areas and volumes

[ Jolele]

Minimal volume

Minimal volume from analytic method:
Consider 3D flat noncommutative space

[X,Y] = i0y, [Z,X]=i62,  [Y.Z]=ibs,
[X7PX] = [Y>PY]:[Z7PZ]:Ih

Bopp shifted representation
04 03 0o
X:X_%p}UY:y_fp27ZZZ+EpX7PX:pX7PY:py7PZ:pZ

Simplify to one noncommutative constant 6:

b2 c?
(a+B8-x)2—i0 3
- c20? TR

bP+c®, 2i(B  a+B-x 8_(X—a)2_ 32
p2c2 X 9 X 2202 bR02

(x)=0
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Minimal volume

Vadvb? + c?

_ _boy/@+b2+iab? o | aboy @+bP+c?tia(bP(a+B)+8c%)
f(x) = — DabPot2acts X T af(b2+c?) X
Hy(x) = Hermite polynomials with
n=3abc/(20va® + b>+ c?) —1/2

b(x) = c1e’™H [\/R(x —a)(&@+ b2+ C2)1/4] |




Minimal lengths, areas and volumes

o] lele]

Minimal volume

/hol x — 2 12 A2\1/4
w(x) = ¢ ef(X)Hn bC(X a)(a +b°+c ) '
Vagvb? + c2
F(x) — bc\/a2+b2+c2+lab2 abe aZ+b2+c2+ia(b2(a+6)+5c2)X
(X) - 2ab?0+-2ac?9 + a@(b2+02)
Hy(x) = Hermite polynomials with
n=3abc/(20va® + b>+ c?) —1/2
n = 0 fixes one constant, e.g. ¢ = 0va2 + b2/\/9a2b2 — 2

1/4
|: 3b2(a2 + b2) :| / ef(x)
ra2(9b* + 6%)

F(x) = BF(0+3) 1o ;i <a+g a(@+b?) ) 3022 (& +b?)

P(x) =

" 2a26(362+i0) 2(6-3i?) ) ©  2a2(9b*+6?)
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We compute
& (9b* 462
<X>p =, <X2>p = Bbg(a2—-b2§ OZZ,
b2 (94" 462
(Y), = 5. (%), = saers) + 5
02(22+p?
2),=—a-8, (22), ="EH) (a4 pp
Minimizing AXAYAZ = a=b=+/6/3"/*
so that
0\ 3/2
(AXAYAZ),. = <)\2> (AX)? = (AY)? = (AZ)? =6/V3

For 6 = h this agrees with
[S. Kechrimparis, S. Weigert, J. Math. Phys. 9 (2014) 062118 ]
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