

Goldstone's theorem and the Higgs mechanism in non-Abelian non-Hermitian quantum field theories

Andreas Fring

Methods of Algebra and Functional analysis In Application, Czech Technical University in Prague, 25th of February 2020

Goldstone's theorem and the Higgs mechanism in non-Abelian non-Hermitian quantum field theories

Andreas Fring

Methods of Algebra and Functional analysis In Application, Czech Technical University in Prague, 25th of February 2020

A. Fring and T. Taira, Nucl. Phys. B 950 (2020) 114834;

A. Fring and T. Taira, Phys. Rev. D 101 (2020) 045014

 ${\color{blue} \bullet}$ Brief introduction to $\mathcal{PT}\text{-}\mathsf{quantum}$ mechanics

- ullet Brief introduction to \mathcal{PT} -quantum mechanics
- Non-Hermitian quantum field theories

- ullet Brief introduction to \mathcal{PT} -quantum mechanics
- Non-Hermitian quantum field theories
- Goldstone theorem for Non-Hermitian quantum field theories

- ullet Brief introduction to \mathcal{PT} -quantum mechanics
- Non-Hermitian quantum field theories
- Goldstone theorem for Non-Hermitian quantum field theories
- Non-Abelian gauge theories and Higgs mechanism

- ullet Brief introduction to \mathcal{PT} -quantum mechanics
- Non-Hermitian quantum field theories
- Goldstone theorem for Non-Hermitian quantum field theories
- Non-Abelian gauge theories and Higgs mechanism
- Conclusions and Outlook

• $\mathcal{P}\mathcal{T}$ -symmetry: $\mathcal{P}\mathcal{T}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \ \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H}, \mathcal{PT}] = 0 \quad \land \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}]=0 \quad \wedge \quad \mathcal{PT}\Phi=\Phi \quad \Rightarrow \varepsilon=\varepsilon^* \ \ \text{for} \ \mathcal{H}\Phi=\varepsilon\Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \wedge \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H} \Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \land \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \ \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H}\Phi = \mathcal{HPT}\Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H}, \mathcal{PT}] = 0 \quad \land \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H} \Phi = \mathcal{H} \mathcal{P} \mathcal{T} \Phi = \mathcal{P} \mathcal{T} \mathcal{H} \Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \ \mathcal{T}: x \to x, p \to -p, i \to -i)$
- ullet \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \wedge \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \ \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H} \Phi = \mathcal{H} \mathcal{P} \mathcal{T} \Phi = \mathcal{P} \mathcal{T} \mathcal{H} \Phi = \mathcal{P} \mathcal{T} \varepsilon \Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \ \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \wedge \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \ \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H} \Phi = \mathcal{H} \mathcal{P} \mathcal{T} \Phi = \mathcal{P} \mathcal{T} \mathcal{H} \Phi = \mathcal{P} \mathcal{T} \varepsilon \Phi = \varepsilon^* \mathcal{P} \mathcal{T} \Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \land \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \ \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H} \Phi = \mathcal{H} \mathcal{P} \mathcal{T} \Phi = \mathcal{P} \mathcal{T} \mathcal{H} \Phi = \mathcal{P} \mathcal{T} \varepsilon \Phi = \varepsilon^* \mathcal{P} \mathcal{T} \Phi = \varepsilon^* \Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \ \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \land \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

$$\varepsilon \Phi = \mathcal{H} \Phi = \mathcal{H} \mathcal{P} \mathcal{T} \Phi = \mathcal{P} \mathcal{T} \mathcal{H} \Phi = \mathcal{P} \mathcal{T} \varepsilon \Phi = \varepsilon^* \mathcal{P} \mathcal{T} \Phi = \varepsilon^* \Phi$$

- \mathcal{PT} -symmetry: $\mathcal{PT}: x \to -x \quad p \to p \quad i \to -i$ $(\mathcal{P}: x \to -x, p \to -p; \ \mathcal{T}: x \to x, p \to -p, i \to -i)$
- \mathcal{PT} is an anti-linear operator:

$$\mathcal{PT}(\lambda \Phi + \mu \Psi) = \lambda^* \mathcal{PT} \Phi + \mu^* \mathcal{PT} \Psi \qquad \lambda, \mu \in \mathbb{C}$$

• Real eigenvalues from unbroken \mathcal{PT} -symmetry:

$$[\mathcal{H},\mathcal{PT}] = 0 \quad \wedge \quad \mathcal{PT}\Phi = \Phi \quad \Rightarrow \varepsilon = \varepsilon^* \ \text{ for } \mathcal{H}\Phi = \varepsilon\Phi$$

• Proof:

$$\varepsilon \Phi = \mathcal{H} \Phi = \mathcal{H} \mathcal{P} \mathcal{T} \Phi = \mathcal{P} \mathcal{T} \mathcal{H} \Phi = \mathcal{P} \mathcal{T} \varepsilon \Phi = \varepsilon^* \mathcal{P} \mathcal{T} \Phi = \varepsilon^* \Phi$$

 $\mathcal{PT} ext{-symmetry}$ is only an example of an antilinear involution

- [E. Wigner, *J. Math. Phys.* 1 (1960) 409]
- [C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]

${\cal H}$ is Hermitian with respect to a new metric

• Assume pseudo-Hermiticity:

$$h = \eta \mathcal{H} \eta^{-1} = h^{\dagger} = (\eta^{-1})^{\dagger} \mathcal{H}^{\dagger} \eta^{\dagger} \iff \mathcal{H}^{\dagger} \eta^{\dagger} \eta = \eta^{\dagger} \eta \mathcal{H}$$
$$\Phi = \eta^{-1} \phi \qquad \eta^{\dagger} = \eta$$

 $\Rightarrow \mathcal{H}$ is Hermitian with respect to the new metric *Proof* :

$$\begin{split} \langle \Psi | \mathcal{H} \Phi \rangle_{\eta} &= \langle \Psi | \eta^2 \mathcal{H} \Phi \rangle = \langle \eta^{-1} \psi | \eta^2 \mathcal{H} \eta^{-1} \phi \rangle = \langle \psi | \eta \mathcal{H} \eta^{-1} \phi \rangle = \\ \langle \psi | h \phi \rangle &= \langle h \psi | \phi \rangle = \langle \eta \mathcal{H} \eta^{-1} \psi | \phi \rangle = \langle \mathcal{H} \Psi | \eta \phi \rangle = \langle \mathcal{H} \Psi | \eta^2 \Phi \rangle \\ &= \langle \mathcal{H} \Psi | \Phi \rangle_{\eta} \end{split}$$

 \Rightarrow Eigenvalues of \mathcal{H} are real, eigenstates are orthogonal

Many applications in optics

Nature Physics volume 11, page 799 (2015)

Consider action of the general form

$$\mathcal{I} = \int d^4x \left[\partial_\mu \phi \partial^\mu \phi^* - V(\phi)
ight],$$

complex scalar fields $\phi = (\phi_1, \dots, \phi_n)$, potential $V(\phi) \neq V^{\dagger}(\phi)$

Consider action of the general form

$${\cal I} = \int d^4x \left[\partial_\mu \phi \partial^\mu \phi^* - V(\phi)
ight],$$

complex scalar fields $\phi=(\phi_1,\ldots,\phi_n)$, potential $V(\phi)\neq V^\dagger(\phi)$ Then the equations of motion are incompatible

$$\frac{\delta \mathcal{I}_{n}}{\delta \phi_{i}} = \frac{\partial \mathcal{L}_{n}}{\partial \phi_{i}} - \partial_{\mu} \left[\frac{\partial \mathcal{L}_{n}}{\partial \left(\partial_{\mu} \phi_{i} \right)} \right] = 0, \ \frac{\delta \mathcal{I}_{n}}{\delta \phi_{i}^{*}} = \frac{\partial \mathcal{L}_{n}}{\partial \phi_{i}^{*}} - \partial_{\mu} \left[\frac{\partial \mathcal{L}_{n}}{\partial \left(\partial_{\mu} \phi_{i}^{*} \right)} \right] = 0$$

Consider action of the general form

$${\cal I} = \int d^4x \left[\partial_\mu \phi \partial^\mu \phi^* - V(\phi)
ight],$$

complex scalar fields $\phi=(\phi_1,\ldots,\phi_n)$, potential $V(\phi)\neq V^\dagger(\phi)$ Then the equations of motion are incompatible

$$\frac{\delta \mathcal{I}_{n}}{\delta \phi_{i}} = \frac{\partial \mathcal{L}_{n}}{\partial \phi_{i}} - \partial_{\mu} \left[\frac{\partial \mathcal{L}_{n}}{\partial \left(\partial_{\mu} \phi_{i} \right)} \right] = 0, \ \frac{\delta \mathcal{I}_{n}}{\delta \phi_{i}^{*}} = \frac{\partial \mathcal{L}_{n}}{\partial \phi_{i}^{*}} - \partial_{\mu} \left[\frac{\partial \mathcal{L}_{n}}{\partial \left(\partial_{\mu} \phi_{i}^{*} \right)} \right] = 0$$

Papers in quantum field theory ≈ 56 versus the rest ≈ 4200

Consider action of the general form

$${\cal I} = \int d^4 x \left[\partial_\mu \phi \partial^\mu \phi^* - V(\phi)
ight],$$

complex scalar fields $\phi=(\phi_1,\ldots,\phi_n)$, potential $V(\phi)\neq V^\dagger(\phi)$ Then the equations of motion are incompatible

$$\frac{\delta \mathcal{I}_{n}}{\delta \phi_{i}} = \frac{\partial \mathcal{L}_{n}}{\partial \phi_{i}} - \partial_{\mu} \left[\frac{\partial \mathcal{L}_{n}}{\partial \left(\partial_{\mu} \phi_{i} \right)} \right] = 0, \ \frac{\delta \mathcal{I}_{n}}{\delta \phi_{i}^{*}} = \frac{\partial \mathcal{L}_{n}}{\partial \phi_{i}^{*}} - \partial_{\mu} \left[\frac{\partial \mathcal{L}_{n}}{\partial \left(\partial_{\mu} \phi_{i}^{*} \right)} \right] = 0$$

Papers in quantum field theory ≈ 56 versus the rest ≈ 4200 Resolutions:

- Keep surface terms
 - [J. Alexandre, J. Ellis, P. Millington, D. Seynaeve]
- Seek similarity transformation
 [P. Mannheim], [A. Fring, T. Taira]

Goldstone theorem and Higgs mechanism in non-Hermitian QFT?

Goldstone theorem and Higgs mechanism in non-Hermitian QFT? Key findings:

Goldstone theorem in non-Hermitian field theories

- ullet The GT holds in the ${\cal PT}$ -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The G boson is not identifiable at the zero exceptional point

Goldstone theorem and Higgs mechanism in non-Hermitian QFT? Key findings:

Goldstone theorem in non-Hermitian field theories

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The G boson is not identifiable at the zero exceptional point

Higgs mechanism in non-Hermitian field theories

- ullet Higgs mechanism works in the \mathcal{PT} -symmetric regime
- ullet Higgs mechanism does not work in the broken $\mathcal{P}\mathcal{T}$ regime
- The gauge boson remains massless at the zero exceptional point

Goldstone theorem and Higgs mechanism in non-Hermitian QFT? Key findings:

Goldstone theorem in non-Hermitian field theories

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The G boson is not identifiable at the zero exceptional point

Higgs mechanism in non-Hermitian field theories

- ullet Higgs mechanism works in the \mathcal{PT} -symmetric regime
- ullet Higgs mechanism does not work in the broken \mathcal{PT} regime
- The gauge boson remains massless at the zero exceptional point

Non-Hermitian systems posses intricate physical parameter spaces

Standard Goldstone theorem:

Each generator of a global continuous symmetry group that is broken by the vacuum gives rise to a massless particle.

Standard Goldstone theorem:

Each generator of a global continuous symmetry group that is broken by the vacuum gives rise to a massless particle.

$${\cal I} = \int d^4x \left[rac{1}{2} \partial_\mu \Phi \partial^\mu \Phi^* - V(\Phi)
ight]$$

Vacua Φ₀:

$$\left. \frac{\partial V(\Phi)}{\partial \Phi} \right|_{\Phi = \Phi_0} = 0$$

Symmetry $\Phi \to \Phi + \delta \Phi$: $V(\Phi) = V(\Phi) + \nabla V(\Phi)^T \delta \Phi$,

$$\frac{\partial V(\Phi)}{\partial \Phi_i} \delta \Phi_i(\Phi) = 0$$

Differentiating with respect to Φ_i at a vacuum Φ_0

$$\left. \frac{\partial^2 V(\Phi)}{\partial \Phi_j \partial \Phi_i} \right|_{\Phi = \Phi_0} \delta \Phi_i(\Phi_0) + \left. \frac{\partial V(\Phi)}{\partial \Phi_i} \right|_{\Phi = \Phi_0} \left. \frac{\partial \delta \Phi_i(\Phi)}{\partial \Phi_j} \right|_{\Phi = \Phi_0} = 0$$

$$H(\Phi_0)\delta\Phi_i(\Phi_0)=M^2\delta\Phi_i(\Phi_0)=0$$

 $H(\Phi_0)$ is the Hessian matrix of the potential $V(\Phi)$

$$H(\Phi_0)\delta\Phi_i(\Phi_0)=M^2\delta\Phi_i(\Phi_0)=0$$

 $H(\Phi_0)$ is the Hessian matrix of the potential $V(\Phi)$ Therefore::

invariant vacuum: $\delta \Phi_i(\Phi_0) = 0 \Rightarrow \text{no restriction on } M^2$

broken vacuum: $\delta \Phi_i(\Phi_0) \neq 0 \Rightarrow M^2$ has zero eigenvalue

$$H(\Phi_0)\delta\Phi_i(\Phi_0)=M^2\delta\Phi_i(\Phi_0)=0$$

 $H(\Phi_0)$ is the Hessian matrix of the potential $V(\Phi)$ Therefore::

invariant vacuum: $\delta \Phi_i(\Phi_0) = 0 \Rightarrow \text{no restriction on } M^2$

broken vacuum: $\delta \Phi_i(\Phi_0) \neq 0 \Rightarrow M^2$ has zero eigenvalue

Non-Hermitian version:

$$\hat{\mathcal{I}} = \int d^4x \left[rac{1}{2} \partial_\mu \Phi \hat{I} \partial^\mu \Phi^* - \hat{V}(\Phi)
ight]$$

$$\hat{I}\hat{H}(\Phi_0)\delta\Phi_i(\Phi_0)=\hat{M}^2\delta\Phi_i(\Phi_0)=0$$

 M^2 is no longer Hermitian

A simple model with three complex scalar field:

$$\mathcal{I}_3 = \int d^4x \sum\nolimits_{i=1}^3 \partial_\mu \phi_i \partial^\mu \phi_i^* - V_3$$

$$V_{3}=-\sum_{i=1}^{3}c_{i}m_{i}^{2}\phi_{i}\phi_{i}^{*}+c_{\mu}\mu^{2}\left(\phi_{1}^{*}\phi_{2}-\phi_{2}^{*}\phi_{1}\right)+c_{\nu}\nu^{2}\left(\phi_{2}\phi_{3}^{*}-\phi_{3}\phi_{2}^{*}\right)+\frac{g}{4}(\phi_{1}\phi_{1}^{*})^{2}$$

with $m_i, \mu, \nu, g \in \mathbb{R}$ and $c_i, c_\mu, c_\nu = \pm 1$

A simple model with three complex scalar field:

$$\mathcal{I}_3 = \int d^4x \sum\nolimits_{i=1}^3 \partial_\mu \phi_i \partial^\mu \phi_i^* - V_3$$

$$V_{3} = -\sum_{i=1}^{3} c_{i} m_{i}^{2} \phi_{i} \phi_{i}^{*} + c_{\mu} \mu^{2} (\phi_{1}^{*} \phi_{2} - \phi_{2}^{*} \phi_{1}) + c_{\nu} \nu^{2} (\phi_{2} \phi_{3}^{*} - \phi_{3} \phi_{2}^{*}) + \frac{g}{4} (\phi_{1} \phi_{1}^{*})^{2}$$

with $m_i, \mu, \nu, g \in \mathbb{R}$ and $c_i, c_\mu, c_
u = \pm 1$

Three key properties:

• discrete modified \mathcal{CPT} -transformations

$$\mathcal{CPT}_1: \phi_i(x_\mu) \to (-1)^{i+1} \phi_i^*(-x_\mu)$$

 $\mathcal{CPT}_2: \phi_i(x_\mu) \to (-1)^i \phi_i^*(-x_\mu), \quad i = 1, 2, 3$

continuous global U(1)-symmetry

$$\phi_i \to e^{i\alpha}\phi_i, \quad \phi_i^* \to e^{-i\alpha}\phi_i^*, \quad i = 1, 2, 3, \ \alpha \in \mathbb{R}$$

• non-Hermitian potential $V_3 \neq V_3^{\dagger}$

(incompatible) equations of motion:

$$\Box \phi_{1} - c_{1} m_{1}^{2} \phi_{1} - c_{\mu} \mu^{2} \phi_{2} + \frac{g}{2} \phi_{1}^{2} \phi_{1}^{*} = 0$$

$$\Box \phi_{2} - c_{2} m_{2}^{2} \phi_{2} + c_{\mu} \mu^{2} \phi_{1} + c_{\nu} \nu^{2} \phi_{3} = 0$$

$$\Box \phi_{3} - c_{3} m_{3}^{2} \phi_{3} - c_{\nu} \nu^{2} \phi_{2} = 0$$

$$\Box \phi_{1}^{*} - c_{1} m_{1}^{2} \phi_{1}^{*} + c_{\mu} \mu^{2} \phi_{2}^{*} + \frac{g}{2} \phi_{1} (\phi_{1}^{*})^{2} = 0$$

$$\Box \phi_{2}^{*} - c_{2} m_{2}^{2} \phi_{2}^{*} - c_{\mu} \mu^{2} \phi_{1}^{*} - c_{\nu} \nu^{2} \phi_{3}^{*} = 0$$

$$\Box \phi_{3}^{*} - c_{3} m_{3}^{2} \phi_{3}^{*} + c_{\nu} \nu^{2} \phi_{2}^{*} = 0$$

This can be fixed with an equal-time similarity transformation:

$$\eta = \exp\left[\frac{\pi}{2} \int d^3x \Pi_2^{\varphi}(\mathbf{x}, t) \varphi_2(\mathbf{x}, t)\right] \exp\left[\frac{\pi}{2} \int d^3x \Pi_2^{\chi}(\mathbf{x}, t) \chi_2(\mathbf{x}, t)\right]$$
$$\eta \phi_i \eta^{-1} = (-i)^{\delta_{2i}} \phi_i, \quad \eta \phi_i^* \eta^{-1} = (-i)^{\delta_{2i}} \phi_i^*$$

Equivalent version $(\hat{\mathcal{I}}_3 = \eta \mathcal{I}_3 \eta^{-1}) \phi_i = 1/\sqrt{2}(\varphi_i + i\chi_i)$

$$\begin{split} \hat{\mathcal{I}}_{3} = & \int d^{4}x \sum_{i=1}^{3} \frac{1}{2} (-1)^{\delta_{2i}} \left[\partial_{\mu} \varphi_{i} \partial^{\mu} \varphi_{i} + \partial_{\mu} \chi_{i} \partial^{\mu} \chi_{i} + c_{i} m_{i}^{2} \left(\varphi_{i}^{2} + \chi_{i}^{2} \right) \right] \\ + c_{\mu} \mu^{2} \left(\varphi_{1} \chi_{2} - \varphi_{2} \chi_{1} \right) + c_{\nu} \nu^{2} \left(\varphi_{3} \chi_{2} - \varphi_{2} \chi_{3} \right) - \frac{g}{16} (\varphi_{1}^{2} + \chi_{1}^{2})^{2} \end{split}$$

(compatible) equations of motion:

$$-\Box\varphi_{1} = -c_{1}m_{1}^{2}\varphi_{1} - c_{\mu}\mu^{2}\chi_{2} + \frac{g}{4}\varphi_{1}(\varphi_{1}^{2} + \chi_{1}^{2})
-\Box\chi_{2} = -c_{2}m_{2}^{2}\chi_{2} + c_{\mu}\mu^{2}\varphi_{1} + c_{\nu}\nu^{2}\varphi_{3}
-\Box\varphi_{3} = -c_{3}m_{3}^{2}\varphi_{3} - c_{\nu}\nu^{2}\chi_{2}
-\Box\chi_{1} = -c_{1}m_{1}^{2}\chi_{1} + c_{\mu}\mu^{2}\varphi_{2} + \frac{g}{4}\chi_{1}(\varphi_{1}^{2} + \chi_{1}^{2})
-\Box\varphi_{2} = -c_{2}m_{2}^{2}\varphi_{2} - c_{\mu}\mu^{2}\chi_{1} - c_{\nu}\nu^{2}\chi_{3}
-\Box\chi_{3} = -c_{3}m_{3}^{2}\chi_{3} + c_{\nu}\nu^{2}\varphi_{2}$$

Hessian matrix $H\left(\Phi = (\varphi_1, \chi_2, \varphi_3, \chi_1, \varphi_2, \chi_3)^T\right)$:

$$\begin{pmatrix} \frac{g(3\varphi_1^2+\chi_1^2)}{4} - c_1m_1^2 & -c_\mu\mu^2 & 0 & \frac{g}{2}\varphi_1\chi_1 & 0 & 0 \\ -c_\mu\mu^2 & c_2m_2^2 & -c_\nu\nu^2 & 0 & 0 & 0 \\ 0 & -c_\nu\nu^2 & -c_3m_3^2 & 0 & 0 & 0 \\ \frac{g}{2}\varphi_1\chi_1 & 0 & 0 & \frac{g(\varphi_1^2+3\chi_1^2)}{4} - c_1m_1^2 & c_\mu\mu^2 & 0 \\ 0 & 0 & 0 & c_\mu\mu^2 & c_2m_2^2 & c_\nu\nu^2 \\ 0 & 0 & 0 & 0 & c_\nu\nu^2 & -c_3m_3^2 \end{pmatrix}$$

Hessian matrix $H\left(\Phi = (\varphi_1, \chi_2, \varphi_3, \chi_1, \varphi_2, \chi_3)^T\right)$:

$$\begin{pmatrix} \frac{g(3\varphi_1^2+\chi_1^2)}{4}-c_1m_1^2 & -c_\mu\mu^2 & 0 & \frac{g}{2}\varphi_1\chi_1 & 0 & 0 \\ -c_\mu\mu^2 & c_2m_2^2 & -c_\nu\nu^2 & 0 & 0 & 0 \\ 0 & -c_\nu\nu^2 & -c_3m_3^2 & 0 & 0 & 0 \\ \frac{g}{2}\varphi_1\chi_1 & 0 & 0 & \frac{g(\varphi_1^2+3\chi_1^2)}{4}-c_1m_1^2 & c_\mu\mu^2 & 0 \\ 0 & 0 & 0 & c_\mu\mu^2 & c_2m_2^2 & c_\nu\nu^2 \\ 0 & 0 & 0 & 0 & c_\nu\nu^2 & -c_3m_3^2 \end{pmatrix}$$

No Goldstone bosons for U(1)-invariant vacuum (no zero EV of M^2)

$$\Phi_{\mathfrak{s}}^0 = (0,0,0,0,0,0)$$

Hessian matrix $H\left(\Phi = (\varphi_1, \chi_2, \varphi_3, \chi_1, \varphi_2, \chi_3)^T\right)$:

$$\begin{pmatrix} \frac{g(3\varphi_1^2+\chi_1^2)}{4}-c_1m_1^2 & -c_\mu\mu^2 & 0 & \frac{g}{2}\varphi_1\chi_1 & 0 & 0\\ -c_\mu\mu^2 & c_2m_2^2 & -c_\nu\nu^2 & 0 & 0 & 0\\ 0 & -c_\nu\nu^2 & -c_3m_3^2 & 0 & 0 & 0\\ \frac{g}{2}\varphi_1\chi_1 & 0 & 0 & \frac{g(\varphi_1^2+3\chi_1^2)}{4}-c_1m_1^2 & c_\mu\mu^2 & 0\\ 0 & 0 & 0 & c_\mu\mu^2 & c_2m_2^2 & c_\nu\nu^2\\ 0 & 0 & 0 & 0 & c_\nu\nu^2 & -c_3m_3^2 \end{pmatrix}$$

No Goldstone bosons for U(1)-invariant vacuum (no zero EV of M^2)

$$\Phi_s^0 = (0,0,0,0,0,0)$$

One Goldstone bosons for U(1)-broken vacuum (one zero EV of M^2)

$$\Phi_{b}^{0} = \left(\varphi_{1}^{0}, \frac{c_{3}c_{\mu}m_{3}^{2}\mu^{2}\varphi_{1}^{0}}{\kappa}, -\frac{c_{\nu}c_{\mu}\nu^{2}\mu^{2}\varphi_{1}^{0}}{\kappa}, -K(\varphi_{1}^{0}), \frac{c_{3}c_{\mu}m_{3}^{2}\mu^{2}K(\varphi_{1}^{0})}{\kappa}, \frac{c_{\nu}c_{\mu}\nu^{2}\mu^{2}K(\varphi_{1}^{0})}{\kappa}\right)$$

with
$$K(x) := \pm \sqrt{\frac{4c_3m_3^2\mu^4}{g\kappa} + \frac{4c_1m_1^2}{g} - x^2}, \qquad \kappa := c_2c_3m_2^2m_3^2 + \nu^4$$

Physical parameter space (Eigenvalue spectra of M^2)

The physical parameter space is bounded by exceptional points, zero exceptional points and singularities

$$c_1 = c_2 = c_3 = 1$$
, $m_1 = 1$, $m_2 = 1/2$ and $m_3 = 1/5$

left panel: $\mu = 1.7$ no physical region

right panel: $\mu = 3$ physical regions $\nu \in (\pm 0.64468, \pm 0.54490)$

Identification of the Goldstone boson field

Diagonalisation of M^2 :

$$\hat{\Phi}_r^T (M_2^2)_r \hat{\Phi}_r = \sum\nolimits_{k=0,\pm} m_k^2 \psi_k^2 = \sum\nolimits_{k=0,\pm} m_k^2 (\hat{\Phi}_r^T I U)_k (U^{-1} \Phi_r)_k$$

• \mathcal{PT} - symmetric regime $(U = (v_0, v_+, v_-))$

$$\psi_{\mathsf{Gb}}^{\mathcal{PT}} = \frac{1}{\sqrt{N}} \left(-\kappa \hat{\chi}_{1} - c_{3} c_{\mu} m_{3}^{2} \mu^{2} \hat{\varphi}_{2} + c_{\mu} c_{\nu} \mu^{2} \nu^{2} \hat{\chi}_{3} \right)$$

standard exceptional point (bring into Jordan form)

$$\psi_{\mathsf{Gb}}^{\mathsf{e}} = \frac{1}{\kappa c_3 m_3^2 \lambda_{\mathsf{e}}^2} \left(-\kappa \hat{\chi}_1 - m_3 \mu_{\mathsf{e}}^2 \hat{\varphi}_2 + \nu^2 \mu_{\mathsf{e}}^2 \hat{\chi}_3 \right)$$

ullet zero exceptional point The identification is not possible o restrict parameter space?

Non-Abelian, non-Hermitian version of the Goldstone Theorem A simple model with two complex scalar fields

$$\mathcal{L}_{su2} = \sum_{i=1}^{2} \left(\left| \partial_{\mu} \phi_{i} \right|^{2} + m_{i}^{2} \left| \phi_{i} \right|^{2} \right) - \mu^{2} \left(\phi_{1}^{\dagger} \phi_{2} - \phi_{2}^{\dagger} \phi_{1} \right) - \frac{g}{4} \left| \phi_{1} \right|^{4}$$
 with fields ϕ_{i} in the fundamental representation of $SU(2)$

Non-Abelian, non-Hermitian version of the Goldstone Theorem

A simple model with two complex scalar fields

$$\mathcal{L}_{su2} = \sum_{i=1}^{2} \left(\left| \partial_{\mu} \phi_{i} \right|^{2} + m_{i}^{2} \left| \phi_{i} \right|^{2} \right) - \mu^{2} \left(\phi_{1}^{\dagger} \phi_{2} - \phi_{2}^{\dagger} \phi_{1} \right) - \frac{\mathcal{g}}{4} \left| \phi_{1} \right|^{4}$$
 with fields ϕ_{i} in the fundamental representation of $SU(2)$

Similarity transformed version:

$$\hat{\mathcal{L}}_{\text{su2}} = \partial_{\mu} F \hat{\mathbf{I}} \partial^{\mu} F + \frac{1}{2} F^{T} \hat{H} F - \frac{g}{16} \left(F^{T} \hat{E} F \right)^{2}$$

where

$$\begin{split} H_{\pm} &= \begin{pmatrix} m_1^2 & \pm \mu^2 \\ \pm \mu^2 & m_2^2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \\ \Phi_j &= \begin{pmatrix} \varphi_1^j \\ \chi_2^j \end{pmatrix}, \quad \Psi_j &= \begin{pmatrix} \chi_1^j \\ \varphi_2^j \end{pmatrix}, \quad \phi_j^k &= \frac{1}{\sqrt{2}} (\varphi_j^k + i\chi_j^k) \end{split}$$

$$F = (\Phi, \Psi) = (\varphi_1^1, \chi_2^1, \varphi_1^2, \chi_2^2, \chi_1^1, \varphi_2^1, \chi_2^2, \varphi_2^2), \ \Phi = (\Phi_1, \Phi_2), \ \Psi = (\Psi_1, \Psi_2), \ \operatorname{diag} \hat{I} = \{I, I, I, I\}, \ \operatorname{diag} \hat{H} = \{H_+, H_+, H_-, H_-\}, \ \operatorname{diag} \hat{E} = \{E, E, E, E\}.$$

Continuous global and discrete antilinar symmetries

$$SU(2)$$
-symmetry: $\delta \phi_j^k = i\alpha_a T_a^{kl} \phi_j^l$, with $T_a = \sigma_a$

$$\delta\Phi = -\alpha_{1} (\sigma_{1} \otimes \sigma_{3}) \Psi + i\alpha_{2} (\sigma_{2} \otimes \mathbb{I}) \Phi - \alpha_{3} (\sigma_{3} \otimes \sigma_{3}) \Psi$$

$$\delta\Psi = \alpha_{1} (\sigma_{1} \otimes \sigma_{3}) \Phi + i\alpha_{2} (\sigma_{2} \otimes \mathbb{I}) \Psi + \alpha_{3} (\sigma_{3} \otimes \sigma_{3}) \Phi$$

$$\delta F = i [-\alpha_{1} (\sigma_{2} \otimes \sigma_{1} \otimes \sigma_{3}) + \alpha_{2} (\mathbb{I} \otimes \sigma_{2} \otimes \mathbb{I}) - \alpha_{3} (\sigma_{2} \otimes \sigma_{3} \otimes \sigma_{3})] F$$

 \mathcal{CPT}_{\pm} -symmetry:

Continuous global and discrete antilinar symmetries

$$SU(2)$$
-symmetry: $\delta\phi_j^k=i\alpha_aT_a^{kl}\phi_j^l$, with $T_a=\sigma_a$

$$\delta\Phi = -\alpha_{1} (\sigma_{1} \otimes \sigma_{3}) \Psi + i\alpha_{2} (\sigma_{2} \otimes \mathbb{I}) \Phi - \alpha_{3} (\sigma_{3} \otimes \sigma_{3}) \Psi$$

$$\delta\Psi = \alpha_{1} (\sigma_{1} \otimes \sigma_{3}) \Phi + i\alpha_{2} (\sigma_{2} \otimes \mathbb{I}) \Psi + \alpha_{3} (\sigma_{3} \otimes \sigma_{3}) \Phi$$

$$\delta F = i [-\alpha_{1} (\sigma_{2} \otimes \sigma_{1} \otimes \sigma_{3}) + \alpha_{2} (\mathbb{I} \otimes \sigma_{2} \otimes \mathbb{I}) - \alpha_{3} (\sigma_{2} \otimes \sigma_{3} \otimes \sigma_{3})] F$$

\mathcal{CPT}_{\pm} -symmetry:

$$\Phi(x_{\mu}) \to \pm \Phi(-x_{\mu}), \quad \Psi(x_{\mu}) \to \mp \Psi(-x_{\mu}),$$
 $F(x_{\mu}) \to \pm (\sigma_3 \otimes \mathbb{I} \otimes \mathbb{I}) F(-x_{\mu}),$

No Goldstone bosons for SU(2)-symmetry invariant vacuum

two fourfold degenerate eigenvalues

$$\lambda_{\pm}^s = -rac{1}{2}\left(m_1^2 + m_2^2 \pm \sqrt{(m_1^2 - m_2^2)^2 - 4\mu^4}
ight)$$

Goldstone bosons for the SU(2)-symmetry breaking vacuum

$$F_0^b = (x, -ax, y, -ay, z, az, \pm R, \pm aR)$$

$$x := \varphi_1^{0,1}, \ y := \varphi_1^{0,2}, \ z := \chi_1^{0,1}, \ r := 4(\mu^2 + m_1^2 m_2^2)/gm_2^2,$$

 $a := \mu^2/m_2^2, \ R := \sqrt{r^2 - (x^2 + y^2 + z^2)},$

Goldstone bosons for the SU(2)-symmetry breaking vacuum

$$F_0^b = (x, -ax, y, -ay, z, az, \pm R, \pm aR)$$

$$x := \varphi_1^{0,1}, \ y := \varphi_1^{0,2}, \ z := \chi_1^{0,1}, \ r := 4(\mu^2 + m_1^2 m_2^2)/gm_2^2,$$

 $a := \mu^2/m_2^2, \ R := \sqrt{r^2 - (x^2 + y^2 + z^2)}, \ X := \frac{gx^2}{2} + \frac{\mu^4}{m_2^2}$

$$M_b^2 = \begin{pmatrix} X & \mu^2 & \frac{g \times \varphi_1^2}{2} & 0 & \frac{g \times z}{2} & 0 & -\frac{xgR}{2} & 0 \\ -\mu^2 & -m_2^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{g \times y}{2} & 0 & X & \mu^2 & \frac{g \times z}{2} & 0 & -\frac{ygR}{2} & 0 \\ 0 & 0 & -\mu^2 & -m_2^2 & 0 & 0 & 0 & 0 \\ \frac{g \times z}{2} & 0 & \frac{g \times z}{2} & 0 & X & -\mu^2 & -\frac{zgR}{2} & 0 \\ 0 & 0 & 0 & 0 & \mu^2 & -m_2^2 & 0 & 0 \\ -\frac{xgR}{2} & 0 & -\frac{xgR}{2} & 0 & -\frac{zgR}{2} & 0 & X & -\mu^2 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mu^2 & -m_2^2 \end{pmatrix}$$

eigenvalues: $(K := 3\mu^4/2m_2^2 + m_1^2 - m_2^2/2, L := \mu^4 + m_1^2m_2^2)$

$$\lambda_{1,2,3}^b = 0$$
, $\lambda_{4,5,6}^b = \frac{\mu^4}{m_2^2} - m_2^2$, $\lambda_{\pm}^b = K \pm \sqrt{K^2 + 2L}$

Physical Regions

Now take $m_i^2 o c_i m_i^2$ with $c_i = \pm 1$

left panel: $c_1=-c_2=1$, right panel $c_1=-c_2=-1$ no physical regime for $c_1=c_2=\pm 1$

Goldstone bosons

\mathcal{PT} -symmetric regime:

mass squared term:

$$F^{\mathsf{T}}M_b^2F = \sum_{k=1}^8 m_k^2 \psi_k^2 = \sum_{k=1}^8 m_k^2 (F^{\mathsf{T}}IU)_k (U^{-1}F)_k.$$

Hence

$$\psi_{\ell}^{\mathsf{Gb}} := \sqrt{(F^{\mathsf{T}}IU)_{\ell}(U^{-1}F)_{\ell}}, \quad \ell = 1, 3, 5$$

$$\psi_1^{\mathsf{Gb}} = \frac{\mu^2 \varphi_2^1 - m_2^2 \chi_1^1}{\sqrt{m_2^4 - \mu^4}}, \ \psi_3^{\mathsf{Gb}} = \frac{m_2^2 \varphi_1^2 + \mu^2 \chi_2^2}{\sqrt{m_2^4 - \mu^4}}, \ \psi_5^{\mathsf{Gb}} = \frac{m_2^2 \varphi_1^1 + \mu^2 \chi_2^1}{\sqrt{m_2^4 - \mu^4}}$$

Goldstone bosons

\mathcal{PT} -symmetric regime:

mass squared term:

$$F^{\mathsf{T}}M_b^2F = \sum_{k=1}^8 m_k^2 \psi_k^2 = \sum_{k=1}^8 m_k^2 (F^{\mathsf{T}}IU)_k (U^{-1}F)_k.$$

Hence

$$\psi_{\ell}^{\mathsf{Gb}} := \sqrt{(\mathit{F}^{\mathsf{T}}\mathit{IU})_{\ell}(\mathit{U}^{-1}\mathit{F})_{\ell}}, \quad \ell = 1, 3, 5$$

$$\psi_1^{\mathsf{Gb}} = \frac{\mu^2 \varphi_2^1 - \mathit{m}_2^2 \chi_1^1}{\sqrt{\mathit{m}_2^4 - \mu^4}}, \;\; \psi_3^{\mathsf{Gb}} = \frac{\mathit{m}_2^2 \varphi_1^2 + \mu^2 \chi_2^2}{\sqrt{\mathit{m}_2^4 - \mu^4}}, \;\; \psi_5^{\mathsf{Gb}} = \frac{\mathit{m}_2^2 \varphi_1^1 + \mu^2 \chi_2^1}{\sqrt{\mathit{m}_2^4 - \mu^4}}$$

standard exceptional points:

same form, but identified using Jordan normal form

Goldstone bosons

\mathcal{PT} -symmetric regime:

mass squared term:

$$F^{\mathsf{T}}M_b^2F = \sum_{k=1}^8 m_k^2 \psi_k^2 = \sum_{k=1}^8 m_k^2 (F^{\mathsf{T}}IU)_k (U^{-1}F)_k.$$

Hence

$$\psi^{\mathsf{Gb}}_{\ell} := \sqrt{(\mathit{F}^{\,\mathsf{T}}\mathit{IU})_{\ell}(\mathit{U}^{-1}\mathit{F})_{\ell}}, \quad \ell = 1, 3, 5$$

$$\psi_1^{\mathsf{Gb}} = \frac{\mu^2 \varphi_2^1 - m_2^2 \chi_1^1}{\sqrt{m_2^4 - \mu^4}}, \ \psi_3^{\mathsf{Gb}} = \frac{m_2^2 \varphi_1^2 + \mu^2 \chi_2^2}{\sqrt{m_2^4 - \mu^4}}, \ \psi_5^{\mathsf{Gb}} = \frac{m_2^2 \varphi_1^1 + \mu^2 \chi_2^1}{\sqrt{m_2^4 - \mu^4}}$$

standard exceptional points:

same form, but identified using Jordan normal form zero exceptional points:

identification is not possible

Gauged model in SU(2)-fundamental representation

$$\mathcal{L}_{2} = \sum_{i=1}^{2} |D_{\mu}\phi_{i}|^{2} + m_{i}^{2}|\phi_{i}|^{2} - \mu^{2}(\phi_{1}^{\dagger}\phi_{2} - \phi_{2}^{\dagger}\phi_{1}) - \frac{g}{4}(|\phi_{1}|^{2})^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$D_{\mu} := \partial_{\mu} - ieA_{\mu}, \ A_{\mu} := \tau^{a}A_{\mu}^{a}, \ F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ie[A_{\mu}, A_{\nu}]$$

The gauge vector boson acquires a mass: $m_{gb}:=rac{eR}{m_2^2}\sqrt{m_2^4-\mu^4}$

$$e^2(A_\mu\Psi_0)^*\mathcal{I}\left(A^\mu\Psi_0
ight)=m_{gb}^2A_\mu^aA^{a\mu},$$

combined with the "would be Goldstone bosons":

$$G^{1} = \frac{e}{m_{gb}} \left(\Psi_{0}^{2} \right)^{T} \Phi^{1}, \ G^{3} = \frac{e}{m_{gb}} \left(\Psi_{0}^{2} \right)^{T} \Phi^{2}, \ G^{2} = -\frac{e}{m_{gb}} \left(\Psi_{0}^{2} \right)^{T} \mathcal{I} \Psi^{1}$$

$$\sum_{a=1}^{3} \frac{1}{2} \partial_{\mu} G^{a} \partial^{\mu} G^{a} - m_{g} A_{\mu}^{1} \partial^{\mu} G^{1} + m_{g} A_{\mu}^{2} \partial^{\mu} G^{2} - m_{g} A_{\mu}^{3} \partial^{\mu} G^{3} + \frac{1}{2} m_{g}^{2} A_{\mu}^{a} A^{a\mu}$$

$$=rac{1}{2}\sum_{a}^3 m_g^2 B_\mu^a B^{a\mu} \qquad B_\mu^a:=A_\mu^a-rac{1}{m_g}\partial_\mu G^a$$

 \Rightarrow massive gauge vector bosons \iff vanishing Goldstone boson

Massive gauge vector bosons versus massless Goldstone bosons

left panel: $c_1 = -c_2 = 1$, right panel $c_1 = -c_2 = -1$

Massive gauge vector bosons versus massless Goldstone bosons

left panel: $c_1 = -c_2 = 1$, right panel $c_1 = -c_2 = -1$

		CPT	EP	zero EP I	broken \mathcal{CPT}
	vector boson	massive	massive	massless	nonphysical
	Goldstone with A_{μ}	∄	#	√∄\\	nonphysical
	Goldstone no A_{μ}	∃ /	3	#	nonphysic 24 /
dr	eas Fring	Goldstone's theorem and Higgs Mechanism (non-Hermtian)			

ullet The GT holds in the \mathcal{PT} -symmetric regime

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces

- The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- Higgs mechanism works in the \mathcal{PT} -symmetric regime

- The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- ullet Higgs mechanism works in the \mathcal{PT} -symmetric regime
- ullet Higgs mechanism does not work in the broken ${\cal PT}$ regime

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- Higgs mechanism works in the \mathcal{PT} -symmetric regime
- Higgs mechanism does not work in the broken \mathcal{PT} regime
- The vector boson remains massless at the zero except. point

- The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- ullet Higgs mechanism works in the \mathcal{PT} -symmetric regime
- ullet Higgs mechanism does not work in the broken \mathcal{PT} regime
- The vector boson remains massless at the zero except. point
- Extension to non-Abelian theories works (adjoint rep.)

- ullet The GT holds in the \mathcal{PT} -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- ullet Higgs mechanism works in the ${\cal PT}$ -symmetric regime
- ullet Higgs mechanism does not work in the broken \mathcal{PT} regime
- The vector boson remains massless at the zero except. point
- Extension to non-Abelian theories works (adjoint rep.)
- Clarify differences between alternative approaches

- ullet The GT holds in the ${\cal PT}$ -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- ullet Higgs mechanism works in the ${\cal PT}$ -symmetric regime
- ullet Higgs mechanism does not work in the broken \mathcal{PT} regime
- The vector boson remains massless at the zero except. point
- Extension to non-Abelian theories works (adjoint rep.)
- Clarify differences between alternative approaches
- Different models, different similarity transformation, . . .

- The GT holds in the $\overline{\mathcal{PT}}$ -symmetric regime
- ullet The GT breaks down in the broken \mathcal{PT} regime
- At exceptional points the Goldstone boson can be identified
- The systems posses intricate physical parameter spaces
- ullet Higgs mechanism works in the \mathcal{PT} -symmetric regime
- lacktriangle Higgs mechanism does not work in the broken \mathcal{PT} regime
- The vector boson remains massless at the zero except. point
- Extension to non-Abelian theories works (adjoint rep.)
- Clarify differences between alternative approaches
- Different models, different similarity transformation, . . .
- ...