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PT-quantum mechanics (real eigenvalues)

PT-symmetry: PT: x— —x p—p i — —i
(P:x——x,p—=>—p; T :x—=>x,p—>—p,i — —i)

PT is an anti-linear operator:
PTAS + puV¥) = NPTO + u*PTV ApeC
Real eigenvalues from unbroken PT-symmetry:
[H,PT]=0 A PTd=0 =c=c" for HO=¢cd

Proof:
e®=HO=HPTS=PTHDP=PTecd=c*"PTd=c*d

PT-symmetry is only an example of an antilinear involution
[E. Wigner, J. Math. Phys. 1 (1960) 409]
[C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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‘H is Hermitian with respect to a new metric

e Assume pseudo-Hermiticity:

h=nHn ' =h = HYHy < Hiylnp=ninH

d=nlp ni=n

= H is Hermitian with respect to the new metric
Proof:

(VH®), = (V[PH®) = (n P Hn o) = (¥ InHn '¢) =
(¢ |hg) = (hY|d) = (WHn~ Y|¢) = (HV|ne) = (HV|n*®)
= (HV|®),

= Eigenvalues of H are real, eigenstates are orthogonal
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Many applications in optics
Nature Physics volume 11, page 799 (2015)
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Problem with non-Hermitain field theory
Consider action of the general form

7- / d*x [0,60"6" — V(¢)],

complex scalar fields ¢ = (¢,,...,®,), potential V(¢) # V(¢)
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Problem with non-Hermitain field theory
Consider action of the general form

7- / d*x [0,60"6" — V(¢)],

complex scalar fields ¢ = (¢,,...,®,), potential V(¢) # V(¢)

Then the equations of motion are incompatible

0L, 0L, [ oL, } 0L, 0L, [ i }
=0, || = b =0

=055 = o0 (800,60

0p;  0o; 0 (0u91) 9 (0u97)
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Problem with non-Hermitain field theory
Consider action of the general form

7- / d*x [0,60"6" — V(¢)],

complex scalar fields ¢ = (¢,,...,®,), potential V(¢) # V(¢)

Then the equations of motion are incompatible

T, 0L, oL, 0T, 0L, oL,
oo T g, || = - . _

R

0p;  0o; 0 (0u91) 9 (0u97)

(@)

Papers in quantum field theory ~ 56 versus the rest ~ 4200
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Problem with non-Hermitain field theory
Consider action of the general form

7- / d*x [0,60"6" — V(¢)],

complex scalar fields ¢ = (¢,,...,®,), potential V(¢) # V(¢)
Then the equations of motion are incompatible

OB I A
0¢;  9¢; " 10(9ud;) og; 07 M L0(9ud)

Papers in quantum field theory ~ 56 versus the rest ~ 4200
Resolutions:

(@)

e Keep surface terms

[J. Alexandre, J. Ellis, P. Millington, D. Seynaeve]
e Seek similarity transformation

[P. Mannheim], [A. Fring, T. Taira | @
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Goldstone theorem and Higgs mechanism in non-Hermitian QFT?
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Goldstone theorem and Higgs mechanism in non-Hermitian QFT?
Key findings:

Goldstone theorem in non-Hermitian field theories
The GT holds in the PT-symmetric regime
The GT breaks down in the broken PT regime

At exceptional points the Goldstone boson can be identified

The G boson is not identifiable at the zero exceptional point
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Goldstone theorem and Higgs mechanism in non-Hermitian QFT?
Key findings:
Goldstone theorem in non-Hermitian field theories

The GT holds in the PT-symmetric regime

The GT breaks down in the broken PT regime

At exceptional points the Goldstone boson can be identified

The G boson is not identifiable at the zero exceptional point

Higgs mechanism in non-Hermitian field theories

Higgs mechanism works in the P77 -symmetric regime

Higgs mechanism does not work in the broken P7T regime

The gauge boson remains massless at the zero exceptional
point

Non-Hermitian systems posses intricate physical parameter spaces
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Standard Goldstone theorem:
Each generator of a global continuous symmetry group that is
broken by the vacuum gives rise to a massless particle.
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Standard Goldstone theorem:
Each generator of a global continuous symmetry group that is
broken by the vacuum gives rise to a massless particle.

I= / d*x B(‘)udx?“d)* - V(q>)]

Vacua ®g:
oV (o) 0
0 o o,
Symmetry & — & 4+ §b: V(d) = V() + VV (¢)7 50,
oV (o)
q>,' d) =
0P; 0i(®) =0
Differentiating with respect to ®; at a vacuum
2V(o V(o o (P
PVO)| sy VO 080(@)
0P;00; d=d, OP; P=0, 00, d=d

Goldstone’s theorem and Higgs Mechanism (non-Hermtian)
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H($o)0®;(®g) = M?5d;(dg) =0
H(®y) is the Hessian matrix of the potential V(&)

o
/25‘

Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian)



H($o)0®;(®g) = M?5d;(dg) =0
H(®y) is the Hessian matrix of the potential V(&)

Therefore::
invariant vacuum: §®;(®g) =0 = no restriction on M?
broken vacuum: 50;(dy) #0 = M? has zero eigenvalue
10/
Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian) 25‘



H($o)0®;(®g) = M?5d;(dg) =0
H(®y) is the Hessian matrix of the potential V(&)

Therefore::
invariant vacuum: §®;(®g) =0 = no restriction on M?
broken vacuum: 50;(dy) #0 = M? has zero eigenvalue

Non-Hermitian version:

A 1 A
7= / d*x [Eaﬂ/aﬂqa* }
0

TH(D0)d; (Do) = M25d;(dg) =
M? is no longer Hermitian
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A simple model with three complex scalar field:
3
I; = / d*x ) 0.0:0"0] — Vs

3
Va==> " aimi¢ii+cuii” (6102 — d361)+cv” (6205 — ¢3¢3)+§(¢1¢1‘)z
i=1

with mi, v, g € R and ¢, ¢,, ¢, = £1
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A simple model with three complex scalar field:
3
Is = / d*x ) 0.0:0"0] — Vs

3
V3:—Z c,-m,?gb,-¢j-‘—|—cuu2 (9102 — d51)+, 1% (0205 — ¢3¢Z)+%(¢1¢I)2
i=1

with mi, v, g € R and ¢, ¢,, ¢, = £1
Three key properties:

e discrete modified CPT-transformations
CPT1: di(%) = (1) 67 (—x,)
CPT2:¢i(x,) = (=1)'¢j(—x,), =123
e continuous global U(1)-symmetry
b, — €., ¢ — e, i=1,23 a€R

o non-Hermitian potential V5 # V4

Andreas Fring
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(incompatible) equations of motion:

O, — clmfgbl—cﬂ,uz% + %(ﬁ(/f{
Oy — camby+cupi’dy + v ¢y
065 — esms— 70,

061 — cumidi+c.i°0s + 5 6,(61)°
0065 — com3d3—Cui oy — 6 d;

O¢s — csmsgs+c, 2o

This can be fixed with an equal-time similarity transformation:

O O O o o o

S B / PTIE(x, )0y (x, t)} = E / XTI (%, )Xy (X, t)}

nom = (=), noin Tt =(—i)"¢

Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian)
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Equivalent version (fg = nZsn~Y) ¢; = 1/vV2(; + ix;)

/ d4X ZI_ 52' M(pia“@i + auXiauXi + C,'m,-2 (90/2 + X?)}

g
i (91X2 — 2X1) + G (P3X2 — PaX3) — E(s@? +x3)?

(compatible) equations of motion:

g
D1 = —amie — ai'xe + 7611 +x1)
—Ox, = —amy,+ CuPJ2901 + 6,20
—Op; = —amip; —ar’x,

g
O = —amixg+ aues + 2xa(# +x3)
ey = —emyp, — Gi’xs — GiXs
—Oxz = —amixs + ar’e,

13
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Hessian matrix H (® = (91, X2, ¥3, X1, 92, X3) " ):

g(3¢i+x3) 2 2 g
) — C1m1 —Cu,u 0 5(101X1 0 0
-y uz 1)) m% —c 2 0 0 0
0 —c,? —c3 m% 0 0 0
g 0 0 g(#3+3x3) 2 2 0
2¥1X1 7 —cami  Cupt
0 0 0 Cup? com?  cv?
0 0 0 0 o’ —c3 m%
14 /
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Hessian matrix H (® = (91, X2, ¥3, X1, 92, X3) " ):

g(Bei+x3) 2

4 —am;  —u 0 Seixa 0 0
—cuuz 1)) m% —c 2 0 0 0
0 —c, 12 —C3m§ 0 0 0
Se1x 0 0 w —am; 0
0 0 0 Cup? com?  cv?
0 0 0 0 cv? —C3m§

No Goldstone bosons for U(1)-invariant vacuum (no zero EV of M?)

% =(0,0,0,0,0,0)
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Hessian matrix H (® = (91, X2, ¥3, X1, 92, X3) " ):

g(Bei+x3) 2

L —am? —c,u? 0 Lo1x1 0 0
—cuuz 1)) m% —c 2 0 0 0
0 —c,? —c3 m% 0 0 0
§o1x 0 0o gERED om0
0 0 0 Cup? com?  cv?
0 0 0 0 cv? —C3m§

No Goldstone bosons for U(1)-invariant vacuum (no zero EV of M?)
g =(0,0,0,0,0,0)

One Goldstone bosons for U(1)-broken vacuum (one zero EV of M?)

o0 = (L0 BamIA oot
b 1 P ) K ’
CK(D) cscum3p®K(99) ceu’i®K(#9)
1/ K ’ P
2 2
with K(x) := i\/4c3;13“4 + % - x2, K= cpczmim3 + v*

Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian)



Physical parameter space (Eigenvalue spectra of M?)
The physical parameter space is bounded by exceptional points,
zero exceptional points and singularities

A A
: 1000~
100
800
80 oy _
600
& — Az — Ag
23 400 [ —h
40 . =i,
— A — A
20 / \ §
O — T 0 v
.06 -04 -02 00 02 04 06 .05 00 05

a=co=a=1,m=1m=1/2and m3=1/5

left panel: © = 1.7 no physical region
right panel: = 3 physical regions v € (4-0.64468, £0.54490)

15
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Identification of the Goldstone boson field
Diagonalisation of M?:

OT(ME) D, =2 mivi=D, , mi(® (U,

e PT- symmetric regime (U = (v, vy, v_))

1 N N N
b = NG (—kR1 — 3cum3EPP, + CuclV?is)

e standard exceptional point (bring into Jordan form)

1

e ~ 2 A 2 2~
—KXy— M +v
e, = prpye (—KXy — map2P, + VP u2Xs)

e zero exceptional point
The identification is not possible — restrict parameter space?

16
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Non-Abelian, non-Hermitian version of the Goldstone Theorem
A simple model with two complex scalar fields

2 g
Lop = Zi:l <|8u¢i|2 +m? |¢i|2> — 12 (Cb]iﬁbz - ¢£¢1> 1 ExE
with fields ¢, in the fundamental representation of SU(2)

7
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Non-Abelian, non-Hermitian version of the Goldstone Theorem
A simple model with two complex scalar fields

Lgp = Z; <|au¢i|2 +m; |¢i|2> — <¢I¢2 - Cb;@bl) - % |y *

with fields ¢, in the fundamental representation of SU(2)
Similarity transformed version:

A A 1 ~ A \2
Loz = 0,FI0"F + SFTAF - 156 (FTEF>

2 2
o my Ep (1 0 (10
Hi—(i,ﬂ mg)”—(O—l)’E_<oo '

@ ) ( X, > kW o
;= . 5 \U _= = — 3 —'—[ ",
J < XJ2 J g0]2 J \/5(90_/ X_/)
F = ((D’\U) = (90%7Xé>§0%7X%7X179027X15 S/\Oz)r (D — ((Dla q)2)v
W = (W, W), diagl = {/,1,1,1}, diag H = {H,, Hs, H_, H_},
diag £ = {E,E,E, E}.

Andreas Fring
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Continuous global and discrete antilinar symmetries

SU(2)-symmetry:  §¢f = i, T ¢}, with T, = o,

0= —a1(01®03)w+ia2(02®]I)<D—043(03®0'3)\IJ
oV = 051(0'1®O‘3)¢—|—iOéz(Uz@]I)W+Oé3(O’3®O’3)¢
5F:i[—a1(02®01®03)+oz2(]l®02®]l)—a3(02®03®03)]F

CPT 1-symmetry:

s
/25‘
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Continuous global and discrete antilinar symmetries

SU(2)-symmetry:  §¢f = i, T ¢}, with T, = o,

0= —a1(01®03)w+ia2(02®]I)<D—043(03®0'3)\IJ
oV = 051(0'1®O‘3)¢—|—iOéz(Uz@]I)W+Oé3(O’3®O’3)¢
5F:i[—a1(02®01®03)+oz2(]l®02®]l)—a3(02®03®03)]F

CPT 1-symmetry:

(D(X#) — j:d)(—x“), \U(X#) - :FW(_XN)’
F(x,) = £(03@1I®1) F(—x,),

s
/25‘
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No Goldstone bosons for SU(2)-symmetry invariant vacuum

F$ =1(0,0,0,0,0,0,0,0)

“m 42 0 0 0 0 0 0
@ -m 0 0 0 0 0 0
0 0 -m 2 0 0 0 0
| 0 0 - -m 0 0o 0o o0
s 0 0 0 0 -m —p?> 0 0 ’
0o 0 0 0 2 -m 0 0
0o 0 0 0 0 0 —m 2
o 0 0 0 0 0 2 -m
two fourfold degenerate eigenvalues
1
My = N (mf +m3+ \/(mf — m3)? — 4,u4>
Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian) 19/25‘



Goldstone bosons for the SU(2)-symmetry breaking vacuum
Ff = (x,—ax,y,—ay, z,az, £R, +aR)

x =gty = et z =0 = AR+ mim3) Jgms,

a:=p?/m3, R:=/r2— (x2+y?+ 22),

b0
/25‘

Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian)



Goldstone bosons for the SU(2)-symmetry breaking vacuum
Fé) = (X7 —ax,y,—ay,z,az, Zl:R, :l:aR)

xi= @ity =G0 2= 0 = A0+ mim3) Jgm,

a:=p2/ms, Ri=\/rP = (P +y2+22), X =5 + 15

X g2 &d o0 s g _mR
—2 -m 0 0 0 0 0 0
& 0 X 2 g o0 -2 9
we| 0 0 -2 -m 0 0 0 o0
’ ez o &£ 9 X - -Z 0
0 o0 0 0 4 -m 0 0
xgR xgR zgR
B e T
o o0 0 0 0 0 2 —m

=N

eigenvalues: (K :=3u*/2m3 + m
4
/\f,zs =0, )\2,5,6 = % — m3, N =K+VK2+2L
2

—m3/2, L:=p*+ m?m3)

Andreas Fring Goldstone’s theorem and Higgs Mechanism (non-Hermtian)



Physical Regions
Now take m? — ¢;m? with ¢; = +1
Physical region

s Physical region
Hfmi 40 4
35 o fmy
= 1.0t
3.0F
E 0.8+
2.5¢ : — =N
200 ----- A_=0 0.6
1.5 o A se=0 04l
1.0F
0.5 021
' B el m%
0.5 1.0 1.5 2.0 2.5 3.0 3.5m 02 04 06 08 10
left panel: ¢; = —c, =1, right panel ¢; = —¢, = —1
no physical regime for ¢; = ¢, = +1
21/
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Goldstone bosons
PT-symmetric regime:
mass squared term:

8 8
FIMF =Y mii=> m(FTIU)(UF).

Hence

b= (FTIU),(U-YF),, (=1,3,5

Gb o3 — mixi e o mpt + 1°X5  cb o msp; + X3

1 ’ 3 ) 5
7 4 4 4 4 4
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@ Mo —mixi e MOI XS qp M0l + UPXG
1 — ) 3 ’ 5y
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Goldstone bosons
PT-symmetric regime:
mass squared term:

8 8
FIMF =Y mii=> m(FTIU)(UF).

Hence

b= (FTIU),(U-YF),, (=1,3,5

Gb o3 — mixi e o mpt + 1°X5  cb o msp; + X3

1 ’ 3 ) 5
7 4 4 4 4 4
VAT VAL My —H

standard exceptional points:
same form, but identified using Jordan normal form
zero exceptional points:

identification is not possible
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Gauged model in SU(2)-fundamental representation
2 g 1 y
La=) . 1Duo,P+mi1o,P (810, dhor)— 5 (164*) =3 Fuu F"
D, := 0, —ieA,, A, :=TA%, F. = 0,A —0,A, — ie[A, Al
The gauge vector boson acquires a mass: mygp := ;—@x/mé — pt
2
e*(A Vo) T (A"Wo) = m, AL A,
combined with the "would be Goldstone bosons”:

Gl = mib (v3) !, G = mib (w2) 2, G2 = —mib (v2)" v
g 8 8!

3
1 1
> 50uG°0"G% — mALD" G 4 meALDMG? — AL G 4 S AL A
a=1

2 & 4

5 1
i

3
1 2 papa a. a
=5 mBiBY  Bl:=A 0,G
a=1

mg

=- massive gauge vector bosons <= vanishing Goldstone boso
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Massive gauge vector bosons versus massless Goldstone bosons

Gauge vs Goldstone bosons

Gauge vs Goldstone bosons
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Massive gauge vector bosons versus massless Goldstone bosons

Gauge vs Goldstone bosons

Gauge vs Goldstone bosons

m3
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’ H CPT \ EP \ zero EP | \ broken CPT ‘
vector boson massive | massive | massless | nonphysical
Goldstone with A, F i i nonphysical
Goldstone no A, 3 3 i nonphysi
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Conclusions, work in progress, future work
The GT holds in the PT-symmetric regime
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