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Hermiticity is good to have for two reasons, but

Why is Hermiticity a good property to have?
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Schrédinger equation Hiy = Ev
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Hermiticity is good to have for two reasons, but

Why is Hermiticity a good property to have?

@ Hermiticity ensures real energies
Schrédinger equation Hiy = Ev

(Y| Hp) = E (| )

(| HT 1) = E* (¢)] L/J>} = 0=(E-E")(¥|¢)

@ Hermiticity ensures conservation of probability densities

%)) = e~ y(0))
(W(0)] (1)) = ((0)] €M te™M [y(0)) = (1(0)] ¥(0))

- Thus when H # H' one usually thinks of dissipation.
- However, these systems are usually open and do not possess
a self-consistent description.
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Hermiticity is only sufficient and not necessary for a consistent quantum theory

Hermiticity is not essential

@ Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0,7]=0 A Io=0

have a real eigenvalue spectrum.
[E. Wigner, J. Math. Phys. 1 (1960) 409]
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Hermiticity is only sufficient and not necessary for a consistent quantum theory

Hermiticity is not essential

@ Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0,Z7] =0 A ZIo=0

have a real eigenvalue spectrum.
[E. Wigner, J. Math. Phys. 1 (1960) 409]

@ By defining a new metric also a consistent quantum
mechanical framework has been developed for theories
involving such operators.

[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74,
C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243,
A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814]

In particular this also holds for O being non-Hermitian.
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There are plenty of well studied examples of non-Hermitian systems in the literature

"Recent"” classical example

H= %p2 +x2(ix)s fore >0
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[C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

A more classical example
@ Lattice Reggeon field theory:

H= Z; [Aa;'r'af—’— iga;r'(a7+ a;[)a;_’_ sz(a;ﬁ— a})(a;ﬁ— a;)

- ;, ar are creation and annihilation operators, A,g,9 € R
[J.L. Cardy, R. Sugar, Phys. Rev. D12 (1975) 2514]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

A more classical example
@ Lattice Reggeon field theory:

H= Z; [Aa;'r'af—’— iga;r'(a7+ a;[)a;_’_ QZ]—'(a;furj—’— a})(a;ﬁ— a;)

- ;, ar are creation and annihilation operators, A, g,g € R
[J.L. Cardy, R. Sugar, Phys. Rev. D12 (1975) 2514]
- for one site this is almost ix3
H = Aa'a+iga' (a+ aT) a
1 g

- E(b2+)?2—1>+iﬁ()“(3+,62)“(—2$(+ib)

with a = (wX + ip)/V2w, a' = (wX — ip)/V2w
[P. Assis and A.F., J. Phys. A41 (2008) 244001]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

@ quantum spin chains: (c=-22/5 CFT)
1 N X zZ_Z H z
%:Ezi:10i+)\0i0i+1+lh0i )\,hER
[G. von Gehlen, J. Phys. A24 (1991) 5371]
° Toda field theory:
2

Nk exp(Bo - @)

£ =3 0" ¢+’;' .

a = 1 = conformal field theory (Lie algebras)
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

@ quantum spin chains: (c=-22/5 CFT)
1 N X zZ_Z H z
%:Ezi:10i+)\0i0i+1+lh0i >\7h€R

[G. von Gehlen, J. Phys. A24 (1991) 5371]
@ affineToda field theory:

2

nk exp(Bag - @)

£ =3 0" ¢+’;' .

a = 0 = massive field theory (Kac-Moody algebras)
B8 € R = no backscattering
B € iR = backscattering (Yang-Baxter, quantum groups)

@ strings on AdSs x S°-background
[A. Das, A. Melikyan, V. Rivelles, JHEP 09 (2007) 104]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

@ deformed space-time structure
- deformed Heisenberg canonical commutation relations

aa' — ¢?afa= g9V, with N = afa

X:OéaT‘{‘Ba, P:I'YaT_I(Saa Oé,ﬁ,")’,(SER

[X, P] = ihg®™(as + Bv)

in(g® - 1)

) 2 . g
R (5’yX +ap P2+ iadsXP wwx)

- limit: 8 = «, 0 = v, g(N) —» 0, g — e,y =0
X, Pl =i (1+7P?)

- representation: X = (1 +7p2)xo, P = po, [Xo, Po] = i
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

- with the standard inner product X is not Hermitian
X' =X+2rihP  and P =P

- = H(X, P) is in general not Hermitian
- example harmonic oscillator:

P2 ome? o

2m 2 ’

p5 | mu? p) >

_ ,075 mw? 2\2.2 | o 2

= omt 5 [(1 +7P5) Xo + 2ihTpo(1 +TP0)X0} :

[B. Bagchi and A.F,, Phys. Lett. A373 (2009) 4307]

Hho =
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

"dynamical" noncommutative space-time

Replace
[X07y0] =10, [X0>pX0] = Ih, [yOnD}/o] = ih,
[pX07py0] = 07 [X07py0] = 07 [y07pXo] — 07
with 6 € R, by

[X,Y]=i0(1 +7Y2) [X,P]=ih(1+7Y?)
[Y,P,] = ih(1 +7Y2) [X,P,] = 2irY(0P, + hX)
[Px.P,] =0 [Y.P,] =0

= Non-Hermitian representation
Xt =X+2iroy Y=Y P} =P, —2irhY P]=Ps

[A.F.,, L. Gouba, F. Scholtz, J.Phys. A43 (2010) 345401]
[A.F., L. Gouba, B. Bagchi, J.Phys. A43 (2010) 425202]
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Spectral analysis

How to explain the reality of the spectrum?

@ Pseudo/Quasi-Hermiticity
© Supersymmetry (Darboux transformations)
©Q PT-symmetry
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Spectral analysis: Pseudo/Quasi-Hermiticity

Pseudo/Quasi-Hermiticity

h=nHyp'=h' = ") Hy < Hp=pH p=nin ("

Hp™'| H'p=pH | H' =pHp™’

P
positivity of p v v X
p Hermitian v v v
p invertible v X v
terminology ) quasi-Herm. | pseudo-Herm.
spectrum of H real could be real real
definite metric | guaranteed | guaranteed | not conclusive

e quasi-Hermiticity: [J. Dieudonné, Proc. Int. Symp. (1961) 115]
[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74]

e pseudo-Hermiticity: [M. Froissart, Nuovo Cim. 14 (1959) 197]
[A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814]
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Spectral analysis: Supersymmetry (Darboux transformation)

Supersymmetry (Darboux transformation)

Decompose Hamiltonian H as:
H=H.oH_ =QQeQQ
e intertwining operators: QH_ = H,Q and QH, = H_Q
= [1.Q=[HQ =0
o realization: Q= & + Wand Q= -2 + W
= Hi=-A+W?+tW =—-A+V,

e ground state: H_ ¢, =¢,$, and H-$,, =0
=-isospectral Hamiltonians

HI = —A+ VP + E, HToF=EdF forn>m
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Spectral analysis: P 7 -symmetry

Unbroken P7-symmetry guarantees real eigenvalues (QM)

@ PT-symmetry: PT: X——X p—=>p i——i
(P:x——x,p——p; T:X—=Xx,p—>—p,i = —I)
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Spectral analysis: P 7 -symmetry

Unbroken P7-symmetry guarantees real eigenvalues (QM)

@ PT-symmetry: PT: X——X p—=>p i——i
(P:x——x,p——p; T:X—=Xx,p—>—p,i = —I)
@ P7T is an anti-linear operator:

PT (AP 4+ pV) = X*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7T-symmetry:
[H,PT]=0 A PTd=0¢ =ec=c" forHd =cd

@ Proof:
eEQ=HO=HPTP =PTHP=PTecd==c*PTdP=c"0
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Spectral analysis: P 7 -symmetry

Unbroken P7-symmetry guarantees real eigenvalues (QM)

@ PT-symmetry: PT: X——X p—=>p i——i
(P:x——x,p——p; T:X—=Xx,p—>—p,i = —I)
@ P7T is an anti-linear operator:

PT (AP 4+ pV) = X*PTO + p*PTV ApeC
@ Real eigenvalues from unbroken P7T-symmetry:
[H,PT]=0 A PTP=¢ =c=c" forHd=cd

@ Proof:
eO=HO=HPTP =PTHP=PTecd=c*PTdP=c"0

PT-symmetry is only an example of an antilinear involution
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Quantum mechanical framework

How to formulate a quantum mechanical framework?

@ orthogonality

© observables

© uniqueness

Q technicalities (new metric etc)
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QM framework: Orthogonality

Orthogonality

¢ Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n| ¢m>

|hdm) = em |ém)
(hop | = &}, (&
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Orthogonality

¢ Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n| ¢m>
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QM framework: Orthogonality

Orthogonality

¢ Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n| ¢m>

(bn |hdm) = em(®n |dm) . _
(hon|dm) = €h (Pn| dm) } = 0= (em —€p) (Dn|dm)

= n=m: ey=c¢j, n#m: (¢p|lopm =0
e Take H to be a non-Hermitian Hamiltonian:

H‘q)n) = €n’¢n>
- reality and orthogonality no longer guaranteed. Define
<¢n|¢m>7, = <¢n’772¢m>

- when <¢H‘H¢m>n = (HCD,, |¢m>n = <¢n ’¢m>n = 5n,m
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QM framework: H is Hermitian with respect to new metric

H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:
h=nHy™" = ht = (") H'" < Hiy'y =ninH
d=n"lo =y
= H is Hermitian with respect to the new metric
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H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:
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H is Hermitian with respect to new metric

e Assume pseudo-Hermiticity:
h=nHn™' = ht = (") H'" & Higty =nTnH

d=nTo gl=g

= H is Hermitian with respect to the new metric
Proof:

(WIH®), = (W [P H®) = (n~"plnHn " ¢) = (¥ [nHn~"¢) =
(6 [ho) = (hp|6) = (M~ vlg) = (HY|ne) = (HV|r2®)
= (HV|®),

= Eigenvalues of H are real, eigenstates are orthogonal
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Observables

@ Observables are Hermitian with respect to the new metric

O=n"ony & ot = pop~!

- 0 is an observable in the Hermitian system
- O is an observable in the non-Hermitian system

@ Ambiguities:
Given H the metric is not uniquely defined for unknown h.
= Given only H the observables are not uniquely defined.
This is different in the Hermitian case.
- Fixing one more observable achieves uniqueness.
[Scholtz, Geyer, Hahne, , Ann. Phys. 213 (1992) 74]
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QM framework: Observables

General technique:

either solve nHn=' =h for 7 = p=1iy
or solve H' = pHp~" for p =n=,/p
@ involves complicated commutation relations

@ often this can only be solved perturbatively

@ Given H{

@ Thus, this is not re-inventing or disputing the validity of

quantum mechanics.

@ We only give up the restrictive requirement that
Hamiltonians have to be Hermitian.

[C. Bender, Rep. Prog. Phys. 70 (2007) 947]

[A. Mostafazadeh, Int. J. Geom. Meth. Phys. 7 (2010) 1191]
[C. Bender, A. Fring et. al PT-symmetric Quantum Mechanics,
Imperial College Press (20187)]
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QM framework: Non-Hermitian time-dependent Hamlitonians

Theoretical framework (key equations):

Time-dependent Schrédinger eqn for h(t) = hf(t), H(t) # H(t)
hto(t) = indes(t),  and  H(OW(E) = indaw(t)

Time-dependent Dyson operator

= Time-dependent Dyson relation
h(t) = n(t)H(tn " (1) + ihdem(tyn~ (t)
= Time-dependent quasi-Hermiticity relation
H'p(t) — p(t)H = ihdip(t)

[from conjugating Dyson relation and p(t) := 1 (t)n(t))]
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QM framework: Non-Hermitian time-dependent Hamlitonians

Theoretical framework (interpretation):

Observables o(t) in the Hermitian system are self-adjoint.
Observables O(t) in the non-Hermitian O(t) are quasi
Hermitian

o(t) = n(H)O(tyn ().
Then we have

(@(1) [o(t)o(t)) = (W(1) [p(HO(E)W(E)) -

Since H(t) is not quasi/pseudo Hermitian it is not an
observable.
Instead the observable energy operator is

H(t) = 0~ (h(t)n(t) = H(E) + it~ (£)p(t).

H(t) is simply the Hamiltonian satisfying the TDSE and
governing the evolution in time.
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QM framework: Non-Hermitian time-dependent Hamlitonians

Unitary time-evolution:

Hermitian:
o(t) = u(t, t)o(t), u(t,t')y = Texp [—i tdsh(s)]
¢

with
h(tyu(t,t') = indeu(t, t'), u(t,t)u(t',t")=u(t t"), u(t,t)=1

(ult, )o(t) [u(t, )3(E)) = (o(1) [2(1))
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QM framework: Non-Hermitian time-dependent Hamlitonians

Unitary time-evolution:

Hermitian:
t
o(t) = u(t, t')o(t), u(t,t') = Texp [—i/t, dsh(s)]
with
h(tyu(t,t') = indeu(t, t'), u(t,t)u(t',t")=u(t t"), u(t,t)=1
(utt, )t lutt, )d(E)) = (a(1) |3()

Non-Hermitian:

V(t) = U(t, t')w(t), U(t,t') = Texp [—i tdsH(s)}

t/

H(OU(L ) = ind UL, ), UL EYU(E, ') = UL EY), Ut E) =1
<U(t, Oyt |ug, t’)\TJ(t’)>p - <w(t) ‘\T!(t)>p
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Relation between u(t, ') and U(t, t'):

u(t,t) =o' (tu(t, )n(t)
or the generalized Duhamel’s formula

Ut t) = wnw—%:iﬂmﬁwwmﬂﬁ

:u@m—mfumgw@—mmMamw
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QM framework: Non-Hermitian time-dependent Hamlitonians

Relation between u(t, ') and U(t, t'):

u(t,t) =o' (tu(t, )n(t)
or the generalized Duhamel’s formula

/ / t d /
Ut t) = u(t,t)—/t/ & [Utt.s)u(s,t)] ds
— Ut t)—in / " U(t. s) [H(s) — h(s)] u(s. {)ds
t/

Relation between Green’s functions:

Gh(t, 1) = —iu(t, )0t — ) Gu(t,t') == —iU(t, )0t — ')

Gu(t,t) = Gu(t, ) + i / " Gu(t, ) [H(s) — h(s)] Guls, t)ds
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Ising quantum spin chain of length N

N
1 ;
’H:—E g (0f + Aofofy +ikoT)  k,AER
i=1

in a magnetic field in the z-direction and in a longitudinal
imaginary field in the x-direction

@ H acts on the Hilbert space of the form (C2)®N
00V =1IQI®..R0"*®...01x1

« (01 , (0 —i . (1 0
“‘(10)’ 7=\i o) 77 0 -

@ 7 is a perturbation of the M5 >-model (c=-22/5)
in the M), 5-series of minimal conformal field theories
@ non-unitary for p — g > 1 = non-Hermitian Hamiltonians

[G. von Gehlen, J. Phys. A24 (1991) 5371]
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Deformed quantum spin chains (Different realizations for P 7 -symmetry)

PT-symmetry for spin chains

@ "macro-reflections": [Korff, Weston, J. Phys. A40 (2007)]

P Lol = o
P /r——e2——Nag——..——ITn-2— —Tn-1— =N
- 1——Te——Ta——...——\WN-2——N-1——/ N

@ butwith7 :i — —i [P'T,H] #0
@ "site-by-site reflections":
[Castro-Alvaredo, A.F., J.Phys. A42 (2009) 465211]

N
— z i 2 _ 1N
P = | |i:10i’ with P =1

P (U,,U ,07) = (—of, J o%)

P:M—= 2__\3__-~__TN—2__TN—1__/N
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Deformed quantum spin chains (Different realizations for P 7 -symmetry)

PT-symmetry for spin chains

@ "macro-reflections": [Korff, Weston, J. Phys. A40 (2007)]

P Lol = o
P /r——e2——Nag——..——ITn-2— —Tn-1— =N
- 1——Te——Ta——...——\WN-2——N-1——/ N

@ butwith7 :i — —i [P'T,H] #0
@ "site-by-site reflections":
[Castro-Alvaredo, A.F., J.Phys. A42 (2009) 465211]

N
— z i 2 _ 1N
P = | |i:10i’ with P =1

P (U,,U ,07) = (—of, J o%)

P:M—= 2__\3__-~__TN—2__TN—1__/N
-+ i——"2—-—Ns——...——In2——IN-1— =N
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Deformed quantum spin chains (Different realizations for P 7 -symmetry)

PT-symmetry for spin chains

@ "macro-reflections": [Korff, Weston, J. Phys. A40 (2007)]

P Lol = o
P /r——e2——Nag——..——ITn-2— —Tn-1— =N
- 1——Te——Ta——...——\WN-2——N-1——/ N

@ butwith7 :i — —i [P'T,H] #0
@ "site-by-site reflections":
[Castro-Alvaredo, A.F., J.Phys. A42 (2009) 465211]

N
— z i 2 _ 1N
P = | |i:10i’ with P =1

P (U,,U ,07) = (—of, J o%)

P:M—= 2__\3__-~__TN—2__TN—1__/N
-+ i——"2—-—Ns——...——In2——IN-1— =N

—~ [PT.H] =0
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Deformed quantum spin chains (Different realizations for P 7 -symmetry)

¢ Alternative definitions for parity:
N

Py 1= Hi=1 n Py = Hi=1 oY

PX : (va 0—{7 U/z) - (U;(7 _0{7 _U/'z)
Py : (0-;(7 0-{7 UIZ) — (_O-?(a 0-{7 _U/Z)

[PT,H] =0, [PxT,H] #0, [P,T,H] £0, [P'T,H] #0
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Deformed quantum spin chains (Different realizations for P 7 -symmetry)

¢ Alternative definitions for parity:

PX : (va 0—%/7 Ulz) - (U;(7 _U}'/a _U/'z)

I
Py : (0-;(7 0-{7 UIZ) — (_O-?(a 0-{7 _U/Z)

[PT,H] =0, [PxT,H] #0, [P,T,H] £0, [P'T,H] #0

e XXZ-spin-chain in a magnetic field
4 N

Hxxz =5 Y lofof +ololiy + As(ofofy — )]+
i=1

Ay =(q+q")/2 = My # Hxxz for g ¢ R
[PT, Hxxz] # 0 [PxT , Hxxz] =0 [PyT, Hxxz] =0 [P'T,Hxxz] =0
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Deformed quantum spin chains (Different realizations for P 7 -symmetry)

¢ Alternative definitions for parity:

PX : (va 0—%/7 Ulz) - (U;(7 _U}'/a _U/'z)

I
Py : (0-;(7 0{7 Ulz) — (_O-?(a 0-{7 _U/Z)

[PT,H] =0, [PxT,H] #0, [P,T,H] £0, [P'T,H] #0

e XXZ-spin-chain in a magnetic field
4 N

Hxxz =5 Y lofof +ololiy + As(ofofy — )]+
i=1

Ay =(q+q")/2 = My # Hxxz for g ¢ R
[PT, Hxxz] # 0 [PxT , Hxxz] =0 [PyT, Hxxz] =0 [P'T,Hxxz] =0

These possibilities reflect the ambiguities in the observables.
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Deformed quantum spin chains (Spectral analysis)

PT-symmetry = domains in the parameter space of A and

Broken and unbroken P7-symmetry

_ (AN, k) for (N k) e U
[PT.H]=0 A PTo(, “){ 260\ k) for () € Uppr

(\, k) € Upr = real eigenvalues
(\, k) € Upp7 = eigenvalues in complex conjugate pairs
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian

1 .
H :—é[U$+U§+2)\O'3|(O')2(+IH,(O')2(+0'3|()]
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian
1 ,
H :—E[Uf—i—ag—f—Z)\UfU)z(—i—m(U)z(—i-a)f)]

1 .
:—E[O’Z®H+H®OZ—|—2AOX®0X+I/€(H®UX+UX®]I)]
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian
1 ,
H :—E[Uf—i—ag—f—Z)\UfU)z(—i—m(U)z(—i-a)f)]

1 .
= —5[?@I+18 0" + 200" @ 0" + ik (I® 0" + 0¥ @ D)

NE s oNFE
NE o > NF
|5

—1
ix
2
Ik
2

A
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian
1 )
H :—E[Uf—i—ag—f—Z)\UfU)z(—i—m(a)z(—i-Uf)]

1 .
= —5[?@I+18 0" + 200" @ 0" + ik (I® 0" + 0¥ @ D)

Y.
505
ook
ik ik
Ao

with periodic boundary condition o}, y = of
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian
1 )
H :—E[Uf—i—ag—f—Z)\UfU)z(—i—m(a)z(—i-Uf)]

1 .
= —5[?@I+18 0" + 200" @ 0" + ik (I® 0" + 0¥ @ D)

g
[ roh
a0k
ik ik
Az oz -

with periodic boundary condition o}, y = of
@ domain of unbroken PT-symmetry:
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Deformed quantum spin chains (Exact Results, N = 2)

@ The two site Hamiltonian
1 )
H :—E[Uf—i—ag—f—Z)\UfU)z(—i—m(a)z(—i-Uf)]

1 .
= —5[?@I+18 0" + 200" @ 0" + ik (I® 0" + 0¥ @ D)

Y.
[ s h s
ook
ik ik
Ao

with periodic boundary condition o}, y = of
@ domain of unbroken PT-symmetry:
char. polynomial factorises into 1st and 3rd order
discriminant: A =r?—¢g°
1

q=g (37 +4X2+3), r:2)\—7<18/<2+8)\2+9>
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Deformed quantum spin chains (Exact Results, N = 2)

Upr = {)\, ko K8+ 8AZK* — Bk* + 160 k2 + 2002K2 + 3K2% — A2 < 1 }

1.0 |

0.8

0.6

0.4

0.2

U ST T T [N WO T T TN N ST S TN W T ST TN T S NN SN T S S NN S Y

05 1.0 15 20
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Deformed quantum spin chains (Exact Results, N = 2)

Real eigenvalues: [0 = arccos (r/q%/?)]

e1 =1\, e2=2qzcos () -3, €374 = 2qzcos (§+7 F17) -
Avoided level crossing:

wl>~

T T T T T
g T 7
A =0.45202439665
05 | 7
€
n €
4
0.0 - - ]
2
-0 3
€
4
O5F T T T T T T T T T - - T
- o 5 1
10 _4_’_’/’/ _
1 1 1 1
0.0 0.1 0.2 03 0.4
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Deformed quantum spin chains (Exact Results, N = 2)

Real eigenvalues: [0 = arccos (r/q%/?)]

wl>~

e1 =1\, e2=2qzcos () -3, €374 = 2qzcos (§+7 F17) -
Avoided level crossing:

———T— — T T o
wof T T T T I .
k=04
05 | ]
€
n
€
X
0.0 |2 e b
-~ 2
T - T Tg
~<_ :
-~ :
- 3
-0.5 | - ]
\\
~
N
1.0 | ) | I

0.0 0.1 0.2 03 0.4 0.5
A
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Deformed quantum spin chains (Exact Results, N = 2)
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Deformed quantum spin chains (Exact Results, N = 2)

@ Right eigenvectors of H :
|(D1> = (0771:*170) |¢n> - (f\/"n: —Qp, 70‘”76n) n:27374
ap=Ik(A—ep+1)

Bp = K2+ 2X2 + 2)ep
Yp = —K2 — 25‘,27 + 2\ —2Xep + 2¢p
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Deformed quantum spin chains (Exact Results, N = 2)

@ Right eigenvectors of H :
|(D1> :(03_17_170) |¢n> :(an_ana _anvﬁn) n:27374
ap=Ik(A—ep+1)
Bn= K2 +2) 4 2Xep
Y = —K2 — 25‘,27 + 2\ —2Xep + 2¢p
@ signature: s = (+, —, +, —)

7) |¢n> — Sn |wn>

from relating left and right eigenvectors
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Deformed quantum spin chains (Exact Results, N = 2)

@ C-operator:

Z Sn [®n) (V|

Cs -Cs3 -Cs3 o
| -e —ac1 - Co
o —C3 —C;q —Cy -1 Co
Cy Co Co 2(Ci+1)—0Cs
af af  af 4 asfs  asfy  asf
C1:N—%—N—§—N—%—§7 02: &24_/?/22_/‘?/3237
_ pYp | Q373 Q474 /3272 53’73 _ Bava

Ny = V2, Ny = /202 + 32 +42 forn=,2,3,4
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

CS - CS - C3 C4
- - C; 1+ Cy Cq )
p=re= G C 1+ -G
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

C5 - C3 - C(_J, C4
- o Cs 1+ Cy Cq e
,0—736— C3 Cq 1+ Cy e

Cy Co Co 21+ Cy)—GCs

e since iaj, Bj,v; € R
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

C5 - C3 - C(_J, C4
- o Cs 1+ Cy Cq e
,0—736— C3 Cq 1+ Cy e

Cy Co Co 21+ Cy)—GCs

e since iOé,',,B,’,’)/,' eR
= C1,iC_2, 1.03./ C4, Cs R
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

C5 - C3 - C(_J, C4
- o Cs 1+ Cy Cq e
p=re= G C 1+ -G

Cy Co Co 21+ Cy)—GCs

e since iOé,',,B,’,’)/,' eR
= C4 , ng, iC3, C47 Cs R
= pis Hermitian p = pf
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

C5 - C3 - C(_J, C4
- o Cs 1+ Cy Cq e
p=re= G C 1+ -G

Cy Co Co 21+ Cy)—GCs

e since iOé,',,B,’,’)/,' eR
= C4 , ng, iC3, C47 Cs R
= p is Hermitian p = pf

e EVofp:

Y1=}/2=1, y3/4:1+201:t2 C1(1+C1)
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

C5 - C3 - CS C4
- o Cs 1+ Cy Cq e
p=re= G C 1+ -G

Cy Co Co 21+ Cy)—GCs
e since iaj, Bj,v; € R

= C4 , ng, iC3, C47 Cs R
= p is Hermitian p = pf

e EVofp:

vi=ya=1,  ysa=1+2C£2\/Ci(1+Cy)

since C; >0
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Deformed quantum spin chains (Exact Results, N = 2)

@ metric operator:

C5 - C3 - CS C4
- o Cs 1+ Cy Cq e
p=re= G C 1+ -G

Cy Co Co 21+ Cy)—GCs
e since iOé,',,B,’,’)/,' eR

= C4 , ng, iC3, C47 Cs R
= p is Hermitian p = pf

e EVofp:

vi=ya=1,  ysa=1+2C£2\/Ci(1+Cy)

since C; >0 = pis positive
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Deformed quantum spin chains (Exact Results, N = 2)

@ square root of the metric operator:

n= /)1/2 _ UD1/2U71

where D = diag(y1,y2,, ¥3,, ¥a), U= {r1,r2, 13,14}

|r1> = (0>_17170)

‘r2> — (C4707071 - CS): .

\13/a) = (F3/4> O34, 0374, B3 4)

Gg/q = ¥3/4(C3Ca + Co(—4C1 + G5 —1))/2 = C3Cy

,83/4 = —Cg — C1 — C1 Cs + (Cg + C1 (4C1 — C5 + 3)) y3/4,
Y374 = C1C4 — C2C3 + (C2C3 + C1C4) Y34
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Deformed quantum spin chains (Exact Results, N = 2)

@ isospectral Hermitian counterpart:

h = nHny™
= J10x ® Ox + fip0y ® Ty + g0z @ 07 + pg(o, @[+ 1® 07)

s H2, B3, g € R
for A\ =0.1,x =0.5:

—0.829536 0 0 —0.0606492
0 —0.0341687 —0.1341687 0

0 —0.1341687 —0.0341687 0
—0.0606492 0 0 0.897873
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Deformed quantum spin chains (Exact Results, N = 2)

The magnetization in the z-direction for N = 2:

——— 77—
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L ~ ]
[ N

0.9 i - = i
: X k=0.1
Li N —-=-x=02 ]
] -

0.8 i \. k=03 |
_| *\\‘ - k=04 ]

N. k=05
0.7 I \\.:, ............. k=07 .
M+ R —mmek =08 1
10000 N
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L Mlﬂuse‘ ‘\.~ ]
~
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Deformed quantum spin chains (N # 2, perturbation theory)
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Deformed quantum spin chains (N # 2, perturbation theory)

@ Perturbation theory about the Hermitian part
HO\ k) = ho(A\) +ikhy  ho=hl,h =hl keR
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Deformed quantum spin chains (N # 2, perturbation theory)

@ Perturbation theory about the Hermitian part
HO\ k) = ho(A\) +ikhy  ho=hl,h =hl keR

assume 1 = nf = e9/2 = solve for q

M—M%Q—WMM+MMHWVMMMMW
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Deformed quantum spin chains (N # 2, perturbation theory)

@ Perturbation theory about the Hermitian part
HO\ k) = ho(A\) +ikhy  ho=hl,h =hl keR

assume n = nf = e9/2 = solve for q
H' = eIHe 9 = H+{q, H]+ [a,[a. H]]+ ICACACALIEEE

for c{*V(ho) = [q, .19, (g, hol] . . .] = O closed formulae:
4 (=1)"En_(2n) ) (en-1)
=t S e — ho— Y Lt _fen-

E, = Euler numbers, e.qg. E; =1, E, =5, E3 =61,...

1 [(n+1)/2]
fon = ? Zm:1 (_1 )”+m <2m> Em

K1 = 1/2,&3 = —1/4,&5 = 1/2,/<;7 = _17/87
[C. F. de Morisson Faria, A.F., J. Phys. A39 (2006) 9269]
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Deformed quantum spin chains (N # 2, perturbation theory)

further assumption

q= Z K2 Qo

solve recursively:
[ho, q1] = 2ih

[ho,q3] = é[CIh (g1, hi]]

[ho, g5] = é[Q1a[Q37h1]]+é[%[%m]]—3é0[q17[Q17[Q17[Q17h1]]H
Here

N

N
ho(N) == (0 +Aofofiq)/2, m=-) " of/2
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Deformed quantum spin chains (N # 2, perturbation theory)

further assumption

q= Z K2 ok
solve recursively:
[ho, o] = 2ih
i
[ho,qs] = glar, [a, Ml

[ho, g5] = é[Q1a[Q37h1]]+é[%[%m]]—3é0[q17[Q17[Q17[Q17h1]]H
Here

N N
ho(N) == (0 +Aofofiq)/2, m=-) " of/2
@ Perturbation theory in A
HOW k) = ho(k) + Ay ho# Bl =hl A eR
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Deformed quantum spin chains (N # 2, perturbation theory)

exact result for N = 2 ;

A=0.1,x=0.5:
—0.829536 0 0 —0.0606492
h— 0 —0.0341687 —0.1341687 O
10 —0.1341687 —-0.0341687 0
—0.0606492 0 0 0.897873
A=0.9,k=0.1:
—0.985439 0 0 —0.890532
h— 0 —0.0094167 —0.909417 O
|10 —0.909417 —-0.0094167 O

—0.890532 0 0 1.00427
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Deformed quantum spin chains (N # 2, perturbation theory)

perturbative result 4th order for N =2 :

A=0.1,x=0.5:
—0.829534 0 0 —0.0606716
h— 0 —0.0341688 —0.134169 O
10 —0.134169 —-0.0341688 0
—0.0606716 0 0 0.897872
A=0.9,k=0.1:
—0.985439 0 0 —0.890532
h— 0 —0.0094167 —0.909417 O
10 —0.909417 —-0.0094167 O

—0.890532 0 0 1.00427
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Deformed quantum spin chains (N # 2, perturbation theory)

- new notation:
N
N L a; _a. g, _ L
Stnap.ay = Zak10k2+1 Oy A=X Y Zui=1 . p<N
k=1

with ¢¥ = I to allow for non-local interactions
- for instance:

N
1 ,
H\ k) = — E (0f + Xofof\q +ikof), Ak ER
=

N

1 .1
= —E(SQ’ + SNy — //-;ES)’(V
- perturbative result for N = 3 :

h = M?{x()v H)S)%x + N?/y()\a R)S}S/y + Ngz(/\: ’i)sgz + Mg()‘a “)Sg
+:U“?(xz()‘7 H)S)%xz + /‘?/yz()ﬁ H)S}%yz + :ngz()ﬁ H)ngz
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Deformed quantum spin chains (N # 2, perturbation theory)

- perturbative result for N = 4 :

h

Hooe(As 1) S + V(A ) Sk + 113y (A, ) Sy, + 15, (A, £) Sy
152 (N 8)SZ; + 12, (N 8) Squz + 1z (A £) 87 + pixz (N, £) Sy
+M§XZ(A7 ﬁ)(sﬁxz + S;rxx) + Mf/yz()‘v H)(Sf;yz + Sgyy)

+/~Lf/zy(/\a K) Sf/zy + Nizz(Aa K) S;‘zz + N;‘(xxx()‘a ’Q)Sﬁxxx
iy (A 5) Sy + Hazzz(As 1) Shzzz + gy (A, ) Sy
iy (A 1) Sy + Hzyy (N, 1) S2zyy + 132y (N, ) Sty
+,U«;t(xzz()‘7 "‘C)Sﬁxzz + M?(zxz()w H)S)A;zxz
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Deformed quantum spin chains (N # 2, perturbation theory)

- perturbative result for N = 4 :

h

Hooe(As 1) S + V(A ) S + 1y (A, ) Sy, + 15, (A, £) )y
152 (N 8)SZ; + 12, (N 8) Sz + 1z (N £) 87 + pixz (N, ) Sy
‘Hﬁ;t(xz(/\? ”)(S)‘txz + S;rxx) + Mf/yz()‘v K)(Sf;yz + Sgyy)

+/~Lf/zy(/\a K) Sffzy + Nizz(Aa K) S?zz + N;‘(xxx()‘a ’Q)Sﬁxxx
iy (A 5) Sy + Hazzz(As 1) Shzzz + gy (A, ) Sy
iy (A 1) Sy + Hzyy (N, 1) S2zyy + 132y (N, ) Sty
+,U«;t(xzz()‘7 K)S)?xzz + M?(zxz()w H)S)A;zxz

non-local terms
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Three possibilities to obtain PT-invariant Calogero models

@ Extended Calogero-Moser-Sutherland models
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Three possibilities to obtain PT-invariant Calogero models

@ Extended Calogero-Moser-Sutherland models
© From constraint field equations
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PT-invariant Calogero-Moser-Sutherland models

Three possibilities to obtain PT-invariant Calogero models

@ Extended Calogero-Moser-Sutherland models
© From constraint field equations
© Deformed Calogero-Moser-Sutherland models
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Extended Calogero-Moser-Sutherland models

Calogero-Moser-Sutherland models (extended)

BK =5 T3 2,915 i#k (q; — qk)? 92 iz (g qo)”

with g, g € R, g, p € R*1
[B. Basu-Mallick, A. Kundu, Phys. Rev. B62 (2000) 9927]
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Extended Calogero-Moser-Sutherland models

Calogero-Moser-Sutherland models (extended)

BK =5 T3 2,915 i#k (q; — qk)? 92 iz (g qo)”

with g, g € R, g, p € R*1
[B. Basu-Mallick, A. Kundu, Phys. Rev. B62 (2000) 9927]

@ Representation independent formulation?

© Other potentials apart from the rational one?

© Other algebras apart from Ay, B, or Coxeter groups?
Q Is it possible to include more coupling constants?

©@ Are the extensions still integrable?
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Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
Hﬂ_z 2Z€Agav(a q)+llu p

- Now A is any root system

p=1/2% ca daf(a-qla, f(x) =1/x V(x) = 3(x)
[A. F, Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
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Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
HH_Z 2Z€Agav(a q)+llu p

- Now A is any root system
1=1/2% ca Gaf(a-qa, f(x) =1/x V(x) = f3(x)
[A. F., Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
- Not so obvious that one can re-write
Hy 2(P+’M 2ZeAga V(a-q), Qa—{ P+ 023 acl,
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Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
HH_Z 2Z€Agav(a q)+llu p

- Now A is any root system
1=1/2% ca Gaf(a-qa, f(x) =1/x V(x) = f3(x)
[A. F., Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
- Not so obvious that one can re-write
Hy 2(P+’M 2ZeAga V(a-q), Qa—{ P+ 023 acl,

= H,=n"hcan  with n=e 9"



Deformed Calogero models
o] ]
Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
HH_Z 2Z€Agav(a q)+llu p

- Now A is any root system
1=1/2% ca Gaf(a-qa, f(x) =1/x V(x) = f3(x)
[A. F., Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
- Not so obvious that one can re-write
Hy 2(P+’M 2ZeAga V(a-q), Qa—{ P+ 023 acl,

= H,=n""hcan  with n=e 9
- integrability follows trivially L = [L, M]: L(p) — L(p + in)
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Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:
1 2
HH_Z 2Z€Agav(a q)+llu p

- Now A is any root system
1=1/2% ca Gaf(a-qa, f(x) =1/x V(x) = f3(x)
[A. F., Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
- Not so obvious that one can re-write
Hy 2(P+’M 2ZeAga V(a-q), Qa—{ P+ 023 acl,

= H,=n""hcan  with n=e 9
- integrability follows trivially L = [L, M]: L(p) — L(p + in)
- computing backwards for any CMS-potential

1 1 . . 1
Hy = épz + éZaeAggv(a Q) +ip-p— §/l2

-2 =0a282 Y. V(a-q)+a2§? > V(a-q)only for V rational
a€ls aEl
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Constrained field equations — complex Calogero models

@ From real fields to complex particle systems

i) No restrictions
e.g. Benjamin-Ono equation

Us + uuy + MHuy, =0 M

H = Hilbert transform, i.e. Hu(x) = £ [*° %X gz

Then ,
A i i
2kz< X — Zg xz,f)ER

satisfies (*) iff zx obeys the A,-Calogero equ. of motion

b4 —)\—ZZ(Z-—Z)*?’
k — 2 f k

kA

[H. Chen, N. Pereira, Phys. Fluids 22 (1979) 187]
[talk by J. Feinberg, PHHQP workshop VI, 2007, London ]
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Constrained field equations — complex Calogero models

i) restrict to submanifold
Theorem: [Airault, McKean, Moser, CPAM, (1977) 95 ]
Given a Hamiltonian H(xq, ..., Xn, X1, ..., Xn) With flow
Xj = OH/0x; and X = —0H/0x; i=1,....n
and conserved charges /; in involution with H.i.e.
{l;, H} = 0. Then the locus of grad / = 0 is invariant.
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Constrained field equations — complex Calogero models

i) restrict to submanifold
Theorem: [Airault, McKean, Moser, CPAM (1977) 95 ]
Given a Hamiltonian H(xq, ..., Xn, X1, ..., Xn) With flow

Xj = OH/0x; and X = —0H/0x; i=1,....n

and conserved charges /; in involution with H.i.e.
{l;, H} = 0. Then the locus of grad / = 0 is invariant.
Example: Boussinesq equation

vie = a( Vz)xx + BViyoxx + Vx (")

Xt—CZ (x —zk)~

satisfies (**) iff b=1/12, c=-a/2 and Zy obeys

Then

. . oOH
_ , -3 _
Zy = 2 E #k(z/ — Zx) Sz = ~ 9z

Z = 1—Zj¢k(zj—zk)*2 & grad(lb— 1) =0
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Constrained field equations — complex Calogero models

e T T T T T T T on T T T T T T T
.\ AN\ 1\
b0 {—") [T — ‘ — — VL — —
\/ | \l
|
\ | |l |l
0 ) q amr N | B
Re (v)
Doz + D2 B
| =] '
3 4 amt l 4
, . . . , . . . . . . . . .
e 7 w w8 W < 0 W@ ECEECE
oo T T T T T T T om T T T T T T T
A
A\ AR
AN \
o = ‘I — om —-/‘ !\---- — \‘ —
/ /
IR I \
L y A sl | V ]
BT ¥ m || (]
Ra (v) il |
|
|
003 | ‘ 4 am| E
N 20 " P R ™ S RO [ W ww o
X X

[P. Assis and A.F., J. Phys. A42 (2009) 425206]
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Calogero-Moser-Sutherland models (deformed)

Consider

Antilinearly invariant deformed Calogero model

2 mP . 1 .
%PTCMS — & + (a ’ q)2 * 5 (O V(Oé . q)v m,ga € R
2 16 2

aEAg acEA
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (Az)

g1 — § =gqicoshe +iV3(ge — ga)sinhe
2 — G =qecoshe +iv3(gs — g1)sinhe
s — §3=gscoshe +ivV3(qy — g2)sinhe
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (Az)

g1 — &1 =qjcoshe +iv3(qe — gs)sinhe

G — &= qcoshe +ivV3(gs — gi)sinhe

g — &5 =qscoshe +ivV3(gs — g»)sinhe
With standard 3D representation for the simple A-roots
ay ={1,-1,0}, ap = {0,1, -1}, g; := g; — q; compute

a1-q = @ coshe — —— (913 + Qo3) sinhe

1 12 /3 s+ Ges ;
~ (3

. = coshe — — + sinhe,

as - q Qo3 \@(q21 Q1)

(1 +a2)- @ = @gizcoshe + \%3((712 + gs2) sinhe.
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (Az)

g1 — &1 =qjcoshe +iv3(qe — gs)sinhe

G — &= qcoshe +ivV3(gs — gi)sinhe

g — &5 =qscoshe +ivV3(gs — g»)sinhe
With standard 3D representation for the simple A-roots
ay ={1,-1,0}, ap = {0,1, -1}, g; := g; — q; compute

a1-q = @ coshs—i(q + go3) sinhe
1 12 /3 s+ Ges ;
(3

coshe — + sinhe,
Qo3 \@(%1 Q1)

o
Il

Qo -

7

coshe + + sinhe.
g3 \FS(Q12 Q32)

o
Il

(041 + 042) .

Symmetries:

S Q1 < Q2, Q3 <> Q3,1 — —1,
82 : Qo <~ Q3,1 <> g1, 1 — —1.
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Calogero-Moser-Sutherland models (deformed)

Note, this Hamiltonian also results from deforming the roots:

a1 — &1 =aqcoshe +iv3sinhel,
as — Go = ascoshe — iv3sinhe);
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Calogero-Moser-Sutherland models (deformed)

Note, this Hamiltonian also results from deforming the roots:

a1 — &1 =aqcoshe +iv3sinhel,
a» — Go = ascoshe — ivV3sinhe)

Thus
m 1 )
ae A ael
2 P
i N -
- 2 " 16 ZA QggaV(a q), mg, €R
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Calogero-Moser-Sutherland models (deformed)

Note, this Hamiltonian also results from deforming the roots:

a1 — &1 =aqcoshe +iv3sinhel,
a» — Go = ascoshe — ivV3sinhe)

Thus
2 2
T N GagR LS gaV(a )
aels ael
2 2
P ﬂ L1 G
A aceA
Symmetries:
o7 1 Gy =81, G20 81 +a2 S Q1 &G, G303, 1 1

o3 1 G —bp, Gy A1 t+Ha2 S Qe Q3 Q1 & Qi1 1
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Construction of antilinear deformations
@ Involution € W = Coxeter group = deform in antilinear way
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e ACR", &i(c)eAle) CR"@®R", eceR
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General strategy, the construction procedure

Construction of antilinear deformations
@ Involution € W = Coxeter group = deform in antilinear way
@ Find a linear deformation map:

§: A — Ae) a— & =0.a

e ACR", &i(c)eAle) CR"@®R", eceR
@ Find a second map that leaves A(e) invariant

w: Ae) = A(e), & — wh

(1) @:a=pjar + ppaz = pjwan + pzwaz for py, py € C
(ii) wow =1
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General strategy, the construction procedure

Make the following assumptions
(i) w decomposes as

w=T0 =0T

with & € W, &? =T and complex conjugation 7
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General strategy, the construction procedure

Make the following assumptions
(i) w decomposes as

w=T0 =0T
with & € W, &? =T and complex conjugation 7
(if) there are at least two different w; with i =12, ...
(iii) there is a similarity transformation

wi = 000" =70, fori=1,...,k>2
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with & € W, &? =T and complex conjugation 7
(if) there are at least two different w; with i =12, ...
(iii) there is a similarity transformation

wi = 000" =70, fori=1,...,k>2

(iv) 6. is an isometry for the inner products on A(e) therefore

0:=06-" and  detf. = +1
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General strategy, the construction procedure

Make the following assumptions
(i) w decomposes as

w=T0 =0T
with & € W, &? =T and complex conjugation 7
(if) there are at least two different w; with i =12, ...
(iii) there is a similarity transformation

wi = 000" =70, fori=1,...,k>2

(iv) 6. is an isometry for the inner products on A(e) therefore

0:=06-" and  detf. = +1

(v) inthe limit ¢ — 0 we recover the undeformed case

limo, =1
SIHO ©
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General strategy, the construction procedure

Make the following assumptions
(i) w decomposes as

w=T0 =0T
with & € W, &? =T and complex conjugation 7
(if) there are at least two different w; with i =12, ...
(iii) there is a similarity transformation

wi = 000" =70, fori=1,...,k>2

(iv) 6. is an isometry for the inner products on A(e) therefore

0:=06-" and  detf. = +1

(v) inthe limit ¢ — 0 we recover the undeformed case

limo, =1
SIHO ©
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General strategy, the construction procedure

Make the following assumptions
(i) w decomposes as

w=TW =0T
with & € W, &? =T and complex conjugation 7
(if) there are at least two different w; with i =12, ...
(iii) there is a similarity transformation

wi = 000" =70, fori=1,...,k>2

(iv) 6. is an isometry for the inner products on A(e) therefore

0> =6-" and  detd. = +1

(v) inthe limit ¢ — 0 we recover the undeformed case

limé@. =1
e—0 c
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Solutions for complex root systems

Many solutions were constructed
A(e) for As

0. =l + ro? + 11 (U — 03)

with explicit representation

-1 00 1 10
o1 = 1 1 O , 090 = O —1 0 )
0 0 1 o 1 1
10 O -1 -1 0
o3 = 01 1 ]eo=( 1 1 1],
00 —1 0 -1 —1
0O_ =0103,04 = 02,0 =0_04
I — iR —2ur - — I
0. = 2uh o — e + 211 21

- — I —2u14 rn — iR



Deformed Calogero models
[o] le]e}

Solutions for complex root systems

all constraints require

(ro+r2) [(ro+f2)2—4"12} = 1
rh—rh+2rn = (fo—f2—|-2f1)(ro+r2)
(h+n) = (fo—r)?—4r

these are solved by

ro(e) = coshe, ri(e) = £1\/cosh?s —coshe, ra(c) = 1—coshe
= simple deformed roots

& =cosheaq + (coshe — 1)az—1v/2V/cosh e sinh (%) (a1 +2a2+a3)

3

&p=(2coshe — 1)ap + 21v/2V/cosh e sinh (2) (g + g + a3),

&z=cosheag + (coshe — 1)ag —1v/2V/coshe sinh (%) (1 +2a2+a3)

remaining positive roots
Q4 = Q1 + G, G5 := Gp + O3, O 1= O + G + G3.
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Solutions for complex root systems

A(e) for Ay,_1-subseries
closed solution

0. = rpl + fopo®™ + ity (U” — O'_n) ,

-With oy =1 =19, 1y = £4/12 — 1y
- useful choice ry = coshe
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Solutions for complex root systems

A(e) for Ay,_1-subseries
closed solution

0. = rpl + fopo®™ + ity (U” — O'_n) ,

-With oy =1 =19, 1y = £4/12 — 1y
- useful choice ry = coshe

A(e) for Eg
o —2uh 0 —2uh -2
21 I+ b 2ur 21 2ur
0. — 0 2 Iy + 2uh 4irp 3ur
< —2ir  —2ih e ro— 5urp P
2ur> 2ur> 3ur dur, Iy + 212
—h —2uh —2ih —2ih 0

r,==+1/V3y/r2 —1,rp=coshe

—h
2
2
—2uh
0
I
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Solutions for complex root systems

A(e) for Ay,_1-subseries
closed solution

0. = rpl + fopo®™ + ity (U” — O'_n) ,

-With oy =1 =19, 1y = £4/12 — 1y
- useful choice ry = coshe

A(e) for Eg
o —2uh 0 —2uh -2 —r
21 I+ b 2ur 21 2ur 2
0. — 0 2 Iy + 2uh 4irp 3ur 2
£ —2ir  —2ih e ro— 5urp P —2ih
2 2 3ur 4dary ro + 2> 0
—h —2uh —2ih —2ih 0 o

r,==+1/V3y/r2 —1,rp=coshe

A(e) for By, -subseries
no solution based on factorisation of the Coxeter element
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Solutions for complex root systems

with different w; we find for instance for By, 1

¢
542]'_1 = cosh Etj_1 + isinhe i1 + 2 Z [67% fOI’j =1,...,
k—2j
2j+2 ¢
dp = cosheap —isinhe Z ak + 2 Z 2a | forj=1,...
k=2j k=2j+3
dy_4 = cosh E(ag_1 + Odg) —ay —isinhe (044_2 +op_q + Oég) ,

Qy = Q.
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Qo0e

Solutions for complex root systems

with different w; we find for instance for By, 1

¢
fgi—1 = cosheagi_y+isinhe (ag1+2) ok | forj=1,...,
k=2j
2j+2 ¢
dpj = cosheag —isinhe [ > ax+2 > 2ax| forj=1,...
k=2j k=2j+3
dy_4 = cosh E(ag_1 + Odg) —ay —isinhe (044_2 +op_q + Oég) ,
54@ = Qy.
in dual space
R
R 0 o
or — R with B — ( pqshs isinhe )
0 . —isinhe coshe



Deformed Calogero models
L]
Construction of new models

For any model based on roots, these deformed roots can be
used to define new invariant models simply by

o — Q.

For instance Calogero models:



Deformed Calogero models
[ ]
Properties of invariant CMS-models

e Physical properties (As, Go)
@ The deformed model can be solved by separation of
variables as the undeformed case.

@ Some restrictions cease to exist, as the wavefunctions are
now regularized.

@ = modified energy spectrum:

E=2Jw|(2n++1)

becomes

EL =2w|[2n+6(kg + ki +£)+1]  forn, ¢ € Ny,

with kg, = (1£ /T + 49gs/1)/4

[A. Fring and M. Znojil, J. Phys. A41 (2008) 194010]
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e generalized Calogero Hamiltionian (undeformed)

He(p,q) = f+fZaq +Z

27
aeAt €A+ )
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@000

The generic case

e generalized Calogero Hamiltionian (undeformed)

He(p, Q) —+—Zaq +Z

27
aeAt €A+ )

e define the variables
1

z:=[[(a-q) and ri=— (o q)2,
acAt

h = dual Coxeter number, t, = ¢-th symmetrizer of /



Deformed Calogero models
[ JeJele]

The generic case

e generalized Calogero Hamiltionian (undeformed)

He(p, Q) —+—Zaq +Z

27
aEAT €A+ q)
e define the variables
1
z:= o - and r?:=_— - q)?,
I[ @ a 2 (@9
acAt acAt

h = dual Coxeter number, t, = ¢-th symmetrizer of /
e Ansatz:

W(q) = ¥(z,r) = 27 2p(r)
= solution for k = 1/2,/1 + 4g.

0n(r) = Crexp (\/ IZMZJ 2) L2 ( hztéwr2> .

L3(x) = Laguerre polynomial, a = (2 +h+hy1+ 4g) 1/4 —1
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The generic case

e eigenenergies

1 ht
En:—{(2+h+h\/1+4g>l+8n] oy
4 2
e anyonic exchange factors

W(q1,---, 0, Q) - Gn) = €7%(G1, ..., G}, Qi ... Qn), For1 <ij<n,

with ’ ’
—_—4+_-/1+4
S 515 + 49

" r is symmetric and z antisymmetric
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The generic case

The construction is based on the identities:

a-f B a?
2 (a-q)(B-q) 2 (a-q)?

a,BeAT aEAt
(a-Qq) hht
. = ty,
2 G T 7t
Y. (@ Bfa-qs-q = bty (a7
a,Ben+ aEAt
Z Ct2 = gi’ltg.
acAt

Strong evidence on a case-by-case level, but no rigorous proof.
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The generic case

e antilinearly deformed Calogero Hamiltionian

> 2 )
Hadc(paQ):%""% PGEEES A
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The generic case

e antilinearly deformed Calogero Hamiltionian

Haac(p; q —*+*Z - q)° + 27

acA+ aeATt

e define the variables
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The generic case

e antilinearly deformed Calogero Hamiltionian

Haac(p; q —*+*Z - q)° + 27

acA+ aeATt

e define the variables

e Ansatz
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The generic case

e antilinearly deformed Calogero Hamiltionian

Hadc(p: q —*+*Z a-q)?+ Z

acA+ aeATt

e define the variables

e Ansatz
Y(q) = (2, F) = Z5¢(F)
when identies still hold =

(q) = U(2, 1) = Z%py(r)

eigenenergies with different constraints (only performed for
ground state)



Deformed Calogero models

[ Jole}

Anyonic exchange factors

Deformed As-models

e potential from deformed Coxeter group factors
a; ={1,-1,0,0}, ap ={0,1,-1,0}, a3 = {0,0,1, -1}

&1-9 = Qaz+coshe(giz+ gas) —1V/2coshesinh %(Chs + Qo4)
Go-q = gua(2coshe —1)+12v2coshesinh %qm

d3-q = Qo1 +coshe(giz + gaa) — 1v/2coshesinh E(C713 + Qos)
G4-9q = Qa2+coshe(qiz+ Qog) + 1/2coshesinh = (C712 + Q34)
d5-q = Qa1 +Coshe(Qrs+ Gos) + 1v/2cOSh e sinh — 5(G12 + Gad)
G6-q = qua(2coshe—1)—1v/2coshesinh = 5023

notation g; = q; — g,



Deformed Calogero models

[ Jole}

Anyonic exchange factors

Deformed As-models

e potential from deformed Coxeter group factors
a; ={1,-1,0,0}, ap ={0,1,-1,0}, a3 = {0,0,1, -1}

&1-9 = Qaz+coshe(giz+ gas) —1V/2coshesinh %(Chs + Qo4)
Go-q = gua(2coshe —1)+12v2coshesinh %qm

d3-q = Qo1 +coshe(giz + gaa) — 1v/2coshesinh E(C713 + Qos)
G4-9q = Qa2+coshe(qiz+ Qog) + 1/2coshesinh = (C712 + Q34)
d5-q = Qa1 +Coshe(Qrs+ Gos) + 1v/2cOSh e sinh — 5(G12 + Gad)
G6-q = qua(2coshe—1)—1v/2coshesinh = 5023

notation q; = g; — q;, No longer singular for g; = 0



Deformed Calogero models

Anyonic exchange factors

e PT-symmetry for &

0% &1 — —ay, G — O, O3 — —Q3, Oy — a5, 05 — G4, O — &
Ui_:ﬁq —>5é4, 542—>—dg,&g—>&5,&4—>&1,&5—>5&3,5z6—>5z6



Deformed Calogero models

Anyonic exchange factors

e PT-symmetry for &

0% &1 — —ay, G — O, O3 — —Q3, Oy — a5, 05 — G4, O — &

Ui_ : 541 —>5é4, 542 — —5&2, 5&3 —>5z5,5£4—>5é1, 545 —>5¢3,5¢6—>546
e PT-symmetry in dual space

o Qg1 = G, Qo — G1, Q3 — Qa, Qs — Q3,1 — —1
0 Q1 = Q1, G2 = Q3,93 — G2, Qa — Qa, 1 — —1
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Anyonic exchange factors

e PT-symmetry for &

0% &1 — —ay, G — O, O3 — —Q3, Oy — a5, 05 — G4, O — &
Ui_:ﬁﬁ —>5z4, &2—>—5z2, 5&3—)5[5,5[4—)5{1,5{5%5&3,&6—)&6
e PT-symmetry in dual space

1= Q2, Q2= Q1, Q3 = Qa, Q4 — Q3,0 — —1
0 Q1 = Q1, G2 = Q3,93 — G2, Qa — Qa, 1 — —1

0°2(q1,92,03,94) = Z*(Q2,Q1,94,93) = Z(q1, Q2. Q3, Qa)
052(q1,92,93,94) = Z°(q1,93,92,Q4) = —2(q1, G2, G3, Qa)

Y(q1, 92, G3, qs) = €7°Y(q2, G4, G1, G3).
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

— e’lﬂ's
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

w X y z w X z
° ° ° = 78 ° ° °

a1 gz a3 Qa qz Qa a1 aqs
X y z X z
° P — ems P ._

Qs a3
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

w X y z w X z

° ° ° = 78 ° ° °

a1 gz a3 Qa qz Qa a1 aqs

X y z X z

° « ° = g8 ° ®

a1 g2 =Qqs3 Q4 Q2 g1 = Q4 a3
y X y

( . — e’lﬂ's ._ .

aqs Q> = Qs
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

w X y z w X z
° ° ° = 78 ° ° °
a1 gz a3 Qa qz Qa a1 aqs
X y z X z
° « ° = g8 ° ®
a1 g2 =Qqs3 Q4 Q2 g1 = Q4 a3
y X y
¢ ™ = 78 ® °
a1 =Qqe gz = Q4 g1 =Qqs Q> = Qs
X X y
- ° = ° -
i =Qq2=0Qqs Q4 Qs g1 =02=0Q3
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Find Hermitian counterpart h, Dyson map n and metric p:
h=nHn™"=h' = (" ")TH'" & H'p=pH with p =’y
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h=nHn™"=h' = (" ")TH'" & H'p=pH with p =’y
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Z =R %) =n; ()i . — ef(XiPi—Xipi)



Deformed Calogero models

Hermitian isospectral counterparts and metric
Find Hermitian counterpart h, Dyson map n and metric p:
h=nHn™"=h' = (" ")TH'" & H'p=pH with p =’y
Some B,-models correspond to complex rotations

Z =R %) =n; ()i . — ef(XiPi—Xipi)

For instance for:
R

o — R with B — < coshe isinhe )

—isinhe coshe

we have
HO(p> X) = 777'[5(,0, X)77_1
with

—1, -1, _—1
= "T12"M34"56 - - - "(p_2)(¢—1)



Deformed Calogero models

Hermitian isospectral counterparts and metric

For Bs
In) —id i 1-rp O
i o 1—-n - 0
9; = - 1-n I0) i 0
1-n i —id In) 0
0 0 0 0 1
we find

< - . - , 1 1
X =0:x = Ry RigRaaRiy x = nxn~ ', with = 15, m13m34775 -

In general this is an open problem.



Def. KdV/lto

General deformation prescription:
PT-anti-symmetric quantities:

PT :o(x,t) — —d(x,t) = . : (X, t) = —i[ip(x, )]

Two possibilities for the KdV Hamiltonian

6T iUy > Uy e i= —i(iux)®  or 67 U U= —i(iu)e,
such that
H! 6u 1+€(/ux) H. (1+€)(2+6)(/u) +2ux

with equations of motion

Ut + Buly + yUyxxe =0 Ut + IBUUx + YUxxx = 0



Def. KdV/lto
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The # 1 -models

Broken PT-symmetric rational solutions for ’HT/S

Different Riemann sheets for A= (1 —1i)/4,c=1,5=2+2i
andy =3

(a) u(1)

(b) u®



Def. KdV/lto

[e] le]e]

The # 1 -models

PT-symmetric trigonometric/hyperbolic solutions

A=4B=2c=1,=2andy=3
() H',
(b) H*,
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The # 1 -models

Broken PT-symmetric trigonometric solutions for HL /2

(a) Spontaneously broken PT-symmetry with A =4 + i,
B=2-2i,c=1,3=3/10andy=3

(b) broken PT-symmetry with A=4,B=2,c=1, 5 =3/10
andy =3+
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The # 1 -models

Elliptic solutions for "

1/2°

(a) PT-symmetricwithA=1,B=3,C=6,3=3/10,y=-3
andc=1

(b) spontaneously broken PT-symmetry with A =1+ /,
B=3-i,C=6,3=3/10,y=-3andc =1
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The H _ -models

The 7{_-models
Integrating twice gives now:

2 c i€
2:— — 2_ - 2+€ ::A u
U 7<”2+H1U+2u ﬂ(1+6)(2+5)u ) Qu)

where )
201¢

A i@

Forki =ko=0

1/e
cle+1)e+2)
+1}

uie) = <i85 {cosh (LEE%CO))



Def. KdV/lto
(o] 1o}

The H _ -models

M,
= complex version of the modified KdV-equation



Def. KdV/lto
(o] 1o}

The H _ -models

® H,:

= complex version of the modified KdV-equation
® H,:

assume Q(u) = u?(u? — B?)(u? — C?), possible for
_ 15¢

Ky =ro =0, B=iC and c* 3



Def. KdV/lto
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The H _ -models

® H,:
= complex version of the modified KdV-equation
® H,:
assume Q(u) = u?(u? — B?)(u? — C?), possible for
k1 = k2 =0, B=iC and C4:1gc

eigenvalues of Jacobian:
i = +ivnraexp [;(493 + 9A)]

) . i
k= FiviBew -4+ 0)]
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The H _ -models

Broken PT -symmetrlc solution for 7, :

(a) star node at the originforc=1,5=2+1i3,y=1and
B =(15/2 + i3)/*

(b) centre atthe originforc=1,3=2+1i3,y=—1 and
B = (30/13 —i45/13)'/4



Def. KdV/lto
®0

Relation to quantum mechanical Hamiltonians

Reduction to quantum mechanical Hamiltonians:
Again we can relate to simple quantum mechanical models:
The identification

u—x, ¢(—t k1 =0, kp=vE, and p=n~g(1+¢)(2+¢)
relates H_ to
H=E= %pz — Z%/XZ + gx?(ix)°

For ¢ = 0 these are the "classical models" studied in
[C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Relation to quantum mechanical Hamiltonians

Reduction of the 7{, -model

7

2
2 Ux

B oa
H, (U] = oY +

Twice integrated equation of motion:
c

u2—g Ko + kiU +
C_’y 2 1 >

2 T 4\ _.
u +ﬁﬁu ) = AQ(u)
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Relation to quantum mechanical Hamiltonians

Reduction of the 7{, -model

7

2
2 Ux

B oa
H, (U] = oY +

Twice integrated equation of motion:
c

u2—g Ko + kiU +
C_’y 2 1 >

u? + ﬁ112u4> = AQ(u)
Reductionu — x, { — t

ki =-97, ke=7E, B=-3yg and c=—w?
Quartic harmonic oscillator of the form

_p 12 W’ 2, 9.4
Boundary cond.: xky =7 =0, Clim u(¢) =0, Clim ux(¢) = V2Ex
—00 —00

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]
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Relation to quantum mechanical Hamiltonians

Reduction of the 7{, -model

7

2
2 Ux

B oa
H, (U] = oY +

Twice integrated equation of motion:
c

u2—g Ko + kiU +
C_’y 2 1 >

2 T 4\ _.
u +ﬁﬁu ) = AQ(u)

Reductionu — x, { — t

K1 =—77, rp=7E, B=-3yg and c=—yw?

Quartic harmonic oscillator of the form

1 2
H:EX:§p2+rx+%x2+%x4

Boundary cond.: xky =7 =0, Clim u(¢) =0, Clim ux(¢) = V2Ex
—00 —00
[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]
Note: Ex # Eu(a)
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Ito type systems

Ito type systems and its deformations
Coupled nonlinear system

Ut + oWy + Buly + yUxxx = O, a, B,v € C,
Vt+5(uv)x+¢VXXX - 0, 6,¢ S C



Def. KdV/lto
.

Ito type systems

Ito type systems and its deformations
Coupled nonlinear system

Ut + oWy + Buly + yUxxx = O, a, B,v € C,
Vt+5(uv)x+¢VXXX - 0, 6,¢ S C

Hamiltonian for § = a

a B 8l ¢
H = —Euv2 — gus + §u§ + Evf
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Ito type systems

Ito type systems and its deformations
Coupled nonlinear system

Ut + oWy + Buly + yUxxx = O, a, B,v € C,
Vt+5(uv)x+¢VXXX - 0, 6,¢ S C

Hamiltonian for § = a

@ o B3 7o ¢ o
=——uvs— U+ —Ug+ =V,
=7 6! Ta% T o%
PT-symmetries:
PTit : X=X, t——ti——-iu—~UuvVv—v fora,B,7,¢ € R

PTioiXx——Xt— —ti——i U~ UV~ —V fora, 8,7, € R
PT _y:x—=—x,t——ti——iu——-uv—yv forioif,v,¢€R
PT __:x—=—xt——ti——iu——-uvw——v foria,i,v,¢ €R



Def. KdV/lto

Deformed models

Deformed models

H;: _ —guvz _ gus _ %(iux)gﬁ _ &(ivx)u+1
How = 7 iuu(iv)"“ - g‘ﬁ SE = O %VE
Ho, = ﬁu(iv)’“r1 - (1+5;f2+5)(iu)2+8 + %u;’; + %vf

with equations of motion

Ut + aVx + BUly + YUxxxe = 0, Ut + aVy,Vx + BuUly + YUxxxe = 0,
Ve + a(uv)x + PViooru = 0, Vi + a(UV#)X + ¢Vixx = 0,

Ut + aVVy + ,BUQUX + ")/Uxxx = 0, Ut + CYVMVX + ﬁuaux —+ 7Uxxx = 07
Vi + a(Uv)x + ¢Vxxx,u = 0, Vi + a(uvy)x + dVix = 0.



Some general conclusions
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@ Non-Hermitian Hamiltonians describe physical systems
within a self-consistent quantum mechanical framework.
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Some general conclusions

@ Non-Hermitian Hamiltonians describe physical systems
within a self-consistent quantum mechanical framework.

@ One can use this possibility to explore deformations of well
studied models, e.g. integrable systems.

@ There exist now experiments, especially in optics, for the
broken PT-regime.




Concl.
(o] )

Thank you for your attention

(U] 9gd dgd Y=g
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