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Why study models of Euclidean Lie algebraic type?

1. Mathematical motivation:
a) (quasi)-exactly solvable models of sh(R)-Lie algebraic type
= solutions are hypergeometric functions
b) models of Euclidean-Lie algebraic type
= solutions are Mathieu functions
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Why study models of Euclidean Lie algebraic type?

1. Mathematical motivation:
a) (quasi)-exactly solvable models of sh(R)-Lie algebraic type
= solutions are hypergeometric functions
b) models of Euclidean-Lie algebraic type
= solutions are Mathieu functions

2. Physical motivation:
- applications of b)-type models in optics
- the complex Mathieu equation corresponds to the eigenvalue
equation for the collision operator in a 2D Lorentz gas
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Hamiltonians of sh(R)-Lie algebraic type

Quasi-solvable Hamiltonian of Lie algebraic type:

HJ - Z K'IJI + Z RKnm - JnJm 5 Kiy Knm € R:

1=0,+ n,m=0,+

sh(R)-Lie algebra

[Jo, Ji] = £+, Uy, -] = =24, JS,Jl ¢ {Jb, Js}
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Hamiltonians of sh(R)-Lie algebraic type

Quasi-solvable Hamiltonian of Lie algebraic type:

HJ - Z K'IJI + Z RKnm - JnJm 5 Kiy Knm € R:

1=0,+ n,m=0,+

sh(R)-Lie algebra

[Jo, Ji] = £+, Uy, -] = =24, JS,Jl ¢ {Jb, Js}

PT-symmetric versions:

Rescale Jo — Jo = +iJy, Jo — Jo = Jo
Example:

Koo = —4, /{+:—2C:/{_,CER

V(x) = — [¢ sinh 2x — iM]?

[P.E.G. Assis, A. Fring, J. Phys. A42 (2009) 015203]
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Hamiltonians of Euclidean Lie algebraic type
E>-algebra:

[u,J] = iv, [v,J] = —iu, [u,v]=0
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Hamiltonians of Euclidean Lie algebraic type
E>-algebra:
[U7J] = iV, [V7J] = —iU, [U, V] =0

Representations:
e quantizing of strings on tori

n .  J:=—ig,, u:=sinf, v := cosf
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Hamiltonians of Euclidean Lie algebraic type
E>-algebra:

[u,J] = iv, [v,J] = —iu, [u,v]=0

Representations:
e quantizing of strings on tori

n .  J:=—ig,, u:=sinf, v := cosf

e two dimensional representations

n®
n®

Ji=yp—xp, ui=x, vi=y,
J:=xp, —py, ui=p, Vv:i=ps,

with q;, p; satisfying [q;, px] = idjx for j,k =1,2

Andreas Fring A unifying E2-quasi-exactly solvable model



Different types of "PT-symmetries”:

PT: J——J, u——u v-——v, i— —i,
PT>: J—=—-J, u-—>u, vV — v, i — —i,
PTs: J—=J, u—v, vV — u, i — —i,
PTa4: J—J, u——u, Vv, [ — —I,
PTs: J—J, u—u, vV — —v, i— —i.
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Different types of "PT-symmetries”:

PT: J—>—J, u——u v— —v, i— —i,
PT,: J—=—J, u—u, vV—v, i— —i,
PTs: J—J, u—v, v —u, i— —i,
PTs: J—J, u——u, v-—v, i— —i,
PTs: J—=J, u—u, vV — —v, i— —i.

PT i-invariant Hamitonians:

Hpr, = pn S ipg J+ipis Uiy v+ pis W+ pie v+ 7 0P+ g v+ pguv
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Different types of " P7T-symmetries”:

PT: J—>—J, u——u v— —v, i— —i,
PT,: J—=—J, u—u, vV—v, i— —i,
PTs: J—J, u—v, v —u, i— —i,
PTs: J—J, u——u, v-—v, i— —i,
PTs: J—=J, u—u, vV — —v, i— —i.

PT i-invariant Hamitonians:

Hpr, = S +ipg J+ipisu-+ipg v+ s W+ pig I+ g 0P +pg v+ g uv

Hpr, = i P2 +iti J+ gt g v+ipis ud+ipg v+ pig 0 +pg v+ pig uv
Hpry = a2+ pio g (utv)+ipg (u—v) +ps(u+v)J+ipg(u—v)J
Fipg (v — u?) + pg (v + 1) + pguv
Hpr, = ta J2 o i g U g vt pis g VI + iy U g v i g uv
Hprs = piy I+ pip -+ g utipig v+ g ud+ipug I+ pip uP 4 g v +ipg uv
with y; e Rfori=1,...,9
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Standard approach to non-Hermitian QM:

either solvenHn ™t =h for n = p=n'y
or solve H' = pHp™' for p =n=/p

Given H {
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Standard approach to non-Hermitian QM:

either solvenHn ™t =h for n = p=n'y
or solve H' = pHp™' for p =n=/p
involves complicated commutation relations

Given H {
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Standard approach to non-Hermitian QM:

either solvenHn ™t =h for n = p=n'y
or solve H' = pHp™' for p =n=/p
involves complicated commutation relations

Given H {

often this can only be solved perturbatively
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Standard approach to non-Hermitian QM:

either solvenHn ™t =h for n = p=n'y
or solve H' = pHp™' for p =n=/p
involves complicated commutation relations

Given H {

often this can only be solved perturbatively

Note:
Thus, this is not re-inventing or disputing the validity of
quantum mechanics
We only give up the restrictive requirement that Hamiltonians
have to be Hermitian.
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Standard approach to non-Hermitian QM:

either solvenHn ™t =h for n = p=n'y
or solve H' = pHp™' for p =n=/p
involves complicated commutation relations

Given H {

often this can only be solved perturbatively

Note:
Thus, this is not re-inventing or disputing the validity of
quantum mechanics
We only give up the restrictive requirement that Hamiltonians
have to be Hermitian.

[C. Bender, Rep. Prog. Phys. 70 (2007) 947]
[A. Mostafazadeh, Int. J. Geom. Meth. Phys. 7 (2010) 1191]
[A. Fring, Phil. Trans. R. Soc. A 371 (2013) 20120046]
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Isospectral partner Hamitonians:

1
hprs = iy J? + ppd + > (Ms /16 tanh > {u, J}

N [2u§ sinh® A + p2(sech” 3 + cosh 2X\ — 1) + 2(tanh 3 — sinh 2X)ugpe

8hy

— 1
4 el cosh(2A) | (v? — u?) + |esch A ( pg + Zps | + ﬁ(u
2 2 m

p2cosh A — pigpgsinh A 1

— coth Ag)] u p7 + fig)

411, (1 + cosh \) * 5(
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Isospectral partner Hamitonians:

1
hprs = iy J? + ppd + > (Ms /16 tanh > {u, J}

N [2u§ sinh® A + p2(sech” 3 + cosh 2X\ — 1) + 2(tanh 3 — sinh 2X)ugpe
8hy

— 1
e B cosh(2A) | (v? — u?) + |esch A ( pg + Zps | + ﬁ(u
2 2 m

w2 cosh X — fig i sinh A N 1 (
4p11(1 4 cosh A) 2

— coth Ag)] u p7 + fig)

Sinusoidal optical lattices from further constraints

py =1, iy =3 =g = pis = pig = p7 =0, pg = —4, g =—-8%
V(x) = 4cos?x + 4iVjsin2x

[B. Midya, B. Roy, et al, Phys. Lett. A374 (2010) 2605]
[H. Jones, J. Phys. A44 (2011) 345302]
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However, it is not always possible to find isospectral pairs:
For instance: PT 3-symmetric non-Hermitian Hamiltonian

2
. 1) d
Huar = J° + 2ig(v? — v?) = Hp = T + 2ig cos(26)
8
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However, it is not always possible to find isospectral pairs:
For instance: PT 3-symmetric non-Hermitian Hamiltonian
2 : 2 nw d?
Huiat = S + 2ig(v® — v?) = Hyp = T + 2ig cos(20)

Consider instead
Hy = S + C(u* — v?)? 4 2iCN(v? — v?),
and take a double scaling limit

lim  Hy = Hmat, for g := N( < ©

N—00,{—0

[B. Bagchi, S. Mallik, C. Quesne, ... Phys. Lett. A289 (2001) 34]
[B. Bagchi, C. Quesne, et al J. Phys. A41 (2008) 022001]
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Andreas Fring

However, it is not always possible to find isospectral pairs:
For instance: PT 3-symmetric non-Hermitian Hamiltonian
2 : 2 nw d?
Huiat = S + 2ig(v® — v?) = Hyp = T + 2ig cos(26)

Consider instead
Hy = S+ C(u* — v3)? + 2iCN(1? — v?),
and take a double scaling limit

N_)lgon}_)o?-l,v = Hmat, for g := N( < o0
[B. Bagchi, S. Mallik, C. Quesne, ... Phys. Lett. A289 (2001) 34]
[B. Bagchi, C. Quesne, et al J. Phys. A41 (2008) 022001]

Relation of Hya: to Es:
[C. M. Bender, R. Kalveks, Int. J. Theor. Phys. 50 (2011) 955]
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E>-quasi-exact solvability

In general: H:V,— V,with \yCcViCcWC...CV,C...
For MY define:

Vi = span { ¢, [sin(20),...,i" ' sin(2n0)] |6 € R, PT3(¢) = ¢ € L}
VS = span {¢g [1,7cos(20),...,i"cos(2nh)]| 6 € R, PT3(py) = ¢ € L}
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E>-quasi-exact solvability

In general: H:V,— V,with \yCcViCcWC...CV,C...
For MY define:

V; = span { g, [sin(26), ..., i"*sin(2n6)] | 6 € R, PT5(e) = d € L}
Ve =span{ ¢, [1,icos(20),...,i"cos(2n)]| 0 € R, PT3(py) = ¢y € L}
For ¢f = e"es20 @5 = e~sin20 with x € R we find:
J o Vee(dg) = Vi (45)

uv o Vo< (dg) = Vi (dg)
i(0® = v?) 0 Ve (g6) = Vi (95)
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E>-quasi-exact solvability

In general: H:V,— V,with \V C V; C V, C

For N define:

V= span { ¢, [sin(26),..., """

Vy = span { ¢, [1, i cos(26), ...,

CcV,C...
sin(2n6)] |6 € R, PT3() = ¢ € L}
i"cos(2n6)]|0 € R, PT3(dg) = ¢ € L}

For ¢f = ecs20 ¢5 = e=sin20 with k € R we find:

J

Andreas Fring

Ve (d) = Vaii (¢5)
Ve (5) = Viia (¢)
Ve (¢6) = Vit (¢)
Ve (6) = Vi* (¢5) © Vit (¢5)
Ve () = Vit (40)
Vo< (d5) = Vata (65)
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E>-quasi-exact solvability

In general: H:V,— V,with \V C V; C V, C

For N define:

V= span { ¢, [sin(26),...,i""

Vy = span { ¢, [1, i cos(26), ...,

CcV,C...
'sin(2n6)]| 6 € R, PT3(¢p) = ¢ € L}
i"cos(2n6)]|0 € R, PT3(dg) = ¢ € L}

For ¢f = ecs20 ¢5 = e=sin20 with k € R we find:

J

Andreas Fring

For representation M® and M®) use polynomials in x, y.

Ve (65) = Vit (65)
Vi1 (6)

V< (¢g) —

Vo< (¢5) = Vi (95)

Vo< (9p) = Vi (05) @ Vit (45)
Vo< (98) = Vi (¢0)

Vo (95) = Vs (¢5)
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Thus we have:

Hy o Vi< (dg) = Vi (d) @ ¢? VoS (06) © Vi (d5)

- with constraint on V35 (65) @ (P VoS (65)
- and quantization condition on level n+1

M Vi 2 (96) = VinZy2 (40)

)
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Thus we have:
Hy o Vi< (dg) = Vi (d) @ ¢? VoS (06) © Vi (d5)

- with constraint on V35 (65) @ (P VoS (65)
- and quantization condition on level n+ 1

M Vi 2 (96) = VinZy2 (40)

More solutions exist:

Hy = P+ Cuvd +2iCN(W? —v?), (¢ NeR
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Thus we have:

Hy o Vi< (dg) = Vi (d) @ ¢? VoS (06) © Vi (d5)

- with constraint on V35 (65) @ (P VoS (65)
- and quantization condition on level n+ 1

Hy : V(s/{/c_l)/z ((bg) = \/(SNC_l)/z (¢8)
More solutions exist:
Hy = P+ Cuvd +2iCN(W? —v?), (¢ NeR
7:[,\, also reduces to Hma: in the double scaling limit

lim 7:[/\/ = Hmat, for g := N( < o0

N—00,(—0
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Can we combine the models?
Generic Ansatz:

H = P+ puCuvd +2C (0 —v2)24+-2iC N(u? —v?), NG N eR,

leads to four-term relation.
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Can we combine the models?
Generic Ansatz:

H = P+ puCuvd +2C (0 —v2)24+-2iC N(u? —v?), NG N eR,

leads to four-term relation.
Restricting u:

H(N,CA) = P +2(1 = N)Cuvd + AC(u? — v2)? + 2i¢CN(u? — v?)

leads to desired three-term relation.

1
/33‘

Andreas Fring A unifying E2-quasi-exactly solvable model



Can we combine the models?
Generic Ansatz:

H = P+ puCuvd +2C (0 —v2)24+-2iC N(u? —v?), NG N eR,

leads to four-term relation.
Restricting u:

H(N,CA) = P +2(1 = N)Cuvd + AC(u? — v2)? + 2i¢CN(u? — v?)

leads to desired three-term relation.
The limits A — 0, A — 1 yield the previous cases.
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Three term recurrence relations for H(N, (, \):

Ansatz:
Yn(0) = & Z/ cnPn(E) cos(2n6)
Un(0) = ¢ Z i""1 ¢, Qu(E) sin(2nf)
n=0
12
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Three term recurrence relations for H(N, (, \):
Ansatz:

vn(d) = ¢OZ/ cnPn(E) cos(2n6)
Vn(0) = & Z "1, Q,(E)sin(2n0)
n=0

ch (N+ )\)(1 + )\)n 1 [1+1IY|-—;2/\],,,17 ¢0 _ eé(cos(%’)

2
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Three term recurrence relations for H(N, (, \):
Ansatz:

vn(d) = ¢OZ/ cnPn(E) cos(2n6)
Vn(0) = & Z "1, Q,(E)sin(2n0)
n=0

C, = l,,(N—i— )\)(1 + )\)n 1 [1+1IY|-—§2/\] L ¢0 _ eé(cos(%’)
yields
Py=(E —\* — 4)Py + 2¢* [N — 1] [N + \] P,
Piii=(E =X —42)Pi+ [N+ X+ (i —=D][N = (i — DA =] P
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Three term recurrence relations for H(N, (, \):
Ansatz:

vn(d) = ¢OZ/ cnPn(E) cos(2n6)
Vn(0) = & Z "1, Q,(E)sin(2n0)
n=0

n—1 [14+N+42A _ ai¢cos(20
cn =GN+ X)L+ M) [HEER] gy = eat o)
yields

Py =(E — AC? —4)Py +2C2 [N — 1] [N + \] Py,

,H—(E A2 = 42)P; + C2 [N + iA+ (i — )] [N — (i = DA = 1] Pry
=(E 4-2)Q
=(E- X =42)Q+CINFA+(G—DIN = —A =] Qs
fori=0,2,...,j=2,3,4

Andreas Frin A unifying E2-quasi-exactly solvable model
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Solutions:

@
Q@

1
E —\?

NP2 N=AE+NOA+N—1)]+ (E—-4)E

—NC 4+ A (A2A +3E —13) — 3N —3(A — 1)N +2)
+(E —16)(E — 4)E +32(A+ N(A+ N — 1))

—C* [BAE? + E (23 = 3N? = 3A(N + 11) + 3N + 2)]

1

E—4— )\

NCH+ A5 — 20 —2E) + N>+ (A — 1)N — 2]

+(E — 16)(E — 4)
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Quasi-exact solvability

There exists a level A, such that
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Quasi-exact solvability

There exists a level A, such that

three-term recurrence relation — two-term recurrence relation
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Quasi-exact solvability
There exists a level A, such that

three-term recurrence relation — two-term recurrence relation

factorization of P, for n > n
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Quasi-exact solvability
There exists a level A, such that
three-term recurrence relation — two-term recurrence relation

factorization of P, for n > n

energy quantization leads to P, =0 for n > i
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Quasi-exact solvability
There exists a level A, such that
three-term recurrence relation — two-term recurrence relation

factorization of P, for n > n

energy quantization leads to P, =0 for n > i

Present case: i= —(1+ N)/(1+X) or i=(A+ N)/(1+ N):
Pire = PsRe  and Qs = QiR
with

R = E—4i? -\,
Ry = (E—4@ — ) (E —4(A+1)% =A%) —2A(1 + \)?¢?

14
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Quasi-exact solvability
There exists a level A, such that
three-term recurrence relation — two-term recurrence relation

factorization of P, for n > n

energy quantization leads to P, =0 for n > i

Present case: i= —(1+ N)/(1+X) or i=(A+ N)/(1+ N):
Piie= PR, and Qrre = QsRy
with
R = E—4i? -\,
Ry = (E—4@ — ) (E —4(A+1)% =A%) —2A(1 + \)?¢?

Typical features of Bender-Dunne polynomials.
[C.M. Bender, G.V. Dunne, J. Math. Phys. 37 (1996) 6]

Andreas Fring
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Energy quantization:
We find E, from P5(E) =0 and Qs(E) = 0:
Ef = A

s
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Energy quantization:
We find E, from P5(E) =0 and Qs(E) = 0:
Ef = A

B = 24AC%2/1- 1+ AR

s
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Energy quantization:
We find E, from P5(E) =0 and Qs(E) = 0:

Ef = X
B = 24AC%2/1- 1+ AR
4@ i 1 il A
ESt = ? + A+ ?eTE +3 [52 — 12(1 + \)*¢?] e 501
with £ = 0, 42

OP=[[3(\ + 1)2¢% — 13] -+ [18(A + 1)2¢2 + 35]%]2 +35+18(A+1)2¢2
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Energy quantization:
We find E, from P5(E) =0 and Qs(E) =0

Ef = X%

B = 24AC%2/1- 1+ AR
2 4Q i 1 il A
ESt = ?O A+ e 54z g 21201+ A2 e 5O
with £ = 0, £2
OP=[[3(\ + 1)2¢% — 13] -+ [18(A + 1)2¢2 + 35]%]2 +35+18(A+1)2¢2

£ = 4+X%

E* = 104 CA£2/9- (A + 12,
Q w1

ESt = 536 + A%+ %e g 3 [196 — 12(1 + A)2¢Z] e 5 Q71

Q3=[(3¢3(A + 1)2 — 49)° + (18C%(\ + 1)2 4 143)7]
1143 4+ 18¢3(\ + 1)?

Andreas Frin A unifying E2-quasi-exactly solvable model
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Exceptional points:
Recall: discriminant = A = [[,;_;,(Ei — E;)?
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Exceptional points:

Recall: discriminant = A = H1<,<J<H(E E;)?
Compute zeros of A§, A% of Ps(E), Qs(E):
6 4

As = -1, As=0—9, As=0"—C" 11038 - 36,
As = ° 370" +9918% — 3600,

A; = %20 +3850° —331200" + 16128 — 732276("

4129600,
A: = &% —0al™ 1+ 70418° — 3816008° + 6645600
—78318900(° + 158760000,

C:=C(1+ )
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Exceptional points:

Recall: discriminant = A = H1<,<J<H(E E;)?
Compute zeros of A§, A% of Ps(E), Qs(E):
6 4

As = -1, As=0—9, As=0"—C" 11038 - 36,
As = ° 370" +9918% — 3600,

A; = %20 +3850° —331200" + 16128 — 732276("

-+129600,

Ay = 704" 4 7041C° — 381600C° + 6645600

~78318900” + 158760000,

{i=¢(1+ )

Computable from the determinant of the Sylvester matrix S:

S _ Anti—j for1<i<n—-11<;<2n-1,
. (L+i—j)arrij forn<i<2n—-1,1<;<2n-1,

where P(E) =Y}, akE*
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Vicinity of exceptional points:

What happens near the exceptional points?

7
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Vicinity of exceptional points:

What happens near the exceptional points? y
Energy loops E(A = A+ pe'™, () varying ¢ with fixed \, p and (:
Around an exceptional point: E5™ with £5~ = ES" = 9/4

12 T T T T T T T

215 o] [ ®)
] wieat g i
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No exceptional point: E5™ with E5~ = 0.35, E5'" = 3.70

Andreas Fring

Im(E3 i
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The exceptional points are branch points.

Re(ES)
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Four energies:
ESt = ES? =25.6613, E5° = (ES*)* = 7.1029 + i29.8106
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Four

energies:

Eft = Ej? = 37.7449 — i8.7611, E;° = 9.8103 + i6.7668,

c,4
E4

Andreas Fring
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Double scaling limit to Hmat

Recall:
N_)'()iO'T,}_)OHN = HMat, for g := N( < o0

For A =1:

N N | N | (N | N | (N |

3 || 1.50000

5 || 1.47963 | 7.50000

7 || 1.47426 | 7.19195 | 18.4246

9 || 1.47208 | 7.08219 | 17.5098 | 34.4001

11 || 1.47098 | 7.02966 | 17.1292 | 32.5974 | 55.4904

oo || 1.46877 | 6.92895 | 16.4711 | 30.0967 | 47.806

Which X\ is optimal?
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-0.1 _‘7.%,_———

-0.2

A(n) = (oN(n) =y N(n) =(n+1)+nXforn=1,2,3,...

5
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-0.1 _‘7.%,_———

-0.2

A(n) = (oN(n) —Cpyy N(n) =(n+1)+nAforn=1,2,3 ...
The optimal approximation for finite values of N is A = 1.
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Alternatively take the limit on the recurrence relation.
N — o0, ( =0, g:=N( < oo,
limN—}oo,C—>0 'Dn = 'D,I,V’y “mN—)oo,C—)O Qn = Q,I,w

b6
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Alternatively take the limit on the recurrence relation.
N — o0, ( =0, g:=N( < oo,
limN—>oo,§—>0 'Dn = 'D,I,wy “mN—)oo,C—)O Qn = Q,I,w

We obtain infinite matrices = and © with entries

— . 1 .

= = 4%+ §5j7i+1 — 2820 41, fori,j € N,
: 1 1 .

ei,j — 4/25,'71' + §5j,i+1 - 2g2(§;’j+1 + 55;70(%71, for 1,] € NO7

acting (@17, Q2" Q',...), (P, P, PI'...)
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Alternatively take the limit on the recurrence relation.
N — o0, ( =0, g:=N( < oo,
limN—>oo,§—>0 'Dn = PrI’W, |imN—>oo,§—>0 Qn = Q,I,w

We obtain infinite matrices = and © with entries
.2 1 2 . .
=ij = 4 (5;J—|—§5j7;+1—2g 5i,j+1a fOI’I,jGN,
) 1 1 .
@,-,J- = 4/25,'71' + §5j,,'+1 - 2g25,-,j+1 + 55,'70(%71, for 1,] € No,
acting (QY, Q, @},...), (P, P, P}, ...)
Exceptional points from truncated matrices with rank ¢:

det(=f — EI) = 0
det(€° — EI) = 0

b6
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Real zeros gy of the discriminant polynomials A®(g):

£ o g0 40 g0 go 40 g0
2 [ 141421

3 | 1.46904

4 | 146877 | 12.31951

5 || 146877 | 17.88618

6 || 1.46877 | 16.44658 | 24.21371

7 I 146877 | 16.47150 | 20.27154

8 || 146877 | 16.47116 | 34.30396 | 45.47616

26 | 146877 | 16.47117 | 47.80597 | 95.47527 [ 125.4485 | 159.4792 | 239.8178
27 [| 1.46877 | 16.47117 | 47.80597 | 95.47527 | 130.5181 | 159.4792 | 239.8178
26 [| 240.9227 | 336.4911 | 341.4216 | 427.3330 | 449.3487 [ 498.9970

27 [ 251.2637 | 336.4911 | 357.0076 | 448.0887 | 449.5057 | 525.2659
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Real zeros gy of the discriminant polynomials A=(g):

£ 4o go 4o go 4o 4o 9o
2 [ 6.00000

3 | 6.97:01

4 [ 692848 | 18.77001

5 | 6.92806 [ 24.29547

6 || 6.92005 | 29.26843 | 20.73862

7 I 6.92z05 | 30.10798 | 34.30404

8 [ 692805 | 30.00660 | 39.34849 | 61.30789

26 | 6.028055 | 30.00677 | 69.50879 | 125.4354 | 130.5181 | 197.6067 | 251.2637
27 [ 6.928955 [ 30.09677 | 69.59879 | 125.4354 | 135.5878 | 197.6067 [ 261.6061
26 | 286.1126 | 357.0076 | 3909532 | 448.0887 | 5110770 | 525.2021

27 [| 286.1126 | 372.5099 | 390.9532 | 468.8640 | 512.1858 | 551.0671
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Weakly orthogonal polynomials:
Favard's theorem [Acad. Sci. Paris 200 (1935) 2053]

For any three-term recurrence relation of the form

qDn—l-l — (E - an) q)n - bnq)n—lu

with b, = 0 for n < 0 and bk = 0 for some K,
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Weakly orthogonal polynomials:
Favard's theorem [Acad. Sci. Paris 200 (1935) 2053]
For any three-term recurrence relation of the form

qDn—l-l — (E - an) q)n - bnq)n—lu

with b, = 0 for n < 0 and bk = 0 for some K,
3 a linear functional £ acting on polynomials p as

such that the polynomials ®,(E) are orthogonal

E((Dn(bm) — ‘C(E(an)mfl) — Nnénm~

N,, = squared norms of ¢,

w(E) = measure
Andreas Fring A unifying E2-quasi-exactly solvable model




Norms can be computed in two alternative ways:

i) L (three-term relation x &, 1):
NP = L($2) = L(EP,_19,) = [],_, b«
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Norms can be computed in two alternative ways:

i) L (three-term relation x &, 1):
NP = L($2) = L(EP,_19,) = [],_, b«
ii) compute the measure:

W(E) = wid(E — Ey)

Ex are the ¢ roots of the polynomial ®(E).
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Norms can be computed in two alternative ways:

i) L (three-term relation x &, 1):
NP = L($2) = L(EP,_19,) = [],_, b«
ii) compute the measure:

W(E) = wid(E — Ey)

Ex are the ¢ roots of the polynomial ®(E).

Norms for the case at hand:

1-N\ (A+N
NP = 2¢37(14 A)*" =1,2
S (1+A)n<1+k)n’ N
1
Ny = Ny B0,3,4
n 2(N+)\)(1_N) no n b N

with Nf = NQ = 1.
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Measures for the case at hand:
For N =3+ 2X:

(260 . 6022) Q-+ (382 + 4) Q2 + 2003

W[

1 {(13 - 3§2>2 n (13 . 3&2) Q2+ 94} |

wg = X—27 wg = X27
(322 — 200 + 4) (1 v 2%)
Xe = § + ~
36(3° + Q2 — 13)

il

4+ 307 — 2050
12 (1 + 2e¥) (362 _ 13) + (1 4 e%) Q2

_I_

A1
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Confirm with in two alternative ways:

Ny = L(PF)=wf+ws+ws=1,

P _ __, .cp2([Ec0 cp2([c,—2 cp2(c,2

Ny = E(Pl)—W1P1(E3 ) +w3Pr(Es ") +w3Pi(E3)
= _12C )

NP = L(P2) = wSP3(ES®) + wSPR(ES ™) + wSP(ES?)
— 48"

L(PLPy) = WP (ES)Py(ES®) + wSPy(ES 2 Py(EST2)
+w§Py(ES?)Py(ES?) = 0.

Similarly we can compute the momentum functionals in two
alternative ways.

&
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Conclusions

Euclidean Lie algebraic systems provide a new framework
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Different representations, PT-symmetries, higher rank, ...
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Conclusions
Euclidean Lie algebraic systems provide a new framework
E>-quasi exactly solvability is viable

The double scaling limit yields good results for Hyat

Outlook

Construct more quasi exactly models for

Different representations, PT-symmetries, higher rank, ...

Experiments?

Thank you for your attention.
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