

A unifying E2-quasi-exactly solvable model

Andreas Fring

Supersymmetry in Integrable Systems - SIS'15 Yerevan State University September 9-13, 2015

A unifying E2-quasi-exactly solvable model

Andreas Fring

Supersymmetry in Integrable Systems - SIS'15 Yerevan State University September 9-13, 2015

S. Dey, A. Fring, T. Mathanaranjan, Ann. of Physics, 346 (2014) 28
S. Dey, A. Fring, T. Mathanaranjan, Int. J. Th. Phys. (2014) 10.1007
A. Fring, J. Phys. A: Math. Theor. 48 (2015) 145301
A. Fring, Phys. Lett. A379 (2015) 873876; arXiv:1507.00611

Why study models of Euclidean Lie algebraic type?

- 1. Mathematical motivation:
 - a) (quasi)-exactly solvable models of $\mathit{sl}_2(\mathbb{R})$ -Lie algebraic type
 - \Rightarrow solutions are hypergeometric functions
 - b) models of Euclidean-Lie algebraic type
 - \Rightarrow solutions are Mathieu functions

Why study models of Euclidean Lie algebraic type?

- 1. Mathematical motivation:
 - a) (quasi)-exactly solvable models of $\mathit{sl}_2(\mathbb{R})$ -Lie algebraic type
 - \Rightarrow solutions are hypergeometric functions
 - b) models of Euclidean-Lie algebraic type
 - \Rightarrow solutions are Mathieu functions
- 2. Physical motivation:
 - applications of b)-type models in optics
 - the complex Mathieu equation corresponds to the eigenvalue equation for the collision operator in a 2D Lorentz gas

Hamiltonians of $sl_2(\mathbb{R})$ -Lie algebraic type

Quasi-solvable Hamiltonian of Lie algebraic type:

$$H_J = \sum_{I=0,\pm} \kappa_I J_I + \sum_{n,m=0,\pm} \kappa_{nm} : J_n J_m :, \qquad \kappa_I, \kappa_{nm} \in \mathbb{R},$$

 $\mathit{sl}_2(\mathbb{R}) ext{-Lie}$ algebra

$$[J_0, J_{\pm}] = \pm J_{\pm}, \qquad [J_+, J_-] = -2J_0, \qquad J_0^{\dagger}, J_{\pm}^{\dagger} \notin \{J_0, J_{\pm}\}$$

Hamiltonians of $sl_2(\mathbb{R})$ -Lie algebraic type

Quasi-solvable Hamiltonian of Lie algebraic type:

$$H_J = \sum_{I=0,\pm} \kappa_I J_I + \sum_{n,m=0,\pm} \kappa_{nm} : J_n J_m :, \qquad \kappa_I, \kappa_{nm} \in \mathbb{R},$$

 $\mathit{sl}_2(\mathbb{R}) ext{-Lie}$ algebra

$$[J_0, J_{\pm}] = \pm J_{\pm}, \qquad [J_+, J_-] = -2J_0, \qquad J_0^{\dagger}, J_{\pm}^{\dagger} \notin \{J_0, J_{\pm}\}$$

 $\begin{array}{l} \mathcal{PT}\text{-symmetric versions:} \\ \text{Rescale } J_{\pm} \to \tilde{J}_{\pm} = \pm i J_{\pm}, \ J_0 \to \tilde{J}_0 = J_0 \\ \text{Example:} \\ \kappa_{00} = -4, \ \kappa_+ = -2\zeta = \kappa_-, \ \zeta \in \mathbb{R} \\ \\ V(x) = -\left[\zeta \sinh 2x - iM\right]^2 \end{array}$

[P.E.G. Assis, A. Fring, J. Phys. A42 (2009) 015203]

Hamiltonians of Euclidean Lie algebraic type

 E_2 -algebra:

$$[u, J] = iv,$$
 $[v, J] = -iu,$ $[u, v] = 0$

Hamiltonians of Euclidean Lie algebraic type

 E_2 -algebra:

$$[u, J] = iv,$$
 $[v, J] = -iu,$ $[u, v] = 0$

Representations:

• quantizing of strings on tori

$$\Pi^{(1)}: \quad J:=-i\partial_{\theta}, \qquad u:=\sin\theta, \qquad v:=\cos\theta$$

Hamiltonians of Euclidean Lie algebraic type

 E_2 -algebra:

$$[u, J] = iv,$$
 $[v, J] = -iu,$ $[u, v] = 0$

Representations:

• quantizing of strings on tori

$$\Pi^{(1)}: \quad J:=-i\partial_{\theta}, \qquad u:=\sin\theta, \qquad v:=\cos\theta$$

• two dimensional representations

$$\begin{array}{rcl} \Pi^{(2)} & : & J := yp_x - xp_y, & u := x, & v := y, \\ \Pi^{(3)} & : & J := xp_y - p_xy, & u := p_y, & v := p_x, \end{array}$$
with q_j, p_j satisfying $[q_j, p_k] = i\delta_{jk}$ for $j, k = 1, 2$

Different types of " \mathcal{PT} -symmetries":

⁵/₃₃

Different types of " \mathcal{PT} -symmetries":

\mathcal{PT}_1 :	$J \rightarrow -J,$	$u \rightarrow -u$,	$v \rightarrow -v,$	$i \rightarrow -i$,
\mathcal{PT}_2 :	$J \rightarrow -J,$	$u \rightarrow u$,	v ightarrow v,	$i \rightarrow -i$,
\mathcal{PT}_3 :	$J \rightarrow J,$	$u \rightarrow v$,	$v \rightarrow u$,	$i \rightarrow -i$,
\mathcal{PT}_4 :	$J \rightarrow J,$	$u \rightarrow -u$,	v ightarrow v,	$i \rightarrow -i$,
\mathcal{PT}_5 :	$J \rightarrow J,$	$u \rightarrow u$,	$v \rightarrow -v$,	$i \rightarrow -i$.

 \mathcal{PT}_{i} -invariant Hamitonians:

 $H_{\mathcal{PT}_{1}} = \mu_{1}J^{2} + i\mu_{2}J + i\mu_{3}u + i\mu_{4}v + \mu_{5}uJ + \mu_{6}vJ + \mu_{7}u^{2} + \mu_{8}v^{2} + \mu_{9}uv$

Different types of " \mathcal{PT} -symmetries":

\mathcal{PT}_1 :	$J \rightarrow -J,$	$u \rightarrow -u$,	$v \rightarrow -v,$	$i \rightarrow -i$,
\mathcal{PT}_2 :	$J \rightarrow -J,$	$u \rightarrow u$,	v ightarrow v,	$i \rightarrow -i$,
\mathcal{PT}_3 :	$J \rightarrow J,$	$u \rightarrow v$,	$v \rightarrow u$,	$i \rightarrow -i$,
\mathcal{PT}_4 :	J ightarrow J,	$u \rightarrow -u$,	v ightarrow v,	$i \rightarrow -i$,
\mathcal{PT}_5 :	J ightarrow J,	$u \rightarrow u$,	$v \rightarrow -v$,	$i \rightarrow -i$.

 \mathcal{PT}_{i} -invariant Hamitonians:

$$H_{\mathcal{PT}_{1}} = \mu_{1}J^{2} + i\mu_{2}J + i\mu_{3}u + i\mu_{4}v + \mu_{5}uJ + \mu_{6}vJ + \mu_{7}u^{2} + \mu_{8}v^{2} + \mu_{9}uv$$

$$\begin{split} \mathcal{H}_{\mathcal{PT}_{2}} &= \mu_{1}J^{2} + i\mu_{2}J + \mu_{3}u + \mu_{4}v + i\mu_{5}uJ + i\mu_{6}vJ + \mu_{7}u^{2} + \mu_{8}v^{2} + \mu_{9}uv \\ \mathcal{H}_{\mathcal{PT}_{3}} &= \mu_{1}J^{2} + \mu_{2}J + \mu_{3}(u+v) + i\mu_{4}(u-v) + \mu_{5}(u+v)J + i\mu_{6}(u-v)J \\ &\quad + i\mu_{7}(v^{2} - u^{2}) + \mu_{8}(v^{2} + u^{2}) + \mu_{9}uv \\ \mathcal{H}_{\mathcal{PT}_{4}} &= \mu_{1}J^{2} + \mu_{2}J + i\mu_{3}u + \mu_{4}v + i\mu_{5}uJ + \mu_{6}vJ + \mu_{7}u^{2} + \mu_{8}v^{2} + i\mu_{9}uv \\ \mathcal{H}_{\mathcal{PT}_{5}} &= \mu_{1}J^{2} + \mu_{2}J + \mu_{3}u + i\mu_{4}v + \mu_{5}uJ + i\mu_{6}vJ + \mu_{7}u^{2} + \mu_{8}v^{2} + i\mu_{9}uv \\ \end{split}$$
 with $\mu_{i} \in \mathbb{R}$ for $i = 1, \dots, 9$

Andreas Fring

• Given $H \begin{cases} either solve \eta H \eta^{-1} = h & \text{for } \overline{\eta \Rightarrow \rho = \eta^{\dagger} \eta} \\ \text{or } solve H^{\dagger} = \rho H \rho^{-1} & \text{for } \rho \Rightarrow \eta = \sqrt{\rho} \end{cases}$

⁶/33

• Given $H \begin{cases} \text{either solve } \eta H \eta^{-1} = h & \text{for } \overline{\eta \Rightarrow \rho = \eta^{\dagger} \eta} \\ \text{or solve } H^{\dagger} = \rho H \rho^{-1} & \text{for } \rho \Rightarrow \eta = \sqrt{\rho} \end{cases}$ • involves complicated commutation relations

Andreas Fring

A unifying E2-quasi-exactly solvable model

⁶/33

• Given $H \begin{cases} either solve \eta H \eta^{-1} = h & \text{for } \eta \Rightarrow \rho = \eta^{\dagger} \eta^{-1} \\ \text{or } solve H^{\dagger} = \rho H \rho^{-1} & \text{for } \rho \Rightarrow \eta = \sqrt{\rho} \end{cases}$

- involves complicated commutation relations
- often this can only be solved perturbatively

• Given $H \begin{cases} \text{ either solve } \eta H \eta^{-1} = h & \text{for } \eta \Rightarrow \rho = \eta^{\dagger} \eta^{-1} \\ \text{or solve } H^{\dagger} = \rho H \rho^{-1} & \text{for } \rho \Rightarrow \eta = \sqrt{\rho} \end{cases}$

- involves complicated commutation relations
- often this can only be solved perturbatively

Note:

- Thus, this is not re-inventing or disputing the validity of quantum mechanics
- We only give up the restrictive requirement that Hamiltonians have to be Hermitian.

• Given $H \begin{cases} \text{either solve } \eta H \eta^{-1} = h \text{ for } \eta \Rightarrow \rho = \eta^{\dagger} \eta \\ \text{or solve } H^{\dagger} = \rho H \rho^{-1} \text{ for } \rho \Rightarrow \eta = \sqrt{\rho} \end{cases}$

- involves complicated commutation relations
- often this can only be solved perturbatively

Note:

- Thus, this is not re-inventing or disputing the validity of quantum mechanics
- We only give up the restrictive requirement that Hamiltonians have to be Hermitian.

[C. Bender, *Rep. Prog. Phys.* 70 (2007) 947]
[A. Mostafazadeh, *Int. J. Geom. Meth. Phys.* 7 (2010) 1191]
[A. Fring, *Phil. Trans. R. Soc.* A 371 (2013) 20120046]

Isospectral partner Hamitonians:

$$\begin{split} h_{\mathcal{PT}_{5}} &= \mu_{1}J^{2} + \mu_{2}J + \frac{1}{2}\left(\mu_{5} - \mu_{6}\tanh\frac{\lambda}{2}\right)\left\{u, J\right\} \\ &+ \left[\frac{2\mu_{5}^{2}\sinh^{2}\lambda + \mu_{6}^{2}(\operatorname{sech}^{2}\frac{\lambda}{2} + \cosh 2\lambda - 1) + 2(\tanh\frac{\lambda}{2} - \sinh 2\lambda)\mu_{5}\mu_{6}}{8\mu_{1}} \right. \\ &+ \frac{\mu_{8} - \mu_{7}}{2}\cosh(2\lambda)\right]\left(v^{2} - u^{2}\right) + \left[\operatorname{csch}\lambda\left(\mu_{4} + \frac{1}{2}\mu_{5}\right) + \frac{\mu_{2}}{2\mu_{1}}(\mu_{5} - \coth\lambda\mu_{6})\right]u + \frac{\mu_{6}^{2}\cosh\lambda - \mu_{5}\mu_{6}\sinh\lambda}{4\mu_{1}(1 + \cosh\lambda)} + \frac{1}{2}\left(\mu_{7} + \mu_{8}\right) \end{split}$$

Isospectral partner Hamitonians:

$$\begin{split} h_{\mathcal{PT}_{5}} &= \mu_{1}J^{2} + \mu_{2}J + \frac{1}{2}\left(\mu_{5} - \mu_{6}\tanh\frac{\lambda}{2}\right)\left\{u, J\right\} \\ &+ \left[\frac{2\mu_{5}^{2}\sinh^{2}\lambda + \mu_{6}^{2}(\operatorname{sech}^{2}\frac{\lambda}{2} + \cosh 2\lambda - 1) + 2(\tanh\frac{\lambda}{2} - \sinh 2\lambda)\mu_{5}\mu_{6}}{8\mu_{1}} \right] \\ &+ \frac{\mu_{8} - \mu_{7}}{2}\cosh(2\lambda)\left[\left(v^{2} - u^{2}\right) + \left[\operatorname{csch}\lambda\left(\mu_{4} + \frac{1}{2}\mu_{5}\right) + \frac{\mu_{2}}{2\mu_{1}}(\mu_{5} - \coth\lambda\mu_{6})\right] \\ &- \coth\lambda\mu_{6}\right] u + \frac{\mu_{6}^{2}\cosh\lambda - \mu_{5}\mu_{6}\sinh\lambda}{4\mu_{1}(1 + \cosh\lambda)} + \frac{1}{2}\left(\mu_{7} + \mu_{8}\right) \end{split}$$

Sinusoidal optical lattices from further constraints

$$\mu_1 = 1$$
, $\mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = 0$, $\mu_8 = -4$, $\mu_9 = -8V_0$
 $V(x) = 4\cos^2 x + 4iV_0 \sin 2x$

[B. Midya, B. Roy, et al, Phys. Lett. A374 (2010) 2605] [H. Jones, J. Phys. A44 (2011) 345302]

Andreas Fring

However, it is not always possible to find isospectral pairs: For instance: \mathcal{PT}_3 -symmetric non-Hermitian Hamiltonian

$$\mathcal{H}_{\mathsf{Mat}} = J^2 + 2 \textit{ig}(u^2 - v^2) \Rightarrow \mathcal{H}_{\mathsf{Mat}}^{\mathsf{\Pi}^{(1)}} = -rac{d^2}{d heta^2} + 2 \textit{ig}\cos(2 heta)$$

However, it is not always possible to find isospectral pairs: For instance: \mathcal{PT}_3 -symmetric non-Hermitian Hamiltonian

$$\mathcal{H}_{\mathsf{Mat}} = J^2 + 2 \textit{ig}(u^2 - v^2) \Rightarrow \mathcal{H}_{\mathsf{Mat}}^{\mathsf{\Pi}^{(1)}} = -rac{d^2}{d heta^2} + 2 \textit{ig}\cos(2 heta)$$

Consider instead

$$\mathcal{H}_N = J^2 + \zeta^2 (u^2 - v^2)^2 + 2i\zeta N(u^2 - v^2),$$

and take a double scaling limit

$$\lim_{N \to \infty, \zeta \to 0} \mathcal{H}_N = \mathcal{H}_{\mathsf{Mat}}, \qquad \text{for } g := N \zeta < \infty$$

[B. Bagchi, S. Mallik, C. Quesne, ... Phys. Lett. A289 (2001) 34] [B. Bagchi, C. Quesne, et al J. Phys. A41 (2008) 022001] However, it is not always possible to find isospectral pairs: For instance: \mathcal{PT}_3 -symmetric non-Hermitian Hamiltonian

$$\mathcal{H}_{\mathsf{Mat}} = J^2 + 2 \textit{ig}(u^2 - v^2) \Rightarrow \mathcal{H}_{\mathsf{Mat}}^{\mathsf{\Pi}^{(1)}} = -rac{d^2}{d heta^2} + 2 \textit{ig}\cos(2 heta)$$

Consider instead

$$\mathcal{H}_N = J^2 + \zeta^2 (u^2 - v^2)^2 + 2i\zeta N(u^2 - v^2),$$

and take a double scaling limit

$$\lim_{N \to \infty, \zeta \to 0} \mathcal{H}_N = \mathcal{H}_{\mathsf{Mat}}, \qquad \text{for } g := N \zeta < \infty$$

[B. Bagchi, S. Mallik, C. Quesne, ... Phys. Lett. A289 (2001) 34] [B. Bagchi, C. Quesne, et al J. Phys. A41 (2008) 022001] Relation of \mathcal{H}_{Mat} to E_2 : [C. M. Bender, R. Kalveks, Int. J. Theor. Phys. 50 (2011) 955]

In general: $\mathcal{H}: V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$ For $\Pi^{(1)}$ define:

 $V_n^s = \operatorname{span}\left\{\phi_0\left[\sin(2\theta), \ldots, i^{n+1}\sin(2n\theta)\right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L\right\}$

 $V_n^c = \operatorname{span} \left\{ \phi_0 \left[1, i \cos(2\theta), \dots, i^n \cos(2n\theta) \right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}$

In general: $\mathcal{H}: V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$ For $\Pi^{(1)}$ define:

 $V_n^s = \operatorname{span}\left\{\phi_0\left[\sin(2\theta), \ldots, i^{n+1}\sin(2n\theta)\right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L\right\}$

 $V_n^c = \operatorname{span} \left\{ \phi_0 \left[1, i \cos(2\theta), \dots, i^n \cos(2n\theta) \right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}$ For $\phi_0^c = e^{i\kappa\cos 2\theta}$, $\phi_0^s = e^{\kappa\sin 2\theta}$ with $\kappa \in \mathbb{R}$ we find:

$$J : V_n^{s,c}(\phi_0^c) \mapsto V_{n+1}^{c,s}(\phi_0^c)$$
$$uv : V_n^{s,c}(\phi_0^c) \mapsto V_{n+1}^{c,s}(\phi_0^c)$$
$$i(u^2 - v^2) : V_n^{s,c}(\phi_0^c) \mapsto V_{n+1}^{s,c}(\phi_0^c)$$

In general: $\mathcal{H}: V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$ For $\Pi^{(1)}$ define:

 $V_n^s = \operatorname{span}\left\{\phi_0\left[\sin(2\theta),\ldots,i^{n+1}\sin(2n\theta)\right]\middle|\,\theta\in\mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L\right\}$

 $V_n^c = \operatorname{span} \left\{ \phi_0 \left[1, i \cos(2\theta), \dots, i^n \cos(2n\theta) \right] | \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}$ For $\phi_0^c = e^{i\kappa\cos 2\theta}$, $\phi_0^s = e^{\kappa\sin 2\theta}$ with $\kappa \in \mathbb{R}$ we find:

$$J : V_{n}^{s,c}(\phi_{0}^{c}) \mapsto V_{n+1}^{c,s}(\phi_{0}^{c})$$
$$uv : V_{n}^{s,c}(\phi_{0}^{c}) \mapsto V_{n+1}^{c,s}(\phi_{0}^{c})$$
$$i(u^{2} - v^{2}) : V_{n}^{s,c}(\phi_{0}^{c}) \mapsto V_{n+1}^{s,c}(\phi_{0}^{c})$$
$$J : V_{n}^{s,c}(\phi_{0}^{s}) \mapsto V_{n}^{c,s}(\phi_{0}^{s}) \oplus V_{n+1}^{s,c}(\phi_{0}^{s})$$
$$uv : V_{n}^{s,c}(\phi_{0}^{s}) \mapsto V_{n+1}^{c,s}(\phi_{0}^{s})$$
$$i(u^{2} - v^{2}) : V_{n}^{s,c}(\phi_{0}^{s}) \mapsto V_{n+1}^{s,c}(\phi_{0}^{s})$$

In general: $\mathcal{H}: V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$ For $\Pi^{(1)}$ define:

 $V_n^s = \operatorname{span}\left\{\phi_0\left[\sin(2\theta), \ldots, i^{n+1}\sin(2n\theta)\right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L\right\}$

 $V_n^c = \operatorname{span} \left\{ \phi_0 \left[1, i \cos(2\theta), \dots, i^n \cos(2n\theta) \right] | \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}$ For $\phi_0^c = e^{i\kappa\cos 2\theta}$, $\phi_0^s = e^{\kappa\sin 2\theta}$ with $\kappa \in \mathbb{R}$ we find:

$$J : V_{n}^{s,c}(\phi_{0}^{c}) \mapsto V_{n+1}^{c,s}(\phi_{0}^{c})$$
$$uv : V_{n}^{s,c}(\phi_{0}^{c}) \mapsto V_{n+1}^{c,s}(\phi_{0}^{c})$$
$$i(u^{2} - v^{2}) : V_{n}^{s,c}(\phi_{0}^{c}) \mapsto V_{n+1}^{s,c}(\phi_{0}^{c})$$
$$J : V_{n}^{s,c}(\phi_{0}^{s}) \mapsto V_{n}^{c,s}(\phi_{0}^{s}) \oplus V_{n+1}^{s,c}(\phi_{0}^{s})$$
$$uv : V_{n}^{s,c}(\phi_{0}^{s}) \mapsto V_{n+1}^{c,s}(\phi_{0}^{s})$$
$$i(u^{2} - v^{2}) : V_{n}^{s,c}(\phi_{0}^{s}) \mapsto V_{n+1}^{s,c}(\phi_{0}^{s})$$

For representation $\Pi^{(2)}$ and $\Pi^{(3)}$ use polynomials in x, y.

Andreas Fring

A unifying E2-quasi-exactly solvable model

Thus we have:

$$\mathcal{H}_{N}: V_{n}^{s,c}\left(\phi_{0}^{c}\right) \mapsto V_{n+2}^{s,c}\left(\phi_{0}^{c}\right) \oplus \zeta^{2} V_{n+2}^{s,c}\left(\phi_{0}^{c}\right) \oplus V_{n+1}^{s,c}\left(\phi_{0}^{c}\right)$$

- with constraint on $V^{s,c}_{n+2}(\phi^c_0) \oplus \zeta^2 V^{s,c}_{n+2}(\phi^c_0)$

- and quantization condition on level n+1

 $\mathcal{H}_{N}: V^{s,c}_{(N-1)/2}\left(\phi_{0}^{c}\right) \mapsto V^{s,c}_{(N-1)/2}\left(\phi_{0}^{c}\right)$

Thus we have:

$$\mathcal{H}_{N}: V_{n}^{s,c}\left(\phi_{0}^{c}\right) \mapsto V_{n+2}^{s,c}\left(\phi_{0}^{c}\right) \oplus \zeta^{2} V_{n+2}^{s,c}\left(\phi_{0}^{c}\right) \oplus V_{n+1}^{s,c}\left(\phi_{0}^{c}\right)$$

- with constraint on $V^{s,c}_{n+2}\left(\phi^c_0
ight)\oplus\zeta^2 V^{s,c}_{n+2}\left(\phi^c_0
ight)$

- and quantization condition on level n+1

$$\mathcal{H}_{N}: V^{s,c}_{(N-1)/2}\left(\phi_{0}^{c}\right) \mapsto V^{s,c}_{(N-1)/2}\left(\phi_{0}^{c}\right)$$

More solutions exist:

$$\hat{\mathcal{H}}_{N} = J^{2} + \zeta u v J + 2i \zeta N(u^{2} - v^{2}), \qquad \zeta, N \in \mathbb{R}$$

Thus we have:

$$\mathcal{H}_{N}: V_{n}^{s,c}\left(\phi_{0}^{c}\right) \mapsto V_{n+2}^{s,c}\left(\phi_{0}^{c}\right) \oplus \zeta^{2} V_{n+2}^{s,c}\left(\phi_{0}^{c}\right) \oplus V_{n+1}^{s,c}\left(\phi_{0}^{c}\right)$$

- with constraint on $V^{s,c}_{n+2}(\phi^c_0) \oplus \zeta^2 V^{s,c}_{n+2}(\phi^c_0)$

- and quantization condition on level n+1

$$\mathcal{H}_{N}: V^{s,c}_{(N-1)/2}\left(\phi_{0}^{c}\right) \mapsto V^{s,c}_{(N-1)/2}\left(\phi_{0}^{c}\right)$$

More solutions exist:

$$\hat{\mathcal{H}}_N = J^2 + \zeta u v J + 2i \zeta N(u^2 - v^2), \qquad \zeta, N \in \mathbb{R}$$

 $\hat{\mathcal{H}}_{\textsc{N}}$ also reduces to $\mathcal{H}_{\textsc{Mat}}$ in the double scaling limit

$$\lim_{N\to\infty,\zeta\to 0}\hat{\mathcal{H}}_N=\mathcal{H}_{\mathsf{Mat}},\qquad \text{for }g:=N\zeta<\infty$$

Can we combine the models? Generic Ansatz:

$$\mathcal{H} = J^2 + \mu \zeta u v J + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N(u^2 - v^2), \qquad \lambda, \zeta, N \in \mathbb{R},$$

leads to four-term relation.

Can we combine the models? Generic Ansatz:

$$\mathcal{H} = J^2 + \mu \zeta u v J + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N(u^2 - v^2), \qquad \lambda, \zeta, N \in \mathbb{R},$$

leads to four-term relation. Restricting μ :

 $\mathcal{H}(N,\zeta,\lambda) = J^2 + 2(1-\lambda)\zeta uvJ + \lambda\zeta^2(u^2 - v^2)^2 + 2i\zeta N(u^2 - v^2)$

leads to desired three-term relation.

Can we combine the models? Generic Ansatz:

$$\mathcal{H} = J^2 + \mu \zeta u v J + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N(u^2 - v^2), \qquad \lambda, \zeta, N \in \mathbb{R},$$

leads to four-term relation. Restricting μ :

 $\mathcal{H}(N,\zeta,\lambda) = J^2 + 2(1-\lambda)\zeta uvJ + \lambda\zeta^2(u^2 - v^2)^2 + 2i\zeta N(u^2 - v^2)$

leads to desired three-term relation. The limits $\lambda \to 0$, $\lambda \to 1$ yield the previous cases.

$$\psi_N^c(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)$$

$$\psi_N^s(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)$$

$$\psi_N^{\mathsf{c}}(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)$$

$$\psi_N^{\mathsf{s}}(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)$$

$$c_n = rac{1}{\zeta^n} (N+\lambda) (1+\lambda)^{n-1} \left[rac{1+N+2\lambda}{1+\lambda}
ight]_{n-1}, \ \phi_0 = e^{rac{i}{2}\zeta\cos(2 heta)}$$

¹²/33

$$\psi_N^{\mathsf{c}}(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)$$

$$\psi_N^{\mathsf{s}}(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)$$

$$\begin{split} c_n &= \frac{1}{\zeta^n} (N+\lambda) (1+\lambda)^{n-1} \left[\frac{1+N+2\lambda}{1+\lambda} \right]_{n-1}, \ \phi_0 = e^{\frac{i}{2}\zeta \cos(2\theta)} \\ \text{yields} \end{split}$$

 $P_{2} = (E - \lambda \zeta^{2} - 4)P_{1} + 2\zeta^{2} [N - 1] [N + \lambda] P_{0},$ $P_{i+1} = (E - \lambda \zeta^{2} - 4i^{2})P_{i} + \zeta^{2} [N + i\lambda + (i - 1)] [N - (i - 1)\lambda - i] P_{i-1}$

$$\psi_N^c(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)$$

$$\psi_N^s(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)$$

$$\begin{split} c_n &= \frac{1}{\zeta^n} (N+\lambda) (1+\lambda)^{n-1} \left[\frac{1+N+2\lambda}{1+\lambda} \right]_{n-1}, \ \phi_0 = e^{\frac{i}{2}\zeta \cos(2\theta)} \\ \text{yields} \end{split}$$

$$P_{2} = (E - \lambda\zeta^{2} - 4)P_{1} + 2\zeta^{2} [N - 1] [N + \lambda] P_{0},$$

$$P_{i+1} = (E - \lambda\zeta^{2} - 4i^{2})P_{i} + \zeta^{2} [N + i\lambda + (i - 1)] [N - (i - 1)\lambda - i] P_{i-1}$$

$$Q_{2} = (E - 4 - \lambda\zeta^{2})Q_{1}$$

$$Q_{j+1} = (E - \lambda\zeta^{2} - 4j^{2})Q_{j} + \zeta^{2} [N + j\lambda + (j - 1)] [N - (j - 1)\lambda - j] Q_{j-1}$$

for
$$i = 0, 2, ..., j = 2, 3, 4$$

Andreas Fring

33
Solutions:

$$\begin{array}{rcl} P_{0} &=& 1 \\ P_{1} &=& E - \lambda \zeta^{2} \\ P_{2} &=& \lambda^{2} \zeta^{4} + 2 \zeta^{2} \left[\lambda - \lambda E + N(\lambda + N - 1) \right] + (E - 4) E \\ P_{3} &=& -\lambda^{3} \zeta^{6} + \lambda \zeta^{4} \left(\lambda (2\lambda + 3E - 13) - 3N^{2} - 3(\lambda - 1)N + 2 \right) \\ &\quad + (E - 16)(E - 4)E + 32(\lambda + N(\lambda + N - 1)) \\ &\quad - \zeta^{2} \left[3\lambda E^{2} + E \left(2\lambda^{2} - 3N^{2} - 3\lambda(N + 11) + 3N + 2 \right) \right] \\ Q_{1} &=& 1 \\ Q_{2} &=& E - 4 - \lambda \zeta^{2}, \\ Q_{3} &=& \lambda^{2} \zeta^{4} + \zeta^{2} \left[\lambda (15 - 2\lambda - 2E) + N^{2} + (\lambda - 1)N - 2 \right] \\ &\quad + (E - 16)(E - 4) \end{array}$$

• There exists a level *ñ*, such that

A unifying E2-quasi-exactly solvable model

- There exists a level \tilde{n} , such that
- three-term recurrence relation \rightarrow two-term recurrence relation

- There exists a level \tilde{n} , such that
- three-term recurrence relation \rightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$

- There exists a level \tilde{n} , such that
- three-term recurrence relation ightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
- energy quantization leads to $P_n = 0$ for $n \ge \tilde{n}$

- There exists a level \tilde{n} , such that
- three-term recurrence relation ightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
- energy quantization leads to $P_n = 0$ for $n \ge \tilde{n}$

Present case: $\hat{n} = -(1 + N)/(1 + \lambda)$ or $\tilde{n} = (\lambda + N)/(1 + \lambda)$:

$$P_{\tilde{n}+\ell} = P_{\tilde{n}}R_\ell$$
 and $Q_{\tilde{n}+\ell} = Q_{\tilde{n}}R_\ell$

with

$$\begin{array}{lll} R_1 &=& E - 4 \tilde{n}^2 - \lambda \zeta^2, \\ R_2 &=& (E - 4 \tilde{n}^2 - \lambda \zeta^2) (E - 4 (\tilde{n} + 1)^2 - \lambda \zeta^2) - 2 \tilde{n} (1 + \lambda)^2 \zeta^2 \end{array}$$

- There exists a level \tilde{n} , such that
- three-term recurrence relation ightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
- energy quantization leads to $P_n = 0$ for $n \ge \tilde{n}$

Present case:
$$\hat{n} = -(1 + N)/(1 + \lambda)$$
 or $\tilde{n} = (\lambda + N)/(1 + \lambda)$:

$$P_{\tilde{n}+\ell} = P_{\tilde{n}}R_{\ell}$$
 and $Q_{\tilde{n}+\ell} = Q_{\tilde{n}}R_{\ell}$

with

$$\begin{array}{lll} R_1 &=& E - 4 \tilde{n}^2 - \lambda \zeta^2, \\ R_2 &=& (E - 4 \tilde{n}^2 - \lambda \zeta^2) (E - 4 (\tilde{n} + 1)^2 - \lambda \zeta^2) - 2 \tilde{n} (1 + \lambda)^2 \zeta^2 \end{array}$$

Typical features of Bender-Dunne polynomials. [C.M. Bender, G.V. Dunne, J. Math. Phys. 37 (1996) 6]

We find E_n from $P_{\tilde{n}}(E) = 0$ and $Q_{\tilde{n}}(E) = 0$:

$$E_1^c = \lambda \zeta^2,$$

Andreas Fring

We find E_n from $P_{\tilde{n}}(E) = 0$ and $Q_{\tilde{n}}(E) = 0$:

$$\begin{array}{rcl} E_1^c &=& \lambda \zeta^2, \\ E_2^{c,\pm} &=& 2 + \lambda \zeta^2 \pm 2 \sqrt{1 - (1+\lambda)^2 \zeta^2}, \end{array}$$

We find E_n from $P_{\tilde{n}}(E) = 0$ and $Q_{\tilde{n}}(E) = 0$:

$$\begin{split} E_1^c &= \lambda \zeta^2, \\ E_2^{c,\pm} &= 2 + \lambda \zeta^2 \pm 2\sqrt{1 - (1+\lambda)^2 \zeta^2}, \\ E_3^{c,\ell} &= \frac{20}{3} + \lambda \zeta^2 + \frac{4\hat{\Omega}}{3} e^{\frac{i\pi\ell}{3}} + \frac{1}{3} \left[52 - 12(1+\lambda)^2 \zeta^2 \right] e^{-\frac{i\pi\ell}{3}} \hat{\Omega}^{-1} \\ \text{with } \ell &= 0, \pm 2 \\ \hat{\Omega}^3 &= \left[\left[3(\lambda+1)^2 \zeta^2 - 13 \right]^3 + \left[18(\lambda+1)^2 \zeta^2 + 35 \right]^2 \right]_2^{\frac{1}{2}} + 35 + 18(\lambda+1)^2 \zeta^2 \end{split}$$

We find E_n from $P_{\tilde{n}}(E) = 0$ and $Q_{\tilde{n}}(E) = 0$:

$$\begin{split} E_{1}^{c} &= \lambda \zeta^{2}, \\ E_{2}^{c,\pm} &= 2 + \lambda \zeta^{2} \pm 2\sqrt{1 - (1+\lambda)^{2}\zeta^{2}}, \\ E_{3}^{c,\ell} &= \frac{20}{3} + \lambda \zeta^{2} + \frac{4\hat{\Omega}}{3}e^{\frac{i\pi\ell}{3}} + \frac{1}{3}\left[52 - 12(1+\lambda)^{2}\zeta^{2}\right]e^{-\frac{i\pi\ell}{3}}\hat{\Omega}^{-1} \\ \text{with } \ell &= 0, \pm 2 \\ \hat{\Omega}^{3} &= \left[\left[3(\lambda+1)^{2}\zeta^{2} - 13\right]^{3} + \left[18(\lambda+1)^{2}\zeta^{2} + 35\right]^{2}\right]^{\frac{1}{2}} + 35 + 18(\lambda+1)^{2}\zeta^{2} \\ E_{2}^{s} &= 4 + \lambda \zeta^{2}, \\ E_{3}^{s,\pm} &= 10 + \zeta^{2}\lambda \pm 2\sqrt{9 - (\lambda+1)^{2}\zeta^{2}}, \\ E_{4}^{s,\ell} &= \frac{56}{3} + \lambda \zeta^{2} + \frac{4\Omega}{3}e^{\frac{i\pi\ell}{3}} + \frac{1}{3}\left[196 - 12(1+\lambda)^{2}\zeta^{2}\right]e^{-\frac{i\pi\ell}{3}}\Omega^{-1} \\ \Omega^{3} &= \left[\left(3\zeta^{2}(\lambda+1)^{2} - 49\right)^{3} + \left(18\zeta^{2}(\lambda+1)^{2} + 143\right)^{2}\right]^{\frac{1}{2}} \\ &+ 143 + 18\zeta^{2}(\lambda+1)^{2} \end{split}$$

Andreas Fring

A unifying E2-quasi-exactly solvable model

33

Exceptional points:

Recall: discriminant = $\Delta = \prod_{1 \le i < j \le n} (E_i - E_j)^2$

Exceptional points:

Recall: discriminant = $\Delta = \prod_{1 \le i < j \le n} (E_i - E_j)^2$ Compute zeros of $\Delta_{\tilde{a}}^{c}$, $\Delta_{\tilde{a}}^{s}$ of $P_{\tilde{a}}(E), Q_{\tilde{a}}(E)$: $\tilde{\Delta}_{2}^{c} = \hat{\zeta}^{2} - 1, \quad \tilde{\Delta}_{3}^{s} = \hat{\zeta}^{2} - 9, \quad \tilde{\Delta}_{3}^{c} = \hat{\zeta}^{6} - \hat{\zeta}^{4} + 103\hat{\zeta}^{2} - 36,$ $\tilde{\Delta}_{4}^{s} = \hat{\zeta}^{6} - 37\hat{\zeta}^{4} + 991\hat{\zeta}^{2} - 3600.$ $\tilde{\Delta}_{4}^{c} = \hat{\zeta}^{12} + 2\hat{\zeta}^{10} + 385\hat{\zeta}^{8} - 33120\hat{\zeta}^{6} + 16128\hat{\zeta}^{4} - 732276\hat{\zeta}^{2}$ +129600. $\tilde{\Delta}_{5}^{s} = \hat{\zeta}^{12} - 94\hat{\zeta}^{10} + 7041\hat{\zeta}^{8} - 381600\hat{\zeta}^{6} + 6645600\hat{\zeta}^{4}$ $-78318900\hat{\zeta}^{2}+158760000.$

 $\hat{\zeta} := \zeta (1 + \lambda)$

Exceptional points:

Recall: discriminant = $\Delta = \prod_{1 \le i \le j \le n} (E_i - E_j)^2$ Compute zeros of $\Delta_{\tilde{e}}^{c}$, $\Delta_{\tilde{e}}^{s}$ of $P_{\tilde{e}}(E), Q_{\tilde{e}}(E)$: $\tilde{\Delta}_{2}^{c} = \hat{\zeta}^{2} - 1, \ \tilde{\Delta}_{3}^{s} = \hat{\zeta}^{2} - 9, \ \tilde{\Delta}_{3}^{c} = \hat{\zeta}^{6} - \hat{\zeta}^{4} + 103\hat{\zeta}^{2} - 36,$ $\tilde{\Delta}_{4}^{s} = \hat{\zeta}^{6} - 37\hat{\zeta}^{4} + 991\hat{\zeta}^{2} - 3600.$ $\tilde{\Delta}_{4}^{c} = \hat{\zeta}^{12} + 2\hat{\zeta}^{10} + 385\hat{\zeta}^{8} - 33120\hat{\zeta}^{6} + 16128\hat{\zeta}^{4} - 732276\hat{\zeta}^{2}$ +129600. $\tilde{\Delta}^{s}_{\mathtt{F}} = \hat{\zeta}^{12} - 94\hat{\zeta}^{10} + 7041\hat{\zeta}^{8} - 381600\hat{\zeta}^{6} + 6645600\hat{\zeta}^{4}$ $-78318900\hat{\zeta}^{2}+158760000,$

 $\hat{\zeta} := \zeta(1 + \lambda)$ Computable from the determinant of the Sylvester matrix S:

$$S_{ij} = \begin{cases} a_{n+i-j}, & \text{for } 1 \le i \le n-1, 1 \le j \le 2n-1, \\ (1+i-j)a_{1+i-j}, & \text{for } n \le i \le 2n-1, 1 \le j \le 2n-1, \end{cases}$$

where $P(E) = \sum_{k=0}^{n} a_k E^k$

Andreas Fring

Vicinity of exceptional points:

What happens near the exceptional points?

Andreas Fring

Vicinity of exceptional points:

What happens near the exceptional points? Energy loops $E(\lambda = \tilde{\lambda} + \rho e^{i\pi\phi}, \zeta)$ varying ϕ with fixed $\tilde{\lambda}$, ρ and ζ : Around an exceptional point: $E_2^{c,\pm}$ with $E_2^{c,-} = E_2^{c,+} = 9/4$

No exceptional point: $E_2^{c,\pm}$ with $E_2^{c,-} = 0.35$, $E_2^{c,+} = 3.70$

¹⁸/33

The exceptional points are branch points.

Andreas Fring

A unifying E2-quasi-exactly solvable model

Four energies: $E_4^{c,1} = E_4^{c,2} = 25.6613, \ E_4^{c,3} = (E_4^{c,4})^* = 7.1029 + i29.8106$

Four energies: $E_4^{c,1} = E_4^{c,2} = 37.7449 - i8.7611$, $E_4^{c,3} = 9.8103 + i6.7668$, $E_4^{c,4} = -24.0439 + i20.7081$

Andreas Fring

A unifying E2-quasi-exactly solvable model

Andreas Fring

A unifying E2-quasi-exactly solvable model

Double scaling limit to $\mathcal{H}_{\mathsf{Mat}}$

Recall:

$$\lim_{N\to\infty,\zeta\to 0}\mathcal{H}_N=\mathcal{H}_{\mathsf{Mat}},\qquad \text{for }g:=N\zeta<\infty$$

For $\lambda = 1$:

Ν	$\zeta_0 N$				
3	1.50000				
5	1.47963	7.50000			
7	1.47426	7.19195	18.4246		
9	1.47208	7.08219	17.5098	34.4001	
11	1.47098	7.02966	17.1292	32.5974	55.4904
		:	-	1.10	
∞	1.46877	6.92895	16.4711	30.0967	47.806

Which λ is optimal?

Andreas Fring

 $\Delta(n) = \zeta_0 N(n) - \zeta_M, N(n) = (n+1) + n\lambda$ for n = 1, 2, 3, ...

 $\Delta(n) = \zeta_0 N(n) - \zeta_M, N(n) = (n+1) + n\lambda \text{ for } n = 1, 2, 3, ...$ The optimal approximation for finite values of N is $\lambda = 1$.

Alternatively take the limit on the recurrence relation.

$$N \to \infty, \ \zeta \to 0, \ g := N\zeta < \infty,$$

 $\lim_{N \to \infty, \zeta \to 0} P_n =: P_n^M, \ \lim_{N \to \infty, \zeta \to 0} Q_n =: Q_n^M$

Andreas Fring

Alternatively take the limit on the recurrence relation. $N \to \infty$, $\zeta \to 0$, $g := N\zeta < \infty$, $\lim_{N\to\infty,\zeta\to0} P_n =: P_n^M$, $\lim_{N\to\infty,\zeta\to0} Q_n =: Q_n^M$

We obtain infinite matrices Ξ and Θ with entries

$$\begin{split} \Xi_{i,j} &= 4i^2 \delta_{i,j} + \frac{1}{2} \delta_{j,i+1} - 2g^2 \delta_{i,j+1}, & \text{for } i, j \in \mathbb{N}, \\ \Theta_{i,j} &= 4i^2 \delta_{i,j} + \frac{1}{2} \delta_{j,i+1} - 2g^2 \delta_{i,j+1} + \frac{1}{2} \delta_{i,0} \delta_{j,1}, & \text{for } i, j \in \mathbb{N}_0, \end{split}$$

acting $(Q_1^M, Q_2^M, Q_3^M, \ldots)$, $(P_0^M, P_1^M, P_1^M, \ldots)$

Alternatively take the limit on the recurrence relation. $N \to \infty$, $\zeta \to 0$, $g := N\zeta < \infty$, $\lim_{N\to\infty,\zeta\to0} P_n =: P_n^M$, $\lim_{N\to\infty,\zeta\to0} Q_n =: Q_n^M$

We obtain infinite matrices Ξ and Θ with entries

$$\begin{split} \Xi_{i,j} &= 4i^2 \delta_{i,j} + \frac{1}{2} \delta_{j,i+1} - 2g^2 \delta_{i,j+1}, & \text{for } i, j \in \mathbb{N}, \\ \Theta_{i,j} &= 4i^2 \delta_{i,j} + \frac{1}{2} \delta_{j,i+1} - 2g^2 \delta_{i,j+1} + \frac{1}{2} \delta_{i,0} \delta_{j,1}, & \text{for } i, j \in \mathbb{N}_0, \\ \text{acting } (Q_1^M, Q_2^M, Q_3^M, \ldots), (P_0^M, P_1^M, P_1^M, \ldots) \end{split}$$

Exceptional points from truncated matrices with rank ℓ :

$$det(\Xi^{\ell} - E\mathbb{I}) = 0$$
$$det(\Theta^{\ell} - E\mathbb{I}) = 0$$

Real zeros g_0 of the discriminant polynomials $\Delta^{\Theta}(g)$:

l	g_0	g_0	g_0	g_0	<u>g</u> 0	g_0	g_0
2	1.41421						
3	1.46904						
4	1.46877	12.34951					
5	1.46877	17.88618					
6	1.46877	16.44658	24.21371				
7	1.46877	16.47150	29.27154				
8	1.46877	16.47116	34.30396	45.47616			
÷	:	:		:			
26	1.46877	16.47117	47.80597	95.47527	125.4485	159.4792	239.8178
27	1.46877	16.47117	47.80597	95.47527	130.5181	159.4792	239.8178
26	240.9227	336.4911	341.4216	427.3330	449.3487	498.9970	
27	251.2637	336.4911	357.0076	448.0887	449.5057	525.2659	

Real zeros g_0 of the discriminant polynomials $\Delta^{\Xi}(g)$:

l	g_0	g_0	g_0	g_0	g_0	g_0	<u>g</u> 0
2	6.00000						
3	6.97891						
4	6.92848	18.77091					
5	6.92896	24.29547					
6	6.92895	29.26843	29.73862				
7	6.92895	30.10798	34.30404				
8	6.92895	30.09660	39.34849	61.30789			
	:	:	:				
26	6.928955	30.09677	69.59879	125.4354	130.5181	197.6067	251.2637
27	6.928955	30.09677	69.59879	125.4354	135.5878	197.6067	261.6061
26	286.1126	357.0076	390.9532	448.0887	511.0770	525.2021	
27	286.1126	372.5999	390.9532	468.8640	512.1858	551.0671	

Weakly orthogonal polynomials: Favard's theorem [Acad. Sci. Paris 200 (1935) 2053] For any three-term recurrence relation of the form $\Phi_{n+1} = (E - a_n) \Phi_n - b_n \Phi_{n-1},$ with $b_n = 0$ for n < 0 and $b_K = 0$ for some K,

Weakly orthogonal polynomials:

Favard's theorem [Acad. Sci. Paris 200 (1935) 2053]

For any three-term recurrence relation of the form

$$\Phi_{n+1}=(E-a_n)\Phi_n-b_n\Phi_{n-1}$$

with $b_n = 0$ for $n \le 0$ and $b_K = 0$ for some K, \exists a linear functional \mathcal{L} acting on polynomials p as

$$\mathcal{L}(p) = \int_{-\infty}^{\infty} p(E) \omega(E) dE,$$

such that the polynomials $\Phi_n(E)$ are orthogonal

$$\mathcal{L}(\Phi_n\Phi_m) = \mathcal{L}(E\Phi_n\Phi_{m-1}) = N_n\delta_{nm}.$$

 $N_n \equiv$ squared norms of Φ_n $\omega(E) \equiv$ measure

Andreas Fring

Norms can be computed in two alternative ways:

i) \mathcal{L} (three-term relation $\times \Phi_{n-1}$): $N_n^{\Phi} = \mathcal{L}(\Phi_n^2) = \mathcal{L}(E\Phi_{n-1}\Phi_n) = \prod_{k=1}^n b_k$ Norms can be computed in two alternative ways:

- i) \mathcal{L} (three-term relation $\times \Phi_{n-1}$): $N_n^{\Phi} = \mathcal{L}(\Phi_n^2) = \mathcal{L}(E\Phi_{n-1}\Phi_n) = \prod_{k=1}^n b_k$
- ii) compute the measure:

$$\omega(E) = \sum_{k=1}^{\ell} \omega_k \delta(E - E_k)$$

 E_k are the ℓ roots of the polynomial $\Phi(E)$.

Norms can be computed in two alternative ways:

- i) \mathcal{L} (three-term relation $\times \Phi_{n-1}$): $N_n^{\Phi} = \mathcal{L}(\Phi_n^2) = \mathcal{L}(E\Phi_{n-1}\Phi_n) = \prod_{k=1}^n b_k$
- ii) compute the measure:

$$\omega(E) = \sum_{k=1}^{\ell} \omega_k \delta(E - E_k)$$

 E_k are the ℓ roots of the polynomial $\Phi(E)$.

Norms for the case at hand:

$$N_n^P = 2\zeta^{2n}(1+\lambda)^{2n} \left(\frac{1-N}{1+\lambda}\right)_n \left(\frac{\lambda+N}{1+\lambda}\right)_n, \quad n = 1, 2, 3, \dots$$
$$N_n^Q = \frac{1}{2(N+\lambda)(1-N)}N_n^P, \quad n = 2, 3, 4, \dots$$

Andreas Fring

Measures for the case at hand: For $N = 3 + 2\lambda$:

$$\begin{split} \omega_{1}^{c} &= \frac{1}{3} - \frac{\left(260 - 60\hat{\zeta}^{2}\right)\Omega + \left(3\hat{\zeta}^{2} + 4\right)\Omega^{2} + 20\Omega^{3}}{12\left[\left(13 - 3\hat{\zeta}^{2}\right)^{2} + \left(13 - 3\hat{\zeta}^{2}\right)\Omega^{2} + \Omega^{4}\right]}, \\ \omega_{2}^{c} &= \chi_{-2}, \qquad \omega_{3}^{c} = \chi_{2}, \\ \chi_{\ell} &= \frac{1}{3} + \frac{\left(3\hat{\zeta}^{2} - 20\Omega + 4\right)\left(1 + 2e^{\frac{i\pi\ell}{3}}\right)}{36(3\hat{\zeta}^{2} + \Omega^{2} - 13)} \\ &+ \frac{4 + 3\hat{\zeta}^{2} - 20e^{\frac{i\pi\ell}{3}}\Omega}{12\left(1 + 2e^{\frac{i\pi\ell}{3}}\right)\left(3\hat{\zeta}^{2} - 13\right) + \left(1 - e^{\frac{i\pi\ell}{3}}\right)\Omega^{2}} \end{split}$$

Andreas Fring
Confirm with in two alternative ways:

$$\begin{split} \mathcal{N}_{0}^{P} &= \mathcal{L}(P_{0}^{2}) = \omega_{1}^{c} + \omega_{2}^{c} + \omega_{3}^{c} = 1, \\ \mathcal{N}_{1}^{P} &= \mathcal{L}(P_{1}^{2}) = \omega_{1}^{c}P_{1}^{2}(E_{3}^{c,0}) + \omega_{2}^{c}P_{1}^{2}(E_{3}^{c,-2}) + \omega_{3}^{c}P_{1}^{2}(E_{3}^{c,2}) \\ &= -12\hat{\zeta}^{2}, \\ \mathcal{N}_{2}^{P} &= \mathcal{L}(P_{2}^{2}) = \omega_{1}^{c}P_{2}^{2}(E_{3}^{c,0}) + \omega_{2}^{c}P_{2}^{2}(E_{3}^{c,-2}) + \omega_{3}^{c}P_{2}^{2}(E_{3}^{c,2}) \\ &= 48\hat{\zeta}^{4} \\ \mathcal{L}(P_{1}P_{2}) &= \omega_{1}^{c}P_{1}(E_{3}^{c,0})P_{2}(E_{3}^{c,0}) + \omega_{2}^{c}P_{1}(E_{3}^{c,-2})P_{2}(E_{3}^{c,-2}) \\ &+ \omega_{3}^{c}P_{1}(E_{3}^{c,2})P_{2}(E_{3}^{c,2}) = 0. \end{split}$$

Similarly we can compute the momentum functionals in two alternative ways.

• Euclidean Lie algebraic systems provide a new framework

- Euclidean Lie algebraic systems provide a new framework
- *E*₂-quasi exactly solvability is viable

- Euclidean Lie algebraic systems provide a new framework
- *E*₂-quasi exactly solvability is viable
- The double scaling limit yields good results for $\mathcal{H}_{\mathsf{Mat}}$

- Euclidean Lie algebraic systems provide a new framework
- E₂-quasi exactly solvability is viable
- The double scaling limit yields good results for $\mathcal{H}_{\mathsf{Mat}}$

Outlook

Construct more quasi exactly models for

- Euclidean Lie algebraic systems provide a new framework
- E₂-quasi exactly solvability is viable
- The double scaling limit yields good results for $\mathcal{H}_{\mathsf{Mat}}$

Outlook

- Construct more quasi exactly models for
- Different representations, \mathcal{PT} -symmetries, higher rank, ...

- Euclidean Lie algebraic systems provide a new framework
- E₂-quasi exactly solvability is viable
- The double scaling limit yields good results for $\mathcal{H}_{\mathsf{Mat}}$

Outlook

- Construct more quasi exactly models for
- Different representations, \mathcal{PT} -symmetries, higher rank, ...
- Experiments?

- Euclidean Lie algebraic systems provide a new framework
- E₂-quasi exactly solvability is viable
- The double scaling limit yields good results for $\mathcal{H}_{\mathsf{Mat}}$

Outlook

- Construct more quasi exactly models for
- Different representations, \mathcal{PT} -symmetries, higher rank, ...
- Experiments?

Thank you for your attention.