
AS1051: Mathematics

0. Introduction

The aim of this course is to review the basic mathematics which you
have already learnt during A-level, and then develop it further. You
should find it almost entirely familiar, with only the occasional topic of
new material.

However, even for those parts which are familiar there will be aspects
which will be treated differently at university level. Most importantly,
you will be expected to know key facts and formulas — you should not
expect to have a formula sheet at your disposal. Thus, for example,
you will be expected to memorise all the standard integrals and
derivatives, the trigonometric identities, etc.
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You will also notice that the pace of university mathematics is much
faster than at school. This will certainly be true of the revision of A-level
material, but will also extend to the new material. In part this will be
because there will be fewer worked examples; you will be expected to
practise calculations by yourself. Also, if you do not keep up to date,
the speed of the course will make it hard for you to catch up.

In all courses it is important that you attempt the exercise sheets.
These will not be marked, but without working through them you are
very unlikely to perform well in the final exams. Tutors are very pleased
when students ask questions about material they do not understand —
you should make full use of them!
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There are several books recommended on the course webpage. My
personal recommendation would be the A-level textbook Bostock and
Chandler: Pure Mathematics (possibly together with Further Pure
Mathematics by the same authors with Rourke).

An alternative would be Jordan and Smith: Mathematical Techniques.
This goes more quickly through the basic material in this course, but
goes on to cover more advanced topics that you will see in many of
your first and second year modules.
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1. Arithmetic

In this chapter we will review the basic algebraic manipulations which
should already be familiar. First we introduce the main classes of
numbers.

1.1 Numbers

Most basic are the natural numbers, N, which consist of the positive
whole numbers 1, 2, 3, . . . (Some textbooks include 0 as a natural
number.) Note in passing that positive means > 0, and negative
means < 0. To talk about numbers ≥ 0 we say non-negative.
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The integers Z consist of all whole numbers 0,±1,±2, . . .

An integer a is divisible by another (non-zero) integer b if there exists a
third integer c such that a = bc. In this case we call b a divisor of a.
An integer p is prime if p > 1 and p has no positive divisors except 1
and p.

Although easy to define, integers are hard to completely understand.
For example, we do not have a formula for determining quickly whether
a given number is prime.

Primes are important because of
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Theorem 1.1.1: (The fundamental theorem of arithmetic)
Every positive integer has a unique prime factorisation.

Note that this results says two things: there is a factorisation as a
product of primes, and it is unique.

Example 1.1.2: 2, 522, 520 = 2× 2× 2× 3× 3× 5× 7× 7× 11× 13.

Given two non-zero integers m and n we define their highest common
factor hcf(m, n) to be the largest divisor of m and n, and the least
common multiple lcm(m, n) to be the smallest positive integer divisible
by m and n.

Example 1.1.3: If m = 60 = 2× 2× 3× 5 and n = 70 = 2× 5× 7,
then hcf(m, n) = 10 and lcm(m, n) = 420.
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The rational numbers , Q, consist of all numbers of the form r = p
q

where p and q are integers with q 6= 0. Note that there are equivalent
forms of a rational number:

p
q

=
s
t

if and only if pt = qs.

Example 1.1.4: 3
5 = 9

15 as 3× 15 = 5× 9.

We usually simplify fractions to the form r = p
q where hcf(p, q) = 1.

(Integers with hcf(p, q) = 1 are called coprime.)
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If we imagine numbers as making up a line, then in any given segment
there are infinitely many rationals. However, not every number is
rational. For example,

√
2 is not rational (this will be proved later in the

course). We will call such numbers irrational.

The real numbers, R, consist of all rational and irrational numbers.

Note that we have not given a precise definition of R, as we have not
really said what irrational numbers are. This is because R is rather
hard to define! It took most of the nineteenth century for
mathematicians to come up with a definition which actually reflected
the properties of real numbers that we ‘know’ that we require.

Remark 1.1.5: Never approximate fractions, square roots, etc., by
decimals, unless you are specifically asked for an approximate answer.
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1.2 Laws of indices

We are already familiar with basic exponents:

an =


a× · · · × a n times if n ∈ N
1 if n = 0

1
a−n if n ∈ Z and n < 0.

Here ∈ means “is an element of”. These satisfy:

an × am = an+m (an)m = anm

(ab)n = anbn (a/b)n = (an)/(bn)
(1)

for all a, b 6= 0.
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For a > 0 we want to define ar for all r ∈ Q. This can even be done for
all r ∈ R, but we will not do so here.

First, for n ∈ N, let x = a
1
n be the positive real x such that xn = a. We

also write n√a for a
1
n . Such an x always exists and is unique.

Now we can define ar for any r = p
q with p, q ∈ N and q non-zero by

a
p
q = (a

1
q )p and a−

p
q =

(
a

p
q

)−1
.

If r = p
q = s

t then this gives the same answer as using (a
1
t )s also, so

this is well defined.
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We still have the properties in equation (1) for rational powers.

Example 1.2.1: Evaluate 9−
1
2 +

(16
81

) 5
4 .

9−
1
2 +

(
16
81

) 5
4

=
1
3

+

(
2
3

)5

=
1
3

+
32
243

=
113
243

.

Example 1.2.2: Prove that
√

3 + 2
√

2 = 1 +
√

2.

Let x = 1 +
√

2. Then x > 0 and

x2 = (1 +
√

2)2 = 1 + 2
√

2 + 2 = 3 + 2
√

2.
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1.3 The binomial theorem

For n ∈ N and a, b ∈ R we have

(a + b)n = an + nan−1b + n(n−1)
2 an−2b2 + · · ·

· · ·+ n(n−1)(n−2)···(n−r+1)
2×3×···×r an−r br + · · ·+ bn.

We write a! for a(a− 1) · · ·3× 2× 1. Then the coefficient of an−r br

above can be written as
n!

r !(n − r)!

which we denote by nCr or
(n

r

)
(and pronounce “n choose r ”).

Example 1.3.1:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3.
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We can arrange the nCr into a triangle, called Pascal’s triangle.

1C0 1C1

2C0 2C1 2C2

3C0 3C1 3C2 3C3
...

1 1
1 2 1

1 3 3 1
1 4 6 4 1

...
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From the triangle it appears that each entry is the sum of the two
entries above it — but an example is not a proof! However, this does
turn out to be true.

Theorem 1.3.2: For n ≥ 1 and 1 ≤ r ≤ n we have

nCr−1 + nCr = n+1Cr .

Proof:

nCr−1 + nCr = n!
(r−1)!(n−r+1)! + n!

r !(n−r)!

= n!
r !(n−r+1)! [r + (n − r + 1)] = (n+1)!

r !(n−r+1)! = n+1Cr .

�
Here the box at the end denotes the end of the proof.
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Example 1.3.3: Find the term independent of x in the expansion of(
3x − 5

x3

)8

.

Here n = 8, a = 3x , and b = −5/x3.
The general term is

8!

r !(8− r)!
(3x)8−r

(
−5
x3

)r

=
8!

r !(8− r)!
38−r (−5)r x8−4r .

The power of x in this term is zero when r = 2, and so the required
term is

8!

2!6!
36(−5)2 = 700× 36.
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1.4 Permutations and combinations

Suppose we have a collection of n distinct objects. We can ask how
many ways we can choose r objects from them if

we do care what order we choose them in;
we do not care what order we choose them in.

The first case is called the number of permutations and the second the
number of combinations.

Example 1.4.1: From 1, 2, 3 we have six permutations of two elements

1, 2 1, 3 2, 1 2, 3 3, 1 3, 2

and the following three combinations

1, 2 1, 3 2, 3.
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In general the number of permutations of r objects from a set of n
distinct objects is given by

nPr =
n!

(n − r)!

and the number of combinations is just nPr/r Pr , which equals

nCr =
n!

r !(n − r)!
.

Note that this is the same as the coefficient in the binomial theorem.
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1.5 Polynomials

A polynomial of degree n in x is a function p(x) of the form

p(x) = anxn + an−1xn−1 + · · · · · ·+ a1x + a0

where a0, a1, . . . , an are constants with an 6= 0.

We call degree 2 polynomials quadratic, degree 3 cubic etc.
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Traditionally we write quadratics in the form

ax2 + bx + c.

To complete the square we write a quadratic in the form

a((x + d)2 + e)

for some constants a, d , and e. In this case the roots (if they exist) are
given by

x = −d ±
√
−e

and if a is positive (respectively negative) then the minimum
(respectively maximum) occurs at x = −d , and equals ae.
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Example 1.5.1: We will complete the square for the following
quadratic.

f (x) = 3x2 + 2x − 4
= 3

(
x2 + 2x

3 −
4
3

)
= 3

((
x + 1

3

)2 − 13
9

)
has roots x = −1

3 ±
√

13
9 and a minimum at x = −1

3 of −13
3 .
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It is well known that the roots of ax2 + bx + c are given by the formula

x =
−b ±

√
b2 − 4ac

2a
.

So we have
two distinct roots if b2 − 4ac > 0,
one root if b2 − 4ac = 0,
no roots if b2 − 4ac < 0.
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If we denote the roots by α and β then we have

f (x) = a(x − α)(x − β) = ax2 + bx + c

and so
a(x2 − (α + β)x + αβ) = ax2 + bx + c.

From this we deduce that

α + β = −b
a

and αβ =
c
a

.

Similar formulas can be deduced for cubics, quartics, etc.
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Example 1.5.2: If the roots of x2 + 5x + 3 = 0 are α and β, find the
quadratic equation with roots α3 and β3.

We have α + β = −5 and αβ = 3. So

α3 + β3 = (α + β)3 − 3α2β − 3αβ2

= −125− 3αβ(α + β)
= −125− 9(−5) = −80.

and α3β3 = (αβ)3 = 27. Thus the required equation is

x2 + 80x + 27 = 0.
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Returning to general polynomials, we can easily add and multiply them
to form new polynomials. However, p(x)/q(x) is not in general a
polynomial.
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Example 1.5.3: Let p(x) = x2 + 1 and q(x) = x − 2. Then

p(x) + q(x) = x2 + x − 1

and
p(x)q(x) = (x2 + 1)(x − 2) = x3 − 2x2 + x − 2.

For p(x)/q(x) we have

x + 2
x − 2 |x2 + 0x + 1

x2 − 2x
2x + 1
2x − 4

5
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and so p(x)/q(x) equals

x2 + 1
x − 2

= x + 2 +
5

x − 2
.

Let p(x) be a polynomial of degree n and divide p(x) by x − a, where a
is a constant:

p(x)

x − a
= q(x) +

r
x − a

where q(x) is a polynomial and r is a constant, i.e.

p(x) = (x − a)q(x) + r .

From this we deduce
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Theorem 1.5.4: If p(x) is a polynomial with p(a) = r then

p(x) = (x − a)q(x) + r

for some polynomial q(x).

When r 6= 0 this is called the remainder theorem and when r = 0 it is
called the factor theorem.

Example 1.5.5: Factorise

f (x) = x3 − 7x2 + 7x + 15.

We try some numbers: f (0) = 15, f (1) = 16, f (−1) = 0, and so x + 1
is a factor.

f (x) = (x + 1)(x2 − 8x + 15)
= (x + 1)(x − 3)(x − 5).
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Fact: Every polynomial can be factorised into linear and/or quadratic
terms.

If p(x) = anxn + · · ·+ a0 has n distinct roots x1, . . . , xn, then

p(x) = an(x − x1)(x − x2) · · · (x − xn).
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Standard results (to be memorised):

x2 − a2 = (x − a)(x + a)
x3 − a3 = (x − a)(x2 + ax + a2)
xn − an = (x − a)(xn−1 + axn−2 + a2xn−3 + · · ·+ an−2x + an−1)

When n is odd we can get a formula for xn + an from the last one by
replacing a by (−a). However, there is no simple formula for the case n
even.
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The method of undetermined coefficients

If two polynomials are identical — i.e. are equal for every value of x —
then the coefficients of like terms are equal.

Example 1.5.6: Find a, b, c, d such that

r3 = ar(r − 1)(r − 2) + br(r − 1) + cr + d .

Expanding we see that

r3 = a(r3 − 3r2 + 2r) + b(r2 − r) + cr + d
= ar3 + (b − 3a)r2 + (2a− b + c)r + d .

Therefore a = 1, b − 3a = 0, 2a− b + c = 0 and d = 0; i.e. a = 1,
b = 3, c = 1, and d = 0.
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1.6 Rational functions

A rational function is a function of the form p(x)
q(x) where p(x) and q(x)

are polynomials with q(x) not identically zero. (That is, there is at least
one value of x for which q(x) 6= 0.) For example

x2 + 6x + 4
x2 − 5

and
x + 7

3x7 − 2x + 1
.

We can add or subtract rational functions just like we do ordinary
fractions. We can also simplify them in the same way (by removing
common factors from the top and bottom).

A proper rational function is one where the degree of the numerator is
less than the degree of the denominator. Otherwise we say the
function is improper. For example, the first fraction above is improper,
the second proper.

Anton Cox (City University) AS1051 Week 1 Autumn 2007 31 / 37

There is a second way to simplify a rational function which has a
product of factors in the denominator, using partial fractions. To do this
to a fraction p(x)/q(x) we use the following procedure:

Step 1: Simplify p/q to form a proper rational function.

Step 2: Factorise the denominator into linear and quadratic factors.
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Step 3: If q has n factors, write the fraction as a sum of n terms using
the following correspondence between factors of q and summands:

(x − a)r ←→ A1

x − a
+

A2

(x − a)2 + · · ·+ Ar

(x − a)r

(ax2+bx+c)r ←→ A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2 +· · ·+ Ar x + Br

(ax2 + bx + c)r

where Ai and Bi (with 1 ≤ i ≤ r ) are constants.

The total number of constants equals the degree of the denominator.
These constants can be determined by using the method of
undetermined coefficients.
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Example 1.6.1:

x + 5
(x − 3)(x + 1)

=
A

x − 3
+

B
x + 1

.

Therefore
x + 5 = A(x + 1) + B(x − 3).

We could equate coefficients, instead we substitute values chose to
make most terms disappear. Substituting x = −1 and x = 3 we obtain

4 = −4B and 8 = 4A

i.e. A = 2 and B = −1.
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Example 1.6.2:

2x2 + x − 2
x3(x − 1)

=
A
x

+
B
x2 +

C
x3 +

D
x − 1

.

Therefore

2x2 + x − 2 = Ax2(x − 1) + Bx(x − 1) + C(x − 1) + Dx3.

Substituting x = 0 and x = 1 we obtain

−2 = −C and 1 = D

Comparing coefficients of the x3 terms and the x2 terms we obtain

0 = A + D and 2 = −A + B

and hence A = −1, B = 1, C = 2, D = 1.
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Example 1.6.3:

5x − 12
(x + 2)(x2 − 2x + 3)

=
A

x + 2
+

Bx + C
x2 − 2x + 3

as x2 − 2x + 3 cannot be factorised. Therefore

5x − 12 = A(x2 − 2x + 3) + (Bx + C)(x + 2).

Substituting x = −2 we obtain A = −2. By comparing coefficients of
the x2 terms and constant terms we obtain B = 2 and C = −3.
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Example 1.6.4:

3x3 − x2 + 2
x(x2 − 1)

=
3(x3 − x)− x2 + 3x + 2

x(x − 1)(x + 1)

= 3− (x2 − 3x − 2)

x(x − 1)(x + 1)
.

Now
(x2 − 3x − 2)

x(x − 1)(x + 1)
=

A
x

+
B

x − 1
+

C
x + 1

and we can show that A = 2, B = −2 and C = 1. Therefore

3x3 − x2 + 2
x(x2 − 1)

= 3− 2
x

+
2

x − 1
− 1

x + 1
.
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