
2.4 Logarithm and exponential functions

We first consider the function
f (x) = ln(x) = loge(x), the natural
logarithm. This is defined for x > 0
by

ln(x) =

∫ x

1

1
t

dt .

Clearly we have that ln(1) = 0 and,
as d

dx ln(x) = 1
x > 0, the function is

increasing. Therefore ln(x) is
injective:

1 x

ln(a) = ln(b) if and only if a = b.
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The function ln satisfies properties
similar to those for indices:

ln(ab) = ln(a) + ln(b)
ln(ap) = p ln(a)

ln(a−1) = − ln(a)
ln(a

b ) = ln(a)− ln(b)

for all a, b > 0 and p ∈ R.

1

ln(x)
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Example 2.4.1: Find the domain of ln(x2 − 2x − 3).
We need x2 − 2x − 3 > 0, i.e. (x + 1)(x − 3) > 0.
Thus either x < −1 or x > 3.

Next we consider the exponential function f (x) = exp(x) = ex . We set
y = exp(x) if and only if x = ln(y), so exp is the inverse function to ln.
Clearly exp(0) = 1. We define e = exp(1), so

1 =

∫ e

1

1
t

dt

and ln(e) = 1.
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The function exp satisfies

exp(a) exp(b) = exp(a + b)
exp(ln(x)) = x = ln(exp(x))

exp(−x) = (exp(x))−1 1

exp( x)
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Example 2.4.2: If

ln y − ln(y + 3) + ln 4 = 3x + 2 ln x

then find y in terms of x .
Simplifying we obtain

ln
(

4y
y + 3

)
= ln(x2e3x)

and hence
4y

y + 3
= x2e3x .

Rearranging, we see that

4y = x2e3x(y + 3) and so y =
3x2e3x

4− x2e3x .

Anton Cox (City University) AS1051 Week 3 Autumn 2007 5 / 37

We can also define logarithms to other bases. For a > 0 and y > 0 set

loga(y) = x if y = ax .

Then
loga(a) = 1

loga(xy) = loga x + loga y
loga(x

p) = p loga x

as for natural logarithms.

To change base, suppose that u = loga c. Then au = c and

u logb a = logb c.

From this we deduce that

loga c =
logb c
logb a

.

In particular, if b = c then

loga c =
1

logc a
.
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Example 2.4.3: Solve 2 log6 x + logx 6 = 3.
First note that for this to be defined we must have x > 0.
Using the rules above we have

2 log6 x +
1

log6 x
= 3

which becomes

2(log6 x)2 − 3 log6 x + 1 = (2 log6 x − 1)(log6 x − 1) = 0.

Thus log6 x = 1
2 or 1, i.e. x =

√
6 or 6.
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We have defined exp(x) as the inverse function to ln(x), but often
denote it by ex as though it was a power. This is because it is possible
to show that

exp(x) = ex

where

e = lim
n→∞

(
1 +

1
n

)n

≈ 2.71828.
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2.5 Solving simultaneous equations

Some sets of equations are too complicated to solve. There may be no
exact method for determining solutions, and we may need to use
approximate (numerical) solutions. However, here we will concentrate
on some simple classes of equations where we can give a procedure
for determining the solutions (if any).
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First consider the solution of one linear and one quadratic equation.

Example 2.5.1: Solve

x − y = 2
2x2 − 3y2 = 15.

We will reduce the second equation to one involving a single variable
by substitution, using the first.

2(y + 2)2 − 3y2 = 15

which simplifies to
y2 − 8y + 7 = 0

i.e. y = 1 or y = 7. Therefore the solutions are y = 1 and x = 3, y = 7
and x = 9.
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We use the method of substitution in many settings. With this as with
all methods, we need to be careful that our solutions make sense.

Example 2.5.2: Solve

x − sin θ = 2
2x2 − 3(sin θ)2 = 15.

Using Example 2.5.1 with y = sin θ we see that sin θ = 1 or sin θ = 7.
But the latter is impossible, and so the only solutions are sin θ = 1 and
x = 3, i.e.

θ =
π

2
+ 2nπ (n ∈ Z) and x = 3.
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Now suppose that we have several equations, each involving several
variables, but where all the equations are linear (i.e. involve no
products or powers of variables). For example

2x +4y +z = 7
3x +2y +z = 1.

To solve such equations systematically we use the following
procedure. We assume the variables are ordered in some arbitrary
way (e.g. x first, then y , then z).
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Step 1: Take the first variable, and if necessary reorder the equations
so that the first equation contains this variable.

Step 2: Rescale this equation so that the first variable has coefficient
1. Subtract multiples of this equations from the rest to remove all other
occurrences of this variable.

Step 3: Take the remaining equations and consider the next variable
remaining. Repeat the first two steps for this variable.

Step 4: Repeat Step 3 until no equations, or no variables, remain.
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Example 2.5.3: Solve

3x +6y +6z = 12
2x +4y +6z = 6

x +2y +4z = 2.

The first equation involves x , so no need to reorder. Rescaling we
obtain

x +2y +2z = 4
2x +4y +6z = 6

x +2y +4z = 2.
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Subtracting twice the first equation from the second, and the first from
the third, we obtain

x +2y +2z = 4
2z = −2
2z = −2.

The next remaining variable is z. Consider the last two equations. The
first involves z so there is no need to reorder. Rescaling we get

z = −1
2z = −2

and subtracting twice the first from the second equation eliminates that
equation.
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Thus we are left with

x +2y +2z = 4
z = −1.

This has general solution z = −1 and x + 2y = 6. Note that there are
many particular solutions, one for each choice of x (or of y ).

Once we have reduced our system of equations by the above
procedure, solutions are determined by substitution, as in the example.
There may be no, one, or many solutions.
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Example 2.5.4: Solve

x +y +z = 7
x +2y +z = 4
x +2y +2z = 5.

This reduces to
x +y +z = 7

y = −3
y +z = −2

and then to
x +y +z = 7

y = −3
z = 1.

The unique solution is z = 1, y = −3, x = 9.
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Example 2.5.5: Solve

x +y +z = 7
x +2y +2z = 4

2x +3y +3z = 5.

This reduces to
x +y +z = 7

y +z = −3
y +z = −9

and then to

x +y +z = 7
y +z = −3

0 = −6.

This example has no solutions.

Anton Cox (City University) AS1051 Week 3 Autumn 2007 18 / 37

While this method may seem complicated in such simple examples, it
has the advantage that it works for many equations in many unknowns.
Using an ad hoc method, while occasionally quicker, will often lead to
confusion.

You will consider this procedure in more detail in the Algebra module,
using matrices.
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Solving inequalities

If we wish to solve an equation of the form f (x) > 0 we usually need to
solve f (x) = 0 along the way. We also need to be careful if we change
the nature of the equation.

Let a, b, and k be real numbers. If a > b then

a± k > b ± k for all k
ka > kb for all k > 0
ka < kb for all k < 0.
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Example 2.6.1: Solve

x3 − 2x2 ≤ x − 2.

First solve x3 − 2x2 − x + 2 = 0.
Factorising we have

(x − 1)(x + 1)(x − 2) = 0.

+− − +

−1 1 2
Therefore we must have x ≤ −1 or 1 ≤ x ≤ 2.
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Example 2.6.2: Solve
x − 2
x − 5

> 3.

Method 1:
x − 2
x − 5

− 3 > 0 so
13− 2x

x − 5
> 0.

Therefore either 13− 2x > 0 and x − 5 > 0; i.e. 5 < x < 13
2

or 13− 2x < 0 and x − 5 < 0 which is impossible.

So solution is 5 < x < 13
2 .
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Method 2: Multiply both sides of the inequality by (x − 5)2. We know
that this is positive (unless x = 5 where the inequality is not defined),
so we know how this effects the inequality.

(x − 5)(x − 2) > 3(x − 5)2

can be rearranged to

(x − 5)(x − 2− 3(x − 5)) > 0

and so
(x − 5)(13− 2x) > 0.

Now solve as in Example 2.6.1.
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Method 3: Sketch the curve.

x=5

y=3

y=1

From the graph we can see that the desired solution lies in the shaded
region. We now have to find the exact point of intersection (i.e. solve
the equality).
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Example 2.6.3: Solve ∣∣∣∣2x − 1
x + 2

∣∣∣∣ < 3.

Both sides are positive, so squaring each side does not change the
inequality. (

2x − 1
x + 2

)2

< 9.

As (x + 2)2 is positive whenever the inequality is defined we have

(2x − 1)2 < 9(x + 2)2.

Simplifying we obtain

5x2 + 40x + 35 > 0 or (x + 1)(x + 7) > 0.

Considering intermediate values we see that the solution is x < −7 or
x > −1.
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3. Geometry

3.1 Coordinate systems

In two dimensions we use two systems of coordinates: Cartesian and
polar.

Cartesian coordinates are expressed in terms of orthogonal (i.e.
right-angled) axes.

x

y

a

b

P=(a,b)

0
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Polar coordinates are expresed in terms of a length and an angle with
respect to a fixed axis containing the origin.

P=(r, θ)

θ
0

r

Here r > 0 and θ is chosen from a fixed set of representatives of all
angles: either 0 ≤ θ < 2π or −π < θ ≤ π.

The choice of coordinate system depends on the context, as certain
curves may be more simply expressed in one form rather than the
other.

For example a circle about the origin has polar equation r = a.
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We can convert between systems.

x

y

a

b

0

P

θ
r

Polar to Cartesian:

x = r cos θ y = r sin θ.

Cartesian to polar:

r =
√

x2 + y2 θ = tan−1
(y

x

)
.
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Example 3.1.1: Find the Cartesian form of the polar equation

r = 2A cos θ.

We have x
r

= cos θ and r2 = x2 + y2.

Thus the equation becomes

r =
2Ax

r
or r2 = 2Ax .

So
x2 + y2 = 2Ax

(which is the equation of a circle).
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3.2 Lines

Given two points
A = (x1, y1) and
B = (x2, y2),
Pythagoras’s theorem
implies that the distance
between A and B is

A

B

Xx − x

y − y

1 2

1 2

θ

√
(x1 − x2)2 + (y1 − y2)2.

The midpoint of the line connecting A and B is the point

(x1 +
1
2
(x2 − x1), y1 +

1
2
(y2 − y1)) =

1
2
(x1 + x2, y1 + y2).
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The gradient of the line joining A and B is defined to be

m =
y2 − y1

x2 − x1
= tan θ

where θ is the angle the line makes with the x-axis. This definition
does not make sense for vertical lines, which we regard as having
infinite gradient.

The equation of our line (if not vertical) is given by

y = mx + c

where c is the intercept, the value of y at x = 0. For vertical lines the
equation takes the form

x = d .
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Any line can be written in the form

ax + by + c = 0

for some choice of a, b, and c.

Given the gradient of a line and a point (a, b) lying on it, the equation
of the line is given by

y − b = m(x − a)

(with the obvious modification for vertical lines).
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Now suppose we have two perpendicular (non-vertical) lines.

θ1

θ
2

y=m x+c

y=m x+c

1 1

22 2

m1 = tan θ1 m2 = tan θ2

and θ2 − θ1 = π
2 .

Then
tan(θ2 − θ1) =

tan θ2 − tan θ1

1 + tan θ2 tan θ1

and we must have
1 + tan θ2 tan θ1 = 0

i.e. m1m2 = −1.

So two lines are perpendicular if and only if m1m2 = −1, or one line is
horizontal and the other vertical.
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Example 3.2.1: Find the equation of the line through (1, 2) and
perpendicular to

3x − 7y + 2 = 0

and find where these lines meet.

Our line is y − 2 = m(x − 1), and the given line is y = 3x
7 + 2

7 . Thus
3
7m = −1 and m = −7

3 . Substituting, we obtain

y = −7
3

x +
13
3

or 3y + 7x = 13. The lines meet when 3y + 7x = 13 and
3x − 7y = −2, i.e. at x = 85

58 and y = 53
58 .
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3.3 Circles

The circle of radius r and centre (a, b) has equation

(x − a)2 + (y − b)2 = r2.

For example, the circle of radius 2 about (−2, 3) has equation

(x + 2)2 + (y − 3)2 = 4.

Expanding, we see that any equation of the form

x2 + y2 + ex + fy + g = 0

for some constants e, f , and g, is a circle.
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Example 3.3.1: Find the equation of the tangent to

x2 + y2 − 4x + 10y − 8 = 0

at the point A = (3, 1).

Rearranging, we have the
equation

(x − 2)2 + (y + 5)2 = 37.

The centre is at C = (2,−5).
The gradient of the line AC is

1− (−5)

3− 2
= 6.

(3,1)

The tangent is perpendicular to this, so has gradient −1
6 , and hence

equation

(y − 1) = −1
6
(x − 3)
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Example 3.3.2: Find the points of intersection of the circles

x2 + y2 − 2x − 4y − 20 = 0
x2 + y2 − 32x − 2y + 88 = 0

and the equation of the line through these points.

If both equations hold then their
difference equals zero:

30x − 2y − 108 = 0

and so the line of intersection is

y = 15x − 54.

For the points of intersection, substitute for y in one of the circles.

x2 + (15x − 54)2 − 2x − 4(15x − 54)− 20 = 0

i.e. (x − 4)(226x − 778) = 0, so x = 4, y = 6 or x = 389
113 , y = −267

113 .
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