
CHAPTER 1

Algebras and modules

In this course we will be interested in the representation theory of finite dimensional algebras
defined over a field. We begin by recalling certain basic definitions concerning fields.

DEFINITION 1.0.1. A field k isalgebraically closedif every non-constant polynomial with
coefficients in k has a root in k. A field hascharacteristicp if p is the smallest positive integer such
that

p

∑
i=1

1= 0.

If there is no such p then the field is said to havecharacteristic 0. A field isinfinite if it contains
infinitely many elements.

Henceforthk will denote some field.

1.1. Associative algebras

DEFINITION 1.1.1. Analgebra overk, or k-algebrais a k-vector space A with a bilinear map

A×A −→ A
(x,y) 7−→ xy.

We say that the algebra isassociativeif for all x,y,z∈ A we have

x(yz) = (xy)z.

An algebra A isunital if there exists an element1∈ A such that1x= x1= x for all x∈ A. Such an
element is called theidentity in A. (Note that such an element is necessarily unique.) We say that
an algebra isfinite dimensionalif the underlying vector space is finite dimensional. An algebra A
is commutativeif xy= yx for all x,y∈ A.

It is common to abuse terminology and take algebra to mean an associative unital algebra, and
we will follow this convention. There are several importantclasses of non-associative algebras (for
example Lie algebras) but we shall not consider them here.Thus all algebras we consider will
be associative and unital.

EXAMPLE 1.1.2. (a) Let k[x1, . . . ,xn] denote the vector space of polynomials in the (commut-
ing) variables x1, . . . ,xn. This is an infinite dimensional commutative algebra with multiplication
given by the usual multiplication of polynomials, and identity given by the trivial polynomial1.

(b) Let k〈x1, . . . ,xn〉 denote the vector space of polynomials in thenon-commutingvariables
x1, . . . ,xn. A general element is of the form∑n

i=1λiwi for some n where for each i,λi ∈ k and
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wi = xa1
i1

xa2
i2
. . .xat

it for some t. Given two elements∑n
i=1λiwi and∑m

i=1λ ′
i w

′
i the product is defined to

be the element
n

∑
i=1

m

∑
j=1

λiλ ′
i wiw

′
j

where wiw j denotes the element obtained from wi and wj by concatenation. This is an infinite
dimensional associative algebra with identity given by thetrivial polynomial1. If n > 1 then the
algebra is non-commutative.

(c) Given a group G, we denote by kG thegroup algebraobtained by considering the vector
space of formal linear combinations of group elements. Given two elements∑n

i=1 λigi and∑m
i=1 µihi

with λi,µi ∈ k and gi ,hi ∈ G we define the product to be the element
n

∑
i=1

m

∑
j=1

λiµ jgih j .

The identity element is the identity element e∈ G regarded as an element of kG. The algebra kG is
finite dimensional if and only if G is a finite group, and is commutative if and only if G is abelian.

(d) The set Mn(k) of n×n matrices with entries in k is a finite dimensional algebra, thema-
trix algebra, with the usual matrix multiplication, and identity element the matrix I. If n> 1 it
is non-commutative. Equivalently, let V be an n-dimensional k-vector space, and consider the
endomorphism algebra

Endk(V) = { f : V −→V | f is k-linear}.

This is an algebra with multiplication given by compositionof functions. Fixing a basis for V the
elements ofEndk(V) can be written in terms of matrices with respect to this basis, and in this way
we can identifyEndk(V) with Mn(k).

(e) If A is an algebra then so is Aop, theopposite algebra, which equals A as a vector space,
but with multiplication map(x,y) 7−→ yx.

As usual in Algebra, we are not just interested in objects (inthis case algebras), but also in
functions between them which respect the underlying structures.

DEFINITION 1.1.3. A homomorphismbetween k-algebras A and B is a linear mapφ : A−→ B
such thatφ(1) = 1 andφ(xy) = φ(x)φ(y) for all x,y∈ A. This is anisomorphismprecisely when
the linear map is a bijection.

DEFINITION 1.1.4. Given an algebra A, asubalgebraof A is a subspace S of A containing1,
such that for all x,y∈ S we have xy∈ S. Aleft (respectively right) idealin A is a subspace I of A
such that for all x∈ I and a∈ A we have ax∈ I (respectively xa∈ I). If I is a left and a right ideal
then we say that I is anideal in A.

EXAMPLE 1.1.5. (a) If H is a subgroup of a group G, then kH is a subalgebra of kG.

(b) Given two algebras A and B, and a homomorphismφ : A−→ B, the setim(φ) is a subal-
gebra of B, whileker(φ) is an ideal in A.

Idempotents play a crucial role in the analysis of algebras.

DEFINITION 1.1.6. An element e∈ A is anidempotentif e2 = e. Two idempotents e1 and e2 in
A areorthogonalif

e1e2 = e2e1 = 0.
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An idempotent e is calledprimitive if it cannot be written in the form e= e1+e2 where e1 and e2
are non-zero orthogonal idempotents. An idempotent e iscentralif ea= ae for all a∈ A.

1.2. Modules

Representation theory is concerned with the study of the wayin which certain algebraic objects
(in our case, algebras) act on vector spaces. There are two ways to express this concept; in terms
of representations or (in more modern language) in terms of modules.

DEFINITION 1.2.1. Given an algebra A over k, arepresentationof A is an algebra homomor-
phism

φ : A−→ Endk(M)

for some vector space M. Aleft A-moduleis a k-vector space M together with a bilinear map
A×M −→ M, which we will denote by(a,m) 7−→ am, such that for all m∈ M and x,y∈ A we have
1m= m and(xy)m= x(ym). Similarly, aright A-moduleis a k-vector space M and a bilinear map
φ : M×A−→ M such that m1= m and m(xy) = (mx)y for all m∈ M and x,y∈ A. We will adopt
the convention that all modules are left modules unless stated otherwise.

DEFINITION 1.2.2. An A-module isfinite dimensionalif it is finite dimensional as a vector
space. An A-module M isgeneratedby a set{m1 : i ∈ I} (where I is some index set) if every
element m of M can be written in the form

m= ∑
i∈I

aimi

for some ai ∈ A. We say that M isfinitely generatedif it is generated by a finite set of elements. If
A is a finite dimensional algebra then M is finitely generated if and only if M is finite dimensional.

LEMMA 1.2.3. (a) There is a natural equivalence between left (respectively right) A-modules
and right (respectively left) Aop-modules.
(b) There is a natural equivalence between representationsof A and left A-modules.

PROOF. We give the correspondence in each case; details are left tothe reader. Given a left
moduleM for A with bilinear mapφ : A×M −→ M, define a rightAop-module structure onM
via the mapφ ′ : M ×A −→ M given byφ ′(m,x) = φ(x,m). It is easy to verify thatφ is anAop-
homomorphism.

Given a representationφ : A −→ Endk(M) of A we define anA-module structure onM by
setting

am= φ(a)(m)

for all a∈ A andm∈ M. Conversely, given anA-moduleM, the mapM −→ M given bym 7−→ rm
is linear, and gives the desired representationφ : A−→ Endk(M). �

DEFINITION 1.2.4. A homomorphismbetween A-modules M and N is a linear mapφ : M −→
N such thatφ(am) = aφ(m) for all a ∈ A and m∈ M. This is anisomorphismprecisely when the
linear map is a bijection.

DEFINITION 1.2.5. Given an A-module M, asubmoduleof M is a subspace N of M such that
for all n∈N and a∈A we have an∈N. (Note that N is an A-module in its own right.) The quotient
space

M/N = {m+N : m∈ M}
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(under the relation m+N = m′+N if and only if m−m′ ∈ N) has an A-module structure given by
a(m+N) = am+N, and is called thequotientof M by N.

EXAMPLE 1.2.6. (a) The algebra A is a (left or right) A-module, with respect to the usual
multiplication map on A. If I is a left ideal of A then I is a submodule of the left module A.

(b) If A= k then A-modules are just k-vector spaces.

(c) If A= k[x1, . . . ,xn] then an A-module is a k-vector space M together with commuting linear
transformationsαi : M −→ M (whereαi describes the action of xi).

(d) Every A-module M has M and the empty vector space0 as submodules.

LEMMA 1.2.7 (Isomorphism Theorem).If M and N are A-modules andφ : M −→ N is a
homomorphism of A-modules then

im(φ)∼= M/ker(φ)

as A-modules.

PROOF. Copy the proof for linear maps between vector spaces, noting that the additional struc-
ture of a module is preserved. �

DEFINITION 1.2.8. If an A-module M has submodules L and N such that M= L⊕N as a
vector space then we say that M is thedirect sumof L and N. A module M isindecomposableif it
is not the direct sum of two non-zero submodules (and isdecomposableotherwise). A module M is
simple(or irreducible) if M has no submodules except M and0.

For vector spaces, the notions of indecomposability and irreducibility coincide. However, this
is not the case for modules in general.

EXAMPLE 1.2.9. Let C2 denote the cyclic group with elements{1,g}, and consider the two-
dimensional kC2-module M with basis{m1,m2} where gm1 = m2 and gm2 = m1. If M = N1⊕N2
with N1 and N2 non-zero then each Ni is the span of a vector of the formλ1m1+λ2m2 for some
λ1,λ2 ∈ k. Applying g we deduce thatλ1 = ±λ2, and hence Ni must be the span of m1−m2 or
m1+m2. But N1 = N2 if k has characteristic2, which contradicts our assumption. Thus M is never
irreducible, but is indecomposable if and only if the characteristic of k is2. We will see that this
example generalises to arbitrary group algebras when we consider Maschke’s Theorem.

There is a close relationship between the representation theory ofA andAop.

DEFINITION 1.2.10. Let M be a finite dimensional (left) A-module. Then thedual module
M∗ is the dual vector spaceHomk(M,k) with a right A-module action given by(φa)(m) = φ(am)
for all a ∈ A, m∈ M andφ ∈ Homk(M,k). By Lemma 1.2.3 this gives M∗ the structure of a left
Aop-module.

Taking the dual of anAop-module gives anA-module, and it is easy to verify (as for vector
spaces) that

LEMMA 1.2.11.For any finite dimensional A-module M we have M∗∗ ∼= M.
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1.3. Quivers

DEFINITION 1.3.1. A quiverQ is a directed graph. We will denote the set of vertices by Q0,
and the set of edges (which we callarrows) by Q1. If Q0 and Q1 are both finite then Q is afinite
quiver. Theunderlying graphQ̄ of a quiver Q is the graph obtained from Q by forgetting all
orientations of edges.

A path of lengthn in Q is a sequence p= α1α2 . . .αn where eachαi is an arrow andαi starts
at the vertex whereαi+1 ends. For each vertex i, there is a path of length0, which we denote by
εi . A quiver isacyclic if the only paths which start and end at the same vertex have length0, and
connectedif Q̄ is a connected graph.

EXAMPLE 1.3.2. (a) For the quiver Q given by

•1

α
��
•2

γ
//

δ
//β 55 •3 •ρ

oo

the set of paths of length greater than1 is given by

{β n+2,β n+1α,γβ n+1,δβ n+1,γβ nα,δβ nα : n≥ 0}.

(b) For the quiver Q given by
•1α
55 β

ii

the set of paths corresponds to words inα andβ (along with the trivial word).

(c) For the quiver Q given by

•1
α // •2

β
// •3 •4

γ
oo

the set of paths is

{ε1,ε2,ε3,ε4,α,β ,γ,βα}.

We would like to associate an algebra to a quiver; however, weneed to take a little care.

DEFINITION 1.3.3. Thepath algebrakQ of a quiver Q is the k-vector space with basis the set
of paths in Q. Multiplication is via concatenation of paths:if p = α1α2 . . .αn and q= β1β2 . . .βm
then

pq= α1α2 . . .αnβ1β2 . . .βm

if αn starts at the vertex whereβ1 ends, and is0 otherwise.

We have not yet checked that the above definition does in fact define an algebra structure on
kQ.

LEMMA 1.3.4. Let Q be a quiver. Then kQ is an associative algebra. Further kQ has an
identity element if and only if Q0 is finite, and is finite dimensional if and only if Q is finite and
acyclic.
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PROOF. The associativity of multiplication inkQ is straightforward. Next note that the ele-
mentsεi satisfy

εiε j = δi j εi

and hence form a set of orthogonal idempotents. Further, forany pathp∈ kQ we haveεi p= p if
p ends at vertexi and 0 otherwise. Hence ifQ0 is finite then

∑
i∈Q0

εi p= p.

Similarly

∑
i∈Q0

pεi = p

and hence
1= ∑

i∈Q0

εi

is the unit inkQ.

Conversely, suppose thatQ0 is infinite and 1∈ kQ. Then 1= ∑λi pi for some (finite) set of
pathspi and scalarsλi . Pick a vertexj such that for alli the pathpi does not end atj. Thenε j1= 0,
which gives a contradiction.

Finally, if Q0 or Q1 is not finite thenkQ is clearly not finite dimensional. Given a finite set
of vertices with finitely many edges, there are only finitely many paths between them unless the
quiver contains a cycle. �

EXAMPLE 1.3.5. Each of the quivers in Example 1.3.2 is finite, and so the corresponding kQ
contains a unit. However, the path algebras corresponding to 1.3.2(a) and 1.3.2(b) are not finite
dimensional. Indeed, it is easy to see that the path algebra for (b) is isomorphic to k〈x,y〉, under
the map takingα to x andβ to y. The path algebra for 1.3.2(c) is an8-dimensional algebra.

Because of Lemma 1.3.4 we will only consider finite quiversQ, so that the corresponding path
algebras are unital.

DEFINITION 1.3.6. Given a finite quiver Q, the ideal RQ of kQ generated by the arrows in Q
is called thearrow idealof kQ. Then RmQ is the ideal generated by all paths of length m in Q. An
ideal I in kQ is calledadmissibleif there exists m≥ 2 such that

Rm
Q ⊆ I ⊆ R2

Q.

If I is admissible then(Q, I) is called abound quiver, and kQ/I is a bound quiver algebra.

Note that ifQ is finite and acyclic then any ideal contained inR2
Q is admissible, asRm

Q = 0 if m
is greater than the maximal path length inQ.

EXAMPLE 1.3.7. Let Q be as in Example 1.3.2(b), and let I= 〈βα,β 2〉. This is not an ad-
missible ideal in kQ as it does not containαm for any m≥ 1, and so does not contain Rm

Q for any
m≥ 2.

PROPOSITION1.3.8. Let Q be a finite quiver with admissible ideal I in kQ. Then kQ/I is finite
dimensional.
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PROOF. As I is admissible there existsm≥ 2 such thatRm
Q ⊆ I . Hence there is a surjective al-

gebra homomorphism fromkQ/Rm
Q ontokQ/I . But the former algebra is clearly finite dimensional

as there are only finitely many paths of length less thanm. �

DEFINITION 1.3.9. A relation in kQ is a finite linear combination of paths of length at least
two in Q such that all paths have the same start vertex and the same end vertex. If{ρ j : j ∈ J} is a
set of relations in kQ such that the ideal generated by the setis admissible then we say that kQ is
bound by the relations.

EXAMPLE 1.3.10.Consider the quiver in Example 1.3.2(a) and the relations

{γβ 2α −δα,γβ +δβ ,β 5}.

Any path of length at least7 must containβ 5, and so Q is bound by this set of relations.

In fact the above example generalises: it can be shown that any idealI in R2
Q is admissible if it

contains each cycle inQ to some power. Further, we have

PROPOSITION1.3.11.Let Q be a finite quiver. Every admissible ideal in kQ is generated by a
finite sequence of relations in kQ.

PROOF. (Sketch) It is easy to check that every admissible idealI is finitely generated by some
set{a1, . . . ,an} (asRm

Q and I/Rm
Q are finitely generated). However, in general a set of generators

for I will not be a set of relations, as the paths in eachai may not all have the same start vertex and
end vertex. However, the non-zero elements in the set

{εxaiεy : 1≤ i ≤ n,x,y∈ Q0}

are all relations, and this set generatesI . �

1.4. Representations of quivers

DEFINITION 1.4.1. Let Q be a finite quiver. ArepresentationM of Q over k is a collection of k-
vector spaces{Ma : a∈ Q0} together with a linear mapφα : Ma −→ Mb for each arrowα : a−→ b
in Q1. The representation M isfinite dimensionalif all the Ma are finite dimensional.

DEFINITION 1.4.2.Given two representations M and M′ of a finite quiver Q, ahomomorphism
from M to N is a collection of linear maps fi : Mi −→ M′

i such that for each arrowα : i −→ j we
haveφ ′

α fi = f jφα .

When giving examples of representations of quivers we will usually fix bases of each of the
vector spaces, and represent the maps between them by matrices with respect to column vectors in
these bases.

EXAMPLE 1.4.3. Consider the quiver

•1
α //

δ   B
BB

BB
BB

B
•2

β
// •3 •4

γ
oo

•5

ρ

>>||||||||

.
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This has a representation

k
(1

0) //

(0
1) ��=

==
==

==
= k2

(1 1
1 0) // k2 k3

(1 2 1
0 1 0)oo

k2
(0 1

1 1)

??�������

Notice how easy it was to give a representation: there are no compatibility relations to be
checked (apart from that the linear maps go between the appropriate dimension) so examples can
be easily generated for any path algebra. This is very different from writing down explicit modules
for an algebra (in general).

Definition 1.4.1 looks rather different from that for an algebra. However, the next lemma
shows that representations ofQ correspond tokQ-modules in a natural way.

LEMMA 1.4.4. Let M be a representation of a finite acyclic quiver Q. Consider the vector
space

M′ =
⊕

a∈Q0

Ma.

This can be given the structure of a kQ-module by defining for eachα : i −→ j a mapφ ′
α : M −→M

by
φ ′

α(m1, . . . ,mn) = (0, . . . ,0,φα(mi),0, . . .0)
where the non-zero entry is in position j, and for each i∈ Q0 a mapεi : M −→ M by

εi(m1, . . . ,mn) = (0, . . . ,0,mi,0, . . . ,0)

where the non-zero entry is in position i. Conversely, suppose that N is a kQ-module. Then we
obtain a representation of Q by setting Na= εaN and definingφα for α : a−→ b to be the restriction
of the action ofα ∈ kQ to Na.

PROOF. Checking that the above definitions give akQ-module and a representation ofQ re-
spectively is routine. �

We also need the notion of a representation of a bound quiver.Note that we do not need to
assume thatQ is acyclic here, as admissible ideals guarantee that the associated quotient algebra is
finite dimensional.

DEFINITION 1.4.5. Given a path p= α1α2 . . .αn in a finite quiver Q from a to b and a repre-
sentation M of Q we define the linear mapφp from Ma to Mb by

φp = φαnφαn−1 . . .φα1.

If ρ is a linear combination of paths pi with the same start vertex and the same end vertex thenφρ
is defined to be the corresponding linear combination of theφpi . Given an admissible ideal I in kQ
we say that M isbound byI if φρ = 0 for all relationsρ ∈ I.

EXAMPLE 1.4.6. Consider the representation in Example 1.4.3. Let p= βα and q= ρδ .
Then

φp =

(

1 1
1 0

)(

1
0

)

=

(

1
1

)

φq =

(

0 1
1 1

)(

0
1

)

=

(

1
1

)

and so this representation is bound by the ideal〈βα −ρδ 〉.
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It is easy to verify that the correspondence between representation of finite acyclicQ andkQ-
modules given in Lemma 1.4.4 extends to a correspondence between representations of finiteQ
bound byI andkQ/I -modules.

The language of categories and functors is a very powerful one, and many results in repre-
sentation theory are best stated in this way. Roughly, a category is a collection ofobjects(e.g.
kQ-modules) andmorphisms(e.g. kQ-homomorphisms), and the idea is to study the category as
a whole rather than just the objects or morphisms separately. A functor is then a map from one
category to another which transports both objects and morphisms in a suitably compatible way.
In this language the above result relating bound representations of Q and kQ/I -modules gives
an equivalence between the corresponding categories. We will make this more precise in a later
chapter.

1.5. Exercises

(1) Suppose thatI is an ideal in an algebraA.

(a) Show thatA/I has an algebra structure such that there is a surjective homomorphism
from A to A/I .

(b) Suppose thatA is an algebra with idealI , and thatM is anA/I -module. Show thatM
can be given the structure of anA-module.

(c) If M is anA-module, what condition must it satisfy to be anA/I -module?

(2) Suppose that(P,≤) is a partially ordered set of cardinalityn, and definekP to be the
subset ofMn(k) given by

kP= {M = (mi j ) : mi j = 0 if i 6≤ j}.

(a) Show thatkP is a subalgebra ofMn(k) (this is called theincidence algebraof (P,≤)).
(b) Show thatP can be identified with the set{1, . . .n} in such a way thatkP can be

identified with a subalgebra of the algebraLTn(k) of lower triangular matrices in
Mn(k).

(c) Deduce that ifQ is a finite acyclic quiver with at most one arrow between each pair
of vertices, thenkQ is a subalgebra ofLTn(k) for somen.

(d) Illustrate your last construction in the case of the quiver in Example 1.3.2(c).
(e) Which quiver correspond to the whole ofLTn(k)?

(3) Suppose thatQ is a quiver, and letQop be the quiver obtained by reversing all the arrows.
Show that there is an isomorphism of algebrask(Qop)∼= (kQ)op.

(4) Suppose thatG is a group. Show thatkG∼= (kG)op.

(5) Classify the simple modules for the cyclic groupCn over an algebraically closed field of
characteristicp≥ 0.

(6) Suppose thatM = (Ma,φa) is a representation of some finite quiverQ.
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(a) Given vector spacesNa ≤ Ma, what conditions must be satisfied for(Na,φa) to be a
subrepresentationN of Q?

(b) Suppose thatM is a representation ofQ bound by an admissible idealI . Show that
the representationN is also bound byI .

(c) If Q hasn vertices, given non-isomorphic simple representations ofkQ, and also of
kQ/I . (Hint: what condition on the dimensions of theNa guarantees the absence of a
proper subrepresentation?)

(d) If Q is acyclic then we will see in Chapter 2 that these examples form a complete set
of simple representations. However, it is also possible to show this directly. Suppose
that M is a representation of an acyclicQ such that more than oneMa is non-zero.
Show thatM has a proper subrepresentation.

(e) Suppose thatQ is finite but contains some cycle. Show thatQ now has infinitely
many non-isomorphic simple representations overC.

(7) In this exercise we will classify the indecomposable representations of the quiverQ given
by

•1
α1 // •2

α2 // •3
α3 // . . .

αn−2 // •n−1
αn−1 // •n .

Let M = (Mi,φi) be an indecomposable representation ofQ.
(a) Show that ifφi is not injective thenM j = 0 for j > i.
(b) Similarly show that ifφi is not surjective thenM j = 0 for j ≤ i.
(c) Deduce thatM is isomorphic to a representation of the form

0 // . . . // 0 // k
id // . . . id // k // 0 // . . . // 0 .

(d) Show that then(n+1)
2 such modules are pairwise non-isomorphic.

We will see in Chapter 4 that this example is part of a more general picture.

(8) Let S3 denote the symmetric group on three symbols. Decompose the group algebraCS3
into a direct sum of simple representations forS3. (You may find it convenient to identify
CS3 with a space of permutation matrices.)


