CHAPTER 1

Algebras and modules

In this course we will be interested in the representati@ot of finite dimensional algebras
defined over a field. We begin by recalling certain basic d&fims concerning fields.

DEFINITION 1.0.1. A field k isalgebraically closedf every non-constant polynomial with
coefficients in k has a root in k. A field helsaracteristi@ if p is the smallest positive integer such

that .
i;l =0.

If there is no such p then the field is said to habaracteristic 0A field isinfinite if it contains
infinitely many elements.

Henceforthk will denote some field.

1.1. Associative algebras

DEFINITION 1.1.1. Analgebra ovek, or k-algebras a k-vector space A with a bilinear map

AxA — A
(Xy) — Xxy.

We say that the algebra &ssociativef for all x,y,z< A we have

X(y2) = (xy)z

An algebra A iaunitalif there exists an elemefite A such thatlx = x1 = x for all x € A. Such an
element is called th@lentityin A. (Note that such an element is necessarily unique.) Wehsd
an algebra isfinite dimensionalf the underlying vector space is finite dimensional. An hfgeA

is commutativef xy = yx for all x,y € A.

It is common to abuse terminology and take algebra to meassotative unital algebra, and
we will follow this convention. There are several importalatsses of non-associative algebras (for
example Lie algebras) but we shall not consider them hEheis all algebras we consider will
be associative and unital.

ExamMPLE 1.1.2. (a) Let Kx1,...,Xy] denote the vector space of polynomials in the (commut-
ing) variables x,...,x,. This is an infinite dimensional commutative algebra witHtiplication
given by the usual multiplication of polynomials, and idigngiven by the trivial polynomial.

(b) Let kix1,...,X,) denote the vector space of polynomials in tiem-commutingvariables
X1,...,%n. A general element is of the forg‘{‘zl)\iwi for some n where for each A; € k and
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W =12 ... for some t. Given two elemerft§_; Aiw; and 3™, A/w{ the product is defined to

be the element
n m

Z Z )\i)\i,WiV\/j
==l

where ww;j denotes the element obtained fromamd w; by concatenation. This is an infinite
dimensional associative algebra with identity given bytthaal polynomiall. If n > 1 then the
algebra is non-commutative.

(c) Given a group G, we denote by kG theup algebrabtained by considering the vector
space of formal linear combinations of group elements. Giw® elementS ! ; Ajgiandy " ; pih;
with Aj, i € k and g, hj € G we define the product to be the element

n m

le)\illjgihj-
=

The identity element is the identity elemert® regarded as an element of kG. The algebra kG is
finite dimensional if and only if G is a finite group, and is coatative if and only if G is abelian.

(d) The set M(k) of nx n matrices with entries in k is a finite dimensional algebtee ma-
trix algebra with the usual matrix multiplication, and identity elen¢ine matrix I. If n> 1 it
is non-commutative. Equivalently, let V be an n-dimendi&reector space, and consider the
endomorphism algebra

End(V)={f:V— V| fisk-linear}.

This is an algebra with multiplication given by compositmirfunctions. Fixing a basis for V the
elements oEnd(V) can be written in terms of matrices with respect to this hasisl in this way
we can identiffend (V) with My (k).

(e) If A'is an algebra then so is°A theopposite algebravhich equals A as a vector space,
but with multiplication magx,y) — yx.

As usual in Algebra, we are not just interested in objectgiia case algebras), but also in
functions between them which respect the underlying sirest

DEFINITION 1.1.3. Ahomomorphisnbetween k-algebras A and B is a linear mppA — B
such thatp(1) = 1 and @(xy) = @(X)@(y) for all x,y € A. This is ansomorphisnprecisely when
the linear map is a bijection.

DEFINITION 1.1.4. Given an algebra A, aubalgebraf A is a subspace S of A containihg
such that for all xy € S we have x¢ S. Aleft (respectively right) ideah A is a subspace | of A
such that for all xc | and ac A we have ax | (respectively xa 1). If | is a left and a right ideal
then we say that | is aitlealin A.

ExAMPLE 1.1.5.(a) If H is a subgroup of a group G, then kH is a subalgebra of kG.

(b) Given two algebras A and B, and a homomorphigmA — B, the seim(¢) is a subal-
gebra of B, whileker(g) is an ideal in A.

Idempotents play a crucial role in the analysis of algebras.

DEFINITION 1.1.6. An element & A is anidempotenif e = e. Two idempotents @nd & in
A areorthogonalf

eje = exe; =0.
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An idempotent e is calleprimitive if it cannot be written in the form & e; + e, where @ and
are non-zero orthogonal idempotents. An idempotentergralif ea= ae for all ac A.

1.2. Modules

Representation theory is concerned with the study of theimasnich certain algebraic objects
(in our case, algebras) act on vector spaces. There are ty®tovaxpress this concept; in terms
of representations or (in more modern language) in termsoafuies.

DEFINITION 1.2.1. Given an algebra A over k, @epresentationf A is an algebra homomor-

phism
@:A— End(M)

for some vector space M. l&ft A-moduleis a k-vector space M together with a bilinear map
AxM — M, which we will denote bya, m) — am, such that for all e M and xy € A we have
Im= m and(xy)m= x(ym). Similarly, aright A-moduleis a k-vector space M and a bilinear map
@: M x A— M such that b = m and nixy) = (mx)y for all me M and xy € A. We will adopt
the convention that all modules are left modules unlesgdgtatherwise.

DEFINITION 1.2.2. An A-module idinite dimensionalf it is finite dimensional as a vector
space. An A-module M igeneratedby a set{my :i € I} (where | is some index set) if every
element m of M can be written in the form

m=Zam
e

for some ac A. We say that M ifinitely generatedf it is generated by a finite set of elements. If
A is a finite dimensional algebra then M is finitely generafexhd only if M is finite dimensional.

LEMMA 1.2.3.(a) There is a natural equivalence between left (respegtrrght) A-modules
and right (respectively left) ®-modules.
(b) There is a natural equivalence between representattbsand left A-modules.

PROOF We give the correspondence in each case; details are ldfeteeader. Given a left
moduleM for A with bilinear mapg : Ax M — M, define a rightA°-module structure o
via the mapy’ : M x A — M given by ¢/(m,x) = @(x,m). It is easy to verify thatp is an A°P-
homomorphism.

Given a representatiop : A — End(M) of A we define anA-module structure oM by
setting

am= @(a)(m)
for alla€ Aandme M. Conversely, given aA-moduleM, the mapVl — M given bym+—— rm
is linear, and gives the desired representafgoA — End(M). O

DEFINITION 1.2.4. Ahomomorphisnbetween A-modules M and N is a linear mapM —
N such thaip(am) = a@(m) for all a € A and me M. This is anisomorphisnprecisely when the
linear map is a bijection.

DEFINITION 1.2.5. Given an A-module M, aubmoduleof M is a subspace N of M such that
foralln € N and ac A we have arE N. (Note that N is an A-module in its own right.) The quotient
space

M/N={m+N:meM}
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(under the relation m-N = n' + N if and only if m—n € N) has an A-module structure given by
a(m+N) =am+N, and is called thguotientof M by N.

EXAMPLE 1.2.6. (a) The algebra A is a (left or right) A-module, with respeettihe usual
multiplication map on A. If | is a left ideal of A then | is a subdule of the left module A.

(b) If A=k then A-modules are just k-vector spaces.

(c) If A=K]xq,...,Xn) then an A-module is a k-vector space M together with commlitiear
transformationsy; : M — M (whereaq; describes the action of)x

(d) Every A-module M has M and the empty vector siaas submodules.

LEMMA 1.2.7 (Isomorphism Theorem)f M and N are A-modules angg: M — N is a
homomorphism of A-modules then

im(@) =M/ker(o)

as A-modules.

PROOF Copy the proof for linear maps between vector spaces, gdtat the additional struc-
ture of a module is preserved. O

DEFINITION 1.2.8. If an A-module M has submodules L and N such thatM & N as a
vector space then we say that M is tieect sumof L and N. A module M i;xdecomposabl it
is not the direct sum of two non-zero submodules (an@é@®mposabletherwise). A module M is
simple(or irreduciblg if M has no submodules except M ahd

For vector spaces, the notions of indecomposability ardlircibility coincide. However, this
is not the case for modules in general.

ExaMPLE 1.2.9. Let G denote the cyclic group with elemerts g}, and consider the two-
dimensional kg-module M with basi§m;, mp} where gm=myand gm =my. If M =N; &Ny
with N; and N> non-zero then each;Ns the span of a vector of the forlam, + A,y for some
A1,A2 € k. Applying g we deduce thadg = +A5, and hence Nmust be the span of m mp or
my +mp. But N = Ny if k has characteristi@, which contradicts our assumption. Thus M is never
irreducible, but is indecomposable if and only if the chaeaistic of k is2. We will see that this
example generalises to arbitrary group algebras when wesictam Maschke’s Theorem.

There is a close relationship between the representatammtiof A and A°P.

DEFINITION 1.2.10.Let M be a finite dimensional (left) A-module. Then th@al module
M* is the dual vector spaddomy (M, k) with a right A-module action given bia)(m) = @(am)
foralla € A, me M and ¢ € Hom(M, k). By Lemma 1.2.3 this gives*Mhe structure of a left
A°P-module.

Taking the dual of aA°P-module gives am\-module, and it is easy to verify (as for vector
spaces) that

LEMMA 1.2.11. For any finite dimensional A-module M we havé&NE M.
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1.3. Quivers

DEFINITION 1.3.1. A quiverQ is a directed graph. We will denote the set of vertices by Q
and the set of edges (which we caftrowg by Q. If Qo and @ are both finite then Q is &nite
quiver. Theunderlying graphQ of a quiver Q is the graph obtained from Q by forgetting all
orientations of edges.

A path of lengthn in Q is a sequence # a10>...a, Where eachy; is an arrow anda; starts
at the vertex wherej, 1 ends. For each vertex i, there is a path of len@ttwhich we denote by
&. A quiver isacyclicif the only paths which start and end at the same vertex hangthé®, and
connectedf Q is a connected graph.

ExAMPLE 1.3.2. (a) For the quiver Q given by
]

e

B e 03 < o

o

the set of paths of length greater thams given by
{B™2,B"a,yB" 5B yB a, 6B"a 1 n > 0}.

(b) For the quiver Q given by

a C * D B
the set of paths corresponds to wordsiirand 3 (along with the trivial word).
(c) For the quiver Q given by

L X1 a (] ﬁ o3 4 oy

the set of paths is
{817 827 837 847 a? B? y? Ba}

We would like to associate an algebra to a quiver; howevenees to take a little care.

DEFINITION 1.3.3. Thepath algebr&Q of a quiver Q is the k-vector space with basis the set
of paths in Q. Multiplication is via concatenation of pathfsp = a1a»...a, and g= B13,. .. Bm
then

pPg=a102...anB1P2- .. Pm

if ap, starts at the vertex whei@, ends, and i® otherwise.

We have not yet checked that the above definition does in &fatelan algebra structure on

kQ.

LEMMA 1.3.4. Let Q be a quiver. Then kQ is an associative algebra. Furti@rhias an
identity element if and only if §is finite, and is finite dimensional if and only if Q is finite and
acyclic.
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PROOF The associativity of multiplication ikQ is straightforward. Next note that the ele-
mentsg; satisfy

&&j = dj &
and hence form a set of orthogonal idempotents. Furthegripmpathp € kQ we havesip = p if
p ends at vertexand 0 otherwise. Hence @y is finite then

%&p:p-
i€Qo
%pei:p
i€Qo

1= % &
i€Qo
is the unit inkQ.

Conversely, suppose th@p is infinite and 1€ kQ. Then 1= S Aip; for some (finite) set of
pathsp; and scalarg;. Pick a vertex such that for all the pathp; does notend gt Thengj1=0,
which gives a contradiction.

Similarly

and hence

Finally, if Qg or Q1 is not finite therkQ is clearly not finite dimensional. Given a finite set
of vertices with finitely many edges, there are only finitelgmyg paths between them unless the
quiver contains a cycle. O

ExAMPLE 1.3.5. Each of the quivers in Example 1.3.2 is finite, and so the spoading kQ
contains a unit. However, the path algebras correspondmng.B.2(a) and 1.3.2(b) are not finite
dimensional. Indeed, it is easy to see that the path algetrédi is isomorphic to kx,y), under
the map takingx to x andg to y. The path algebra for 1.3.2(c) is &dimensional algebra.

Because of Lemma 1.3.4 we will only consider finite quiv@rso that the corresponding path
algebras are unital.

DEFINITION 1.3.6. Given a finite quiver Q, the idealdf kQ generated by the arrows in Q
is called thearrow idealof kQ. Then 8 is the ideal generated by all paths of length m in Q. An
ideal | in kQ is calledadmissiblef there exists m» 2 such that

RRCICR,

If I is admissible theriQ, I) is called abound quiverand k@'l is a bound quiver algebra

Note that ifQ is finite and acyclic then any ideal containedi% is admissible, aEZg =0ifm
is greater than the maximal path lengthQn

EXAMPLE 1.3.7. Let Q be as in Example 1.3.2(b), and letI(Ba,32). This is not an ad-
missible ideal in kQ as it does not contan® for any m> 1, and so does not contair{‘:}?{or any
m> 2.

PrROPOSITION1.3.8. Let Q be a finite quiver with admissible ideal | in kQ. Theryk(3 finite
dimensional.
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PROOF As| is admissible there exista > 2 such thaR{‘g1 C |. Hence there is a surjective al-
gebra homomorphism froer/R{‘Q1 ontokQ/I. But the former algebra is clearly finite dimensional
as there are only finitely many paths of length less tan O

DEFINITION 1.3.9. A relationin kQ is a finite linear combination of paths of length at least
two in Q such that all paths have the same start vertex andaheesend vertex. ifpj : j € J} isa
set of relations in kQ such that the ideal generated by thésssdmissible then we say that kQ is
bound by the relations

ExAmMPLE 1.3.10.Consider the quiver in Example 1.3.2(a) and the relations

{yB*a —3a,yB +3B.B%.
Any path of length at leagtmust contair3®, and so Q is bound by this set of relations.

In fact the above example generalises: it can be shown tlgatiaall in Ré Is admissible if it
contains each cycle i@ to some power. Further, we have

PrROPOSITION1.3.11. Let Q be a finite quiver. Every admissible ideal in kQ is getestdy a
finite sequence of relations in kQ.

PROOF (Sketch) It is easy to check that every admissible itléafinitely generated by some
set{ay,...,an} (ang andI/R(”?1 are finitely generated). However, in general a set of geoeyat
for I will not be a set of relations, as the paths in eactmay not all have the same start vertex and
end vertex. However, the non-zero elements in the set

{&xa@igy 1 1<i<nxye Qo}
are all relations, and this set generdtes O

1.4. Representations of quivers

DEFINITION 1.4.1. Let Q be afinite quiver. AepresentatioM of Q over k is a collection of k-
vector space$M, : a € Qp} together with a linear magy : Ma — My, for each arrowa :a— b
in Q1. The representation M ifnite dimensionaif all the M, are finite dimensional.

DEFINITION 1.4.2. Given two representations M and i a finite quiver Q, domomorphism
from M to N is a collection of linear maps fM; — M/ such that for each arrowr : i — j we

haveq, fi = fj@q.

When giving examples of representations of quivers we vellally fix bases of each of the
vector spaces, and represent the maps between them byesatiib respect to column vectors in
these bases.

ExAMPLE 1.4.3. Consider the quiver

01 a 02 ﬁ 03
A
o5

y

o4 .
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This has a representation

RGO
<2>\ . /ey

Notice how easy it was to give a representation: there areontpatibility relations to be
checked (apart from that the linear maps go between the ppate dimension) so examples can
be easily generated for any path algebra. This is very éiffiirom writing down explicit modules
for an algebra (in general).

Definition 1.4.1 looks rather different from that for an dige. However, the next lemma
shows that representations@fcorrespond t&Q-modules in a natural way.

LEMMA 1.4.4. Let M be a representation of a finite acyclic quiver Q. Consitie vector

space
M = P Ma.
acQo
This can be given the structure of a kQ-module by definingdohe :i — jamapg, :M — M
by
@, (my,...,my) =(0,...,0,@(m),0,...0)
where the non-zero entry is in position j, and for eaehQg a mapg; : M — M by

&(my,...,my) =(0,...,0,m;,0,...,0)

where the non-zero entry is in position i. Conversely, sgppbat N is a kQ-module. Then we
obtain a representation of Q by setting N eaN and definingp, for a : a— b to be the restriction
of the action ofr € kQ to N,.

PROOF Checking that the above definitions giv&kk@ module and a representation @fre-
spectively is routine. O

We also need the notion of a representation of a bound quiNete that we do not need to
assume thad is acyclic here, as admissible ideals guarantee that tlogiassd quotient algebra is
finite dimensional.

DEFINITION 1.4.5. Given a path p= a1a». .. ap in afinite quiver Q from a to b and a repre-
sentation M of Q we define the linear m@pfrom M, to My, by

@ = ConPoy - - Poy-
If p is a linear combination of paths; pvith the same start vertex and the same end vertexghen
is defined to be the corresponding linear combination ofgheGiven an admissible ideal | in kQ
we say that M idound byl if ¢, =0 for all relationsp < I.

EXAMPLE 1.4.6. Consider the representation in Example 1.4.3. Let Ba and q= pd.

=(10)(0)-(1) a=(71)(5)-(3)

and so this representation is bound by the idgalr — pd).
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It is easy to verify that the correspondence between reptaten of finite acyclidQ andkQ-
modules given in Lemma 1.4.4 extends to a correspondenegbetrepresentations of fini@
bound byl andkQ/I-modules.

The language of categories and functors is a very powerfe) and many results in repre-
sentation theory are best stated in this way. Roughly, ayoagas a collection obbjects(e.g.
kQ-modules) ananorphismge.g. kQ-homomorphisms), and the idea is to study the category as
a whole rather than just the objects or morphisms separafefunctoris then a map from one
category to another which transports both objects and nrhin a suitably compatible way.

In this language the above result relating bound represensaof Q and kQ/I-modules gives
an equivalence between the corresponding categories. Wmake this more precise in a later
chapter.

1.5. Exercises

(1) Suppose thdtis an ideal in an algebra.

(a) Show tha®\/I has an algebra structure such that there is a surjective ionphism
fromAto A/l.

(b) Suppose thak is an algebra with idedl and thaM is anA/lI-module. Show thatl
can be given the structure of &amodule.

(c) If M is anA-module, what condition must it satisfy to be Apl-module?

(2) Suppose thatP, <) is a partially ordered set of cardinality and definekP to be the
subset oMy (k) given by

kP={M = (mj):m; =0if i £ j}.

(a) Show thakPis a subalgebra dfl,(K) (this is called théncidence algebraf (P, <)).

(b) Show thatP can be identified with the sdtl,...n} in such a way thakP can be
identified with a subalgebra of the algelt®, (k) of lower triangular matrices in
Mn(K).

(c) Deduce that ifQ is a finite acyclic quiver with at most one arrow between eaah p
of vertices, therkQ is a subalgebra dfT(k) for somen.

(d) lllustrate your last construction in the case of the guim Example 1.3.2(c).

(e) Which quiver correspond to the wholeld, (k)?

(3) Suppose tha) is a quiver, and 1eQ°P be the quiver obtained by reversing all the arrows.
Show that there is an isomorphism of algett@3°P) = (kQ)°F.

(4) Suppose thds is a group. Show th&G = (kG)°P.

(5) Classify the simple modules for the cyclic grodpover an algebraically closed field of
characteristiqp > 0.

(6) Suppose thal = (M, ) is a representation of some finite qui@r
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(a) Given vector spacds; < My, what conditions must be satisfied fo¥,, @) to be a
subrepresentatioN of Q?

(b) Suppose tha¥l is a representation @& bound by an admissible idell Show that
the representatioN is also bound by.

(c) If Q hasn vertices, given non-isomorphic simple representationk@j, and also of
kQ/I. (Hint: what condition on the dimensions of tNg guarantees the absence of a
proper subrepresentation?)

(d) If Qis acyclic then we will see in Chapter 2 that these examples Bocomplete set
of simple representations. However, it is also possiblétmsthis directly. Suppose
thatM is a representation of an acyclig such that more than ond, is non-zero.
Show thatM has a proper subrepresentation.

(e) Suppose tha is finite but contains some cycle. Show tl@atnow has infinitely
many non-isomorphic simple representations dver

(7) Inthis exercise we will classify the indecomposableespntations of the quiveé) given
by

a1 ay as On-2 On-1
L [ ] o3 e on_1 on .

LetM = (M;, @) be an indecomposable representatio@of

(a) Show that ifg is not injective therM; = O for j > i.

(b) Similarly show that ifgy is not surjective thei; =0 for j <i.
(c) Deduce thaM is isomorphic to a representation of the form

0 0 k id_ . _d k 0 0.

(d) Show that thé‘% such modules are pairwise non-isomorphic.

We will see in Chapter 4 that this example is part of a more gepecture.

(8) LetS3 denote the symmetric group on three symbols. Decomposedlp @lgebraCS;
into a direct sum of simple representations$gr (You may find it convenient to identify
CS3 with a space of permutation matrices.)



