CHAPTER 2

Semisimplicity and some basic structure theorems

In this chapter we will review some of the classical struettireorems for finite dimensional
algebras. In most cases results will be stated with only &ckkaf the proof. Henceforth we will
restrict our attention to finite dimensional modules.

2.1. Simple modules and semisimplicity

Recall that a simple module is a mod@euch that the only submodules é&8and 0. These
form the building blocks out of which all other modules aredma

LEMMA 2.1.1.If M is a finite dimensional A-module then there exists a sege®f submod-
ules

O=MgCM;C---CM=M
such that M/M;_1 is simple for eaci <i < n. Such a series is calleda@amposition seriefr M.
PROOF Proceed by induction on the dimensior\f If M is not simple, pick a submoduld,

of minimal dimension, which is necessarily simple. Now @iifM1) < dimM, and so the result
follows by induction. O

Moreover, we have
THEOREM 2.1.2 (Jordan-Holder)Suppose that M has two composition series
0=MpCMiC---CMn=M, O0=NoCN;C---CNy=M.
Then n=m and there exists a permutationof {1,...n} such that
Mi/Mit1 = Ng (i) /No(i)41-

PROOF The proof is similar to that for groups. O

Life would be (relatively) straightforward if every modulas a direct sum of simple modules.

DEFINITION 2.1.3. A module M isemisimplgor completely reduciblgf it can be written as
a direct sum of simple modules. An algebra Aesnisimpldf every finite dimensional A-module
is semisimple.

LEMMA 2.1.4.1f M is a finite dimensional A-module then the following areieglent:
(a) If N is a submodule of M then there exists L a submodule aidi that M= L & N.
(b) M is semisimple.
(c) M is a (not necessarily direct) sum of simple submodules.
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18 2. SEMISIMPLICITY AND SOME BASIC STRUCTURE THEOREMS

PROOF (Sketch) Note that (a) implies (b) and (b) implies (c) areacl For (c) implies (a)
consider the set of submodules Afwhose intersection witiN is 0. Pick one suchl. say, of
maximal dimension; iN ® L # M then there is some simp&in M not inN @ L. But this would
imply thatS+ L has intersection O witA, contradicting the maximality df. O

LEMMA 2.1.5.1f M is a semisimple A-module then so is every submodule aoiiiesqui module
of M.

PROOF (Sketch) IfN is a submodule them = N @ L for someL by the preceding Lemma.
But thenM /L = N, and so it is enough to prove the result for quotient modules.

If M/L is a quotient module consider the projection homomorphisnom M to M /L. Write
M as a sum of simple modul&s and verify thatrr(S) is either simple or 0. This proves thisit/L
is a sum of simple modules, and so the result follows from tieegding lemma. O

To show that an algebra is semisimple, we do not want to hastedok the condition for every
possible module. Fortunately we have

PROPOSITION2.1.6. Every finite dimensional A-module is isomorphic to a quatei\” for
some n. Hence an algebra A is semisimple if and only if A issemple as an A-module.

PROOF (Sketch) Suppose thit is a finite dimensionah-module, spanned by some elements
My, ..., M. We define a map
QB A—M

by
n
o((ag,...,an)) = .Zf“mi'
I=
It is easy to check that this is a homomorphismiahodules, and so by the isomorphism theorem
we have that
M= @ A/ kerg.
The result now follows from the preceding lemma. O
For finite groups we can say exactly whie@ is semisimple:
THEOREM 2.1.7 (Maschke)Let G be a finite group. Then the group algebra kG is semisimple

if and only if the characteristic of k does not divide|, the order of the group.

PROOF (Sketch) First suppose that the characteristik dbes not divideG|. We must show
that everykG-submoduleM of kG has a complement as a module. Clearly as vector spaces we
can findN such thatM @ N = kG. Let i: kG — M be the projection map(m+ n) = mfor all
me& M andn € N. We want to modifyrr so that it is a module homomorphism, and then show that
the kernel is the desired complement.

Define a mafg;;: kG— M by
1
To(m) = — 5 g(r(g~m)).

Note that this is possible a6|~* exists ink. It is then routine to check that; is akG-module
map.
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Now letK = ker(Ty), which is a submodule &G. We want to show thakG = M & K. First
show thatT;; acts as the identity oM, which implies thatM N"K = 0. Next note that by the
rank-nullity theorem for linear map&G = M + K. Combining these two facts we deduce that
kG=M &K as required.

For the reverse implication, consider= y ;. g € kG. It is easy to check that every element
of g fixesw, and hencev spans a one-dimensional submodulef kG. Now suppose that there is
a complementary submoduieof kG, and decompose= e+ f whereeandf are the idempotents
corresponding td andN respectively. We have = Aw for someA € k, ande? = e= A2w2. It
is easy to check that? = |G|w and hence\w = A?|G|w which implies that 1= A|G|. But this
contradicts the fact thaG| = 0 in k. O

The next result will be important in the following section.
LEMMA 2.1.8. The algebra M(k) is semisimple.
PROOF LetEjj; denote the matrix ith = My (k) consisting of zeros everywhere except for the
(i, j)th entry, which is 1. We first note that
1=En+Ex+---+Em

is an orthogonal idempotent decomposition of 1, and hexdecomposes as a direct sum of
modules of the fornAE;. We will show that these summands are simple.

First observe thalE; is just the set of matrices which are zero except possiblylaroni.
Pick x € AE; non-zero; we must show thAx = AE;;. As X IS non-zero there is some enty; in
the matrixx which is non-zero. But then

EjmX = XmiEji € AX
and hencé&ji € Axfor all 1 < j <n. But this implies thalAx= AE;; as required. O

2.2. Schur’slemma and the Artin-Wedder burn theorem

We begin with Schur’s lemma, which tells us about automanmisi of simple modules.

LEMMA 2.2.1 (Schur).Let S be a simple A-module apd S— S a non-zero homomorphism.
Theng is invertible.

PROOF Let M = kergp andN = im ¢; these are both submodules®f But Sis simple and
¢ # 0, soM = 0 andg is injective. Similarly we see th&l = S, so@ is surjective, and henagis
invertible. O

LEMMA 2.2.2.1f k is algebraically closed and S is a finite dimensional denpodule with
non-zero endomorphisg, theng = A.ids, for some non-zerd € k.

PROOF Ask s algebraically closed and difk « the mapg has an eigenvalug € k. Then
@ — Aids is an endomorphism & with non-zero kernel (containing all eigenvectors withegig
value A). Arguing as in the preceding lemma we deduce thaf¢gkerAids) = S and hence
@=Aids. O
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Given anA-moduleM we set
Enda(M) = {¢: M — M | @ is anA-homomorphisrh.
This is a subalgebra of Ep@). More generally, iM andN areA-modules we set

Homa(M,N) = {@: M — N | ¢ is anA-homomorphisrh.

Arguing as in the proof of Lemma 2.2.1 above we obtain

LEMMA 2.2.3 (Schur).If k is algebraically closed and S and T are finite dimensiaialple
A-modules then
k if ST
0 otherwise

Homa(ST) = {

We can now give a complete classification of the finite dimamai semisimple algebras.

THEOREM 2.2.4 (Artin-Wedderburn)Let A be a finite dimensional algebra over an alge-
braically closed field k. Then A is semisimple if and only if

A2 M, (K) & Mpy(K) @ -+ @ My (K)
forsomete Nandn,...,n; € N.

PROOF (Sketch) We saw in Lemma 2.1.8 thdh(k) is a semisimple algebra, andAfandB
are semisimple algebras, then it is easy to verify &atB is semisimple.

For the reverse implication suppose tMaandN areA-modules, withtM = & ;M; andN =
&M, N;. The first claim is that Hom(M,N) can be identified with the space of matrices
{(@j)1<i<ni<j<m| @,j : Mj — Ni anA-homomorphisr

and that ifM = N with M; = N; for all i then this space of matrices is an algebra by matrix multi-
plication, isomorphic to Eng{M). This follows by an elementary calculation.

Now apply this to the special case whéde= N = A, and

= (S0P DS) O (Sy+1D - OSyin) D D (Syrmpttn 111D+ D Syttt )

is a decomposition dA into simples such that two simples are isomorphic if and drilyey occur

in the same bracketed term. By Schur's Lemma above we se@thatthis special case is O if
S and$;j are in different bracketed terms, and is soiyjec k otherwise. There is then an obvious
isomorphism of HorR(A, A) with Mp, (k) @ - -- & Mp, (k). Finally, we note that for any algebra
we have

Enda(A, A) = AP

and hence

A= (A°P)°P= M (K)OP@ - - & My (K)°P
But it is easy to see thal,(k) = M, (k)°P via the map taking a matriX to its transpose, and so
we are done. O

We can also describe all the simple modules for such an agebr
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COROLLARY 2.2.5. Suppose that

Then A has exactly t isomorphism classes of simple modubesfop each matrix algebra. If
S is the simple corresponding toMk) thendimS = n; and $ occurs precisely intimes in a
decomposition of A into simple modules.

PROOF (Sketch) Choose a basis fArsuch that for each elemeatc A the mapx — axis
given by a block matrix

AL 0 0 - O
0 AL O .- 0
0 - 0 0 A

whereA; € My, (K). ThenA is the direct sum of the spaces given by the columns of thisixpat
each of dimensiom;. Arguing as in Lemma 2.1.8 we see that each of these colunuespsa a
simpleA-module. Swapping rows in a given block gives isomorphic olesl Thus there are at
mostt non-isomorphic simples in a decompositionfofand hence by Proposition 2.1.6 at most
t isomorphism classes). Two simples from different blockshca be isomorphic (by considering
the action of the matrix which is the identity in blogékand zero elsewhere). O

REMARK 2.2.6. If k is not algebraically closed then the proofs of Lemmas2aad 2.2.3 no
longer hold. Instead one deduces that for a simple moduleeSghceEnda(S,S) is a division
ring over k. (Adivision ringis a non-commutative version of a field.) There is then a varef
the Artin-Wedderburn theorem, but where eack(I is replaced by some MD;) with D; some
division ring containing k.

2.3. The Jacobson radical

Suppose thah is not a semisimple algebra. One way to measure how far fronisgaple it
is would be to find an idedlin A such thatd/I is semisimple andl is minimal with this property.

DEFINITION 2.3.1. TheJacobson radicgbr justradica) of an algebra A, denoteg? (A) (or
just _#), is the set of elementsa@A such that aS- 0 for all simple modules S. It is easy to verify
that this is an ideal in A.

DEFINITION 2.3.2. An ideal isnilpotentif there exists n such thaf = 0. A maximal submod-
ulein a module M is a module £ M which is maximal by inclusion. Thennihilator AnrfM) of
a module M is the set of@ A such that aM= 0. This is easily seen to be a submodule of A.

When discussing the Jacobson radical, the following resuwiseful.

LEMMA 2.3.3. Let A be a finite dimensional algebra. Then A has a largesoielpt ideal.

PROOF Consider the set of nilpotent ideals A9 and chose ond, of maximal dimension.
If J is another nilpotent ideal then the iddal- J is also nilpotent. (Ifi" = 0 andJ™ = 0 then
(14+J)™™" =0, as the expansion of any expressiant b)"™ with a € I andb € J contains at
leastn copies ofa or m copies ofb.) But then dintl +J) = diml and hencd C I. O
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THEOREM 2.3.4 (Jacobson)Let A be a finite dimensional algebra. The idedl(A) is
(a) the largest nilpotent ideal N in A.
(b) the intersection D of all maximal submodules of A.
(c) the smallest submodule R of A such thARAs semisimple.

PROOF (a) First suppose th&is simple. TherNSis a submodule o&. If NS= Sthen by
inductionN™S= Sfor all m> 1. But this contradicts the nilpotency Nf and soN C _¢. For the
reverse inclusion, consider a composition seriefor

0=ACA-1C---CA=A

As Aj/Ai11 is simple we hava(Ai/Ai+1) =0 forallae ¢#. But this implies that 7 A, C A1,
and hence

J"c F"ACA=0.

(b) Suppose thad € ¢ andM is a maximal submodule ok ThenA/M is simple and so
a(A/M) = 0. In other wordsa(1+M) =0+M and soa € M. Thus_¢# C M for every maximal
submodule of.

For the reverse inclusion, suppose thatZ D. Then there exists some sim@eandsc S
with Ds= 0. NowDsis a submodule 0§, and henc®s= S. Thus there existd € D with ds=s;
sod—1 € Ann(S) € A, and there exists a maximal submodMef A with Ann(S) C M. But then
d € D € M and 1-d € M implies that 1€ M, which contradictM C A.

(c) (Sketch) First we claim th& can be expressed as the intersection of finitely many maximal
submodules oA. To see this pick some submodulevhich is the intersection of finitely many
maximal submodules, such that dinis minimal. ClearlyD C L. For any maximaM in A we
must have thalt = LNM, and hencé C D.

ThusD = M1NM2N...N M, for some maximal submodulés,, ... M,. There is a homomor-
phism
@:A/D— A/M1@---A/My
given byg(a) = (a+My,...,a+ Mp). Itis easy to see this is injective. As eddhis maximal we
have embedded/D into a semisimple module, and hen&£D is semisimple by Lemma 2.1.5.

Now suppose thad/X is semisimple. It remains to show tHatC X. Write A/X as a direct
sum of simples§ = L;/X. Then it is easy to check that the submoduie= YizjLi is a maximal
submodule oA, and that the intersection of tivg equalsx. By definition this intersection contains
D, as required. O

The Jacobson radical can be used to understand the stro€#mmodules:

LEMMA 2.3.5 (Nakayama)lf M is a finite dimensional A-module such thgg#M = M then
M =0.

PROOF (Sketch, for the casgis finite dimensional) Suppose thdt# 0 and choose a minimal
set of generatorsy, ..., m of M as anA-module. Nowm; € M = _#M implies that

t

m = Zlaim
i=
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for somea; € ¢, and so
t—1

(1—a)m z_;aam.

Now & € _# implies thate; is nilpotent, and then it is easy to check that & must be invert-
ible. But this implies thatn, can be expressed in terms of the remainipgwhich contradicts
minimality. O

We have the following generalisation of Nakayama’s Lemma.

PROPOSITION 2.3.6. If A is a finite dimensional algebra and M is a finite dimensioAa
module then # M equals
(a) the intersection D of all maximal submodules of M.
(b) the smallest submodule R of M such thatRvis semisimple.

PROOF (Sketch) Suppose thM; is a maximal submodule &fl. ThenM/M,; is simple, and
hence by Nakayama'’s lemm# (M/M;) = 0. Therefore /M C _#M; C Mj and so_#M C D.

By Theorem 2.3.4 the module!/_#M is semisimple, as it is a module fdy/_#. Now
suppose thdlt is a submodule oM such thatM /L is semisimple. LeM /L =M;/L@--- & M/L
where eachM; /L is simple. Then the moduléé = Yixj M are maximal submodules & andL
is the intersection of thi;. Hence ¢ M is a submodule of as_# M is a submodule ob. Taking
L = _#M we see thab is a submodule of# M which completes the proof. O

Motivated by the last result, we have

DEFINITION 2.3.7. Theradicalof a module M is defined to be the modyfeM. Note that
when M= A this agrees with the earlier definition of the radical of dgebra. Theheador top of
M, denotechd(M) or top(M), is the module M_¢# M. By the last proposition the sequence

M> #ZM> #?M>---> #'M> M =0

is such that each successive quotient is the largest sepiespotient possible. This is called the
Loewy seriedor M, and t+ 1 is theLoewy lengthof M.

The head of a modul®i is the largest semisimple quotient BF. It can be shown that the
submodule oM generated by all simple submodules is the largest semisisyggmodule oM;
we call this thesocleof M, and denote it by sgiM).

2.4. The Krull-Schmidt theorem

Given a finite dimensionad-moduleM, it is clear that we can decompadskas a direct sum of
indecomposable modules. The Krull-Schmidt theorem sagfsthiis decomposition is essentially
unique, and so it is enough to classify the indecomposabbiutas for an algebra.

THEOREM 2.4.1 (Krull-Schmidt).Let A be a finite dimensional algebra and M be a finite
dimensional A-module. If

M=MOMD - OMn=N1®ON2 @+ DN

are two decompositions of M into indecomposables thennm and there exists a permutatian
of {1,...n} such that N= M.



24 2. SEMISIMPLICITY AND SOME BASIC STRUCTURE THEOREMS

PROOF Theideaisto proceed by induction nyat each stage cancelling out summands which
are known to be isomorphic. The details are slightly teciinend so will be omitted here. Instead
we will review below some of the ideas used in the proof. O

A key idea in the proof of the Krull-Schmidt theorem is theiontof a local algebra.

DEFINITION 2.4.2. An algebra A idocalif it has a unique maximal right (or left) ideal.

There are various characterisations of a local algebra.

LEMMA 2.4.3. Suppose that A is a finite dimensional algebra over an algebly closed
field. Then the following are equivalent:
(a) Ais a local algebra.
(b) The set of non-invertible elements of A form an ideal.
(c) The only idempotents in A a@eand 1.
(d) The quotient A # is isomorphic to k.

PROOF This is not difficult, but is omitted as it requires a few paegtory results. O

REMARK 2.4.4. In fact (a) and (b) are equivalent for any algebra A. Howe\kere exist
examples of infinite dimensional algebras with oblgnd 1 as idempotents which are not local,
for example k(. Also, if the field is not algebraically closed thert & will only be a division
ring in general.

LEMMA 2.4.5 (Fitting). Let M be a finite dimensional A-module, apd Enda(M). Then for
large enough n we have
M =im(¢") @ ker(@").
In particular, if M is indecomposable then any non-inveligieBndomorphism of M must be nilpo-
tent.

ProOF. Note thatg'*1(M) C ¢'(M) for all i. As M is finite dimensional there must exist an
n such thaip"' (M) = @"(M), for all t > 1 and sog" is an isomorphism fronp™(M) to ¢*"(M).
Forme M let x be an element such thaf(m) = ¢*"(x). Now

m= ¢"(x) +(m—@"(x)) € im(¢") + ker(¢")
and soM = im(¢") +ker(@"). If @"(m) € im(¢") Nker(¢") theng?(m) = 0, and sap"(m) = 0.
Thus the sum is direct, as required. O

Local algebras are useful as they allow us to detect indeosaige modules.

LEMMA 2.4.6. Let M be a finite dimensional A-module. Then M is indecomgdeséland
only if Enda(M) is a local algebra.

PROOF. First suppose thavl = M1 & M», and fori = 1,2 let g be the map fromM to M
which mapsm + mp to mi. Theng € Enda(M) is non-invertible (as it has non-zero kernel). But
e1 +e& = 1, which is invertible, which implies that ERM) is not local by Lemma 2.4.3.

Now suppose thaM is indecomposable. Ldtbe a maximal right ideal in EndM), and
pick ¢ € Enda(M)\I. By maximality we have Eng(M) = Endh(M)¢@+1. Thus we can write
1= 0¢+ 1 wheref € Enda(M) andu € |. Note that any element incannot be an isomorphism
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of M (as it would then be invertible), and hence by Fitting’s Leawmre have thau" = 0 for some
n>> 0. But then

A+pu+p 4. +u"Hee=1+pu+p?+.. +p"Ha-p=1-p"=1

and so@ is an isomorphism. But theh consists precisely of the non invertible elements in
Enda(M), and the result follows by Lemma 2.4.3. O

2.5. Exercises

(1) LetA=k[x] andM be the 2-dimensiona# module where acts via the matrix

01
00
with respect to some basis bFf. Prove thaM is not a semisimple module.

(2) Prove the assertion in the proof of the Artin-Wedderltheorem that
Enda(A A) = AP,

(3) Thecentreof an algebrah, denoted”(A), is the set oz € Asuch thaza= azfor allac A.
This is a subalgebra @&. If k is algebraically closed an8lis a simpleA-module show
that for allze Z(A) there existd\ € k such thazm=Amforallme S

(4) Show thak(x]/(x") is a local algebra.

(5) LetG be a finite group of ordep”, andk be a field of characteristip.
(a) Prove that the idedlgenerated by the set

{1-9:9€Z(G)}
is nilpotent inkG.

(b) Show that is the kernel of some map frokG to k(G/Z(G)).
(c) Deduce thakGis local. You may use the fact that for all suGhwe haveZ(G) # 1.

(6) Show that(x,y] is not a local algebra, but only contains the two idempotérasid 1.
This demonstrates the need for finite dimensionality in Len2w.3.



