CHAPTER 3

Projective and injective modules

3.1. Projective and injective modules

DEFINITION 3.1.1. A short exact sequenod A-modules is a sequence of the form

0—L-2M-ELN=DO

such that the mayp is injective, the mapp is surjective, andm ¢ = kery). More generally, a
sequence

LMY N

is exact atM if im @ = kery. If a sequence is exact at every module then it is cadbett (Thus
a short exact sequence is exact.)

Note that in a short exact sequence as above we have that
M/L2N

by the isomorphism theorem, and difn= dimL +dimN. When a sequence starts or ends in a 0
itis common to assume that it is exact (as we will do in whdbfes).

LEMMA 3.1.2. Given a short exact sequence of A-modules

0o—L-2MELN=DO

the following are equivalent:

(a) There exists a homomorphigm N — M such thaty6 = idy.
(b) There exists a homomorphigmM — L such thatrg =id.
(c) There is a module X with M X @ ker(y).

PROOF (Sketch) We will show that (a) is equivalent to (c); that {)equivalent to (c) is
similar. First suppose tha# as in (a) exists. Thef must be an injective map. L& =im(0),
a submodule oM isomorphic toN. It is easy to check that Nnker(¢) = 0 and that diniX &
ker(y)) = dimM by exactness atl. ThereforeM = X @ ker(y).

Now suppose tha?l = X @ ker(y). Consider the restriction af to X; it is clearly an isomor-
phism and s® can be taken to be an inverseyo O
DEFINITION 3.1.3. An A-module P iprojectiveif for all surjective A-module homomorphisms
6:M — N andforallg: P— N there existg) : P— M such thatby = ¢.
27



28 3. PROJECTIVE AND INJECTIVE MODULES

Thus a modulé® is projective if there always existg such that the following diagram com-
mutes

P
e
g
M —2~N—0.
(Note that here we are using our convention about exactoesisd bottom row in the diagram.)
There is a dual definition, obtained by reversing all thevasrand swapping surjective and
injective.

DEFINITION 3.1.4. An A-module | ignjectiveif for all injective A-module homomorphisms
6:N— Mand forallg: N — I there existgy : M — | such thaty6 = ¢.

Thus a modulé is injective if there always existg such that the following diagram commutes

0—M —6>__

ExampLE 3.1.5. For m> 1 the module A'is projective. To see this, denote the ith coordinate
vector(0,...,0,1,0...,0) by \, and suppose thap(vi) = nj € N. As g is surjective, there exists
m € M such that gmy) = n;. Given a general elemefidy, ..., an) € A" define

m
Y(@g,...,am) =) am.
2
It is easy to verify that this gives the desired A-module hoprphism.

We would like a means to recognise projective mod&egthout having to consider all pos-
sible surjections and morphisms frdPa The following lemma provides this, and shows that the
above example is typical.

LEMMA 3.1.6. For an algebra A the following are equivalent.
(a) P is projective.
(b) Wheneveb : M — P is a surjection then M= P @ ker(9).
(c) P is isomorphic to a direct summand df for some m.

PROOF First suppose tha is projective. We have by definition a commutative diagram

P

v J/idp

M—2-p_—0

and by Lemma 3.1.2 this implies thisit= P & ker(6).

Now suppose that (b) holds. Given aAymoduleM with generatorsm, i € I, there is a
surjection fromdic A ontoM given by the map taking 1 in thiéh copy ofA to m;. TakingM =P
a projective we deduce that (c) holds.



3.1. PROJECTIVE AND INJECTIVE MODULES 29

Finally suppose thad™ = P& X for someP andX. Let 1T be the projection map fro®" onto
P, and: be the inclusion map frorR into A™. Given module$/ andN and a surjection frorivl to
N we have the commutative diagram

A
P P
me l"’

M—P——=0.

It is easy to check thapy1 gives the desired may for P in the definition of a projective module.
O

Suppose thaA is finite dimensional and
A=P1)@---aP(n) Q)

is a decomposition oA into indecomposable direct summands. By the last resuideteemmands
are indecomposable projective modules.

LEMMA 3.1.7. Suppose that A is a finite dimensional algebra. Let P be a ptioe A-module
with submodule N, and suppose that every homomorppisBr— P maps N to N. Then there is
a surjection fromEnda (P) ontoEnda(P/N) and if P is indecomposable then so isNP.

PROOF (Sketch) Givenp: P — P let ¢ be the obvious map frol®/N to P/N. Check this
is well-defined; it is clearly a homomorphism. The map— ¢ gives an algebra homomorphism
from Endy(P) to Ench(P/N); giveny € Enda(P/N) use the projective property &fto construct
a mapg so thatp = (.

If Pis indecomposable then ER@) is a local algebra by Lemma 2.4.6. Therefore there is
a unigue maximal right ideal in ER@P), and hence a unique maximal ideal in &(®/N) (as
we have shown that this is a quotient of &fE)). Thus End(P/N) is local, and henc®/N is
indecomposable. O

THEOREM 3.1.8. Let A be a finite dimensional algebra, and decompose A as inSéiting
S(i) =P(i)/ _#P(i) we have
(&) The module @) is simple, and every simple A-module is isomorphic to soff)e S
(b) We have 8) = §(j) if and only if (i) = P(j).

PROOF (Sketch) (a) The moduleS(i) is semisimple, so it is enough to check it is indecom-
posable. Note thel(i) and _# P(i) satisfy the assumptions in Lemma 3.1.7, and80 is inde-
composable.

Let S be a simple module and choogse# 0 in S. As Ix = x there is soméP(i) such that
P(i)x # 0 (asAx# 0 andA is the direct sum of th®(i)). Define a homomorphism frof(i) to S,
soSis a simple quotient oP(i). But _#P(i) is the uniqgue maximal submodule Bfi), and so as
Sis simple we hav&= P(i)/_#ZP(i).

(b) If P(i) = P(j) via @ it is easy to see thap(_#P(i)) C _#P(j)). Henceg induces a
homomorphism fron§(i) to S;. As @ is invertible this has an inverse, and Sg) = §(j) by
Schur’s Lemma.
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If S(i) = S(j) then use the projective property to construct a homomonphjisfrom P(i)
to P(j). Show that the image of this map cannot be insidd(j), so as_# P(j) is a maximal
submodulay must have image all d@(j). By Lemma 3.1.6 we deduce thati) = P(j) @ ker(y),
and so a®(i) is indecomposable we have kgr) = 0. Thusy is an isomorphism. O

By Krull-Schmidt, this implies that a finite dimensional aliraA has only finitely many iso-
morphism classes of simple modules.

DEFINITION 3.1.9. Let M be a finite dimensional A-module. ptojective coverfor M is a
projective module P such that
P/ 7P=M/ #M

and there exists a surjectiam: P — M.

LEMMA 3.1.10.Let A be a finite dimensional algebra. Every finite dimendidamodule has
a projective cover, which is unique up to isomorphism. Inticatar, suppose that

M/ M=) @ S2)" @@ St)™.
Then
P=P(L)"eP2)"2d- - -¢P(t)™
is a projective cover of M via the canonical surjection onleaomponent.

PROOF (Sketch) It is clear that the givep satisfiesP/ #P =M/ _#M. Use the projective
property to construct a homomorphismirom P to M; it is easy to see that ifm) + M =M
by the commutativity of the related diagram. But thgf(M/im(m)) = (_#M+im(m))/im(m) =
M/im(m) and so by Nakayama’s Lemma we hawéN = 0. Thusrtis surjective as required.[d

DEFINITION 3.1.11. A projective resolutioof a module M is an exact sequence
— P —Ph—P—M—0
such that all the Pare projective.

By induction using Lemma 3.1.10 we deduce

PrRoOPOSITION 3.1.12. If A is a finite dimensional algebra then every finite dimenaldA-
module has a projective resolution.

There is a similar theory for injective modules, but insteddieveloping this separately we
will instead use dual modules to relate the two.

The injective analogue of a projective cover is calleditijective envelopef M. An injective
resolutionof M is an exact sequence

O—M-—l1—lp—Ilz3g—---
such that all theé; are injective.

THEOREM 3.1.13. Suppose that A is a finite dimensional algebra and M a finiteedsional
A-module.
(@) M is simple if and only if Mis a simple AP-module.
(b) M is projective if and only if Mis an injective AP-module.
(c) M is injective if and only if M is a projective AP-module.
(d) The injective envelope of M is | if and only if the projeetcover of the 2-module M is 1*.



3.2. IDEMPOTENTS AND DIRECT SUM DECOMPOSITIONS 31
PROOF This is a straightforward application of duality. O

Projective and injective modules play a crucial role in thedg of the cohomology of rep-
resentations. In a non-semisimple representation thdwmnetare certain spaces associated to
Homa(M,N) called extension group&xt,(M,N). To introduce these properly, we would need
to work with the category of modules, and introduce the motiba derived functor. Unfortunately
this is beyond the scope of the current course.

3.2. ldempotents and direct sum decompositions

Every algebra has at least two idempotents, 0 and A.idfnot local then there exists another
idempotene € Aandeand 1— eare two non-zero orthogonal idempotents, giving a decompns
of A-modules

A=AedA(l-e).

If eis a central idempotent then so is-E, and the above decomposition becomes a direct sum
of algebras. Conversely, & = M1 @ Mz as anA-module, then the corresponding decomposition
1 =e; + e is an orthogonal idempotent decomposition of 1. If the dgoosition ofA is as a
direct sum of algebras, then the corresponding idemposeatsentral.

DEFINITION 3.2.1. We say that an algebra monnectear indecomposablég 0 and1 are the
only central idempotents in A.

Note that ifA is not connected, s&= A; @ Az, then anyA-moduleM decomposes as a direct
sumM; & M> whereM; is an Ai-module fori = 1,2. (This follows by decomposing & A and
applying it toM.) Thus we can reduce the study of the representations ofgaba to the case
where the algebra is connected.

Suppose thaA is a finite dimensional algebra. By repeatedly decompo&iag anA-module

we can write
A=P & - R,

where theR are indecomposable left ideals A (The sum is finite ad\ is finite dimensional.)
There is a corresponding decomposition of 1 as a sum of verthogonal idempotents. Con-
versely any such decomposition of 1 gives rise to a decormposf A into indecomposable left
ideals. Note that we can identify primitive idempotents bg following application of Lemma
2.4.6

COROLLARY 3.2.2. Suppose that A is a finite dimensional algebra. Then an idesnpec A
is primitive if and only if eAe is local.

DEFINITION 3.2.3. Suppose that A is a finite dimensional algebra with a compgletiee; , ... e}
of primitive orthogonal idempotents. Then Asicif Ag = Agj implies that i= j.
Basic algebras have the following nice properties.

PROPOSITION3.2.4. Suppose that k is algebraically closed.
(a) A finite dimensional k-algebra A is basic if and only if

A/ 7 =kxkx---xk
(b) Every simple module over a basic algebra is one dimemsion
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PROOF (Sketch) (a) Suppose thatis basic and consider a complete set of primitive idempo-
tentsey, ..., &, for A. By Theorem 3.1.8 the modul& = (A/_¢#)e are simpleA/_#-modules.
Also, asA is basic these simples are non-isomorphic. Then Schursneemmplies that Hom-
spaces between such simples are isomorphic tok) @and one can define an injective homomor-
phism

(p:A// — Enda\/(j(sl@"'@&) =kx---xk
By dimensions this is an isomorphism.

If A/_# is basic then th& above are all non-isomorphic (as the primitive idempotenés

even central ilA/_¢#'), and the same argument as above impliesAlatbasic.

(b) Any simpleA-module is also a\/_#-module by Nakayama’s Lemma. But by part (a)
this is isomorphic tk x - - - x k, which implies the result. O

Given an arbitrary finite dimensional algebawe can associate a basic algebra to it in the
following manner.

DEFINITION 3.2.5. Suppose that A is finite dimensional and has a completgeset . e,} of
primitive orthogonal idempotents. Pick idempotenis.e. g, from this set such that Ae= Aq,
implies that a= b, and so that the collection is maximal with this propertyei define

t
ea= ) &,
&1

and set R = epAey, thebasic algebra associatedAo (It is easy to see that this is indeed a basic
algebra, and is independent of the choice of idempotents.)

As we have not given a precise definition of a category, wel skete the next result without
proof.

THEOREM 3.2.6. Suppose that A is a finite dimensional algebra. Then the oageyf finite
dimensional A-modules is equivalent to the category otfiiitnensional Amodules.

This means that to understand the representation theorfioiteé dimensional algebra it is
enough to consider representations of the correspondsig algebra.

Let us now consider the special case of the path algebra afarqu

LEMMA 3.2.7. Let Q be afinite quiver. Then the sum

1:%&
i€Qo

is a decomposition into a complete set of primitive orthajasiempotents for kQ.

PROOF All that remains to prove is that the are primitive, for which it is enough to show
thatgkQg; is local. Suppose thae €kQg is an idempotent. Thea= A& +w whereA € kand
wis a sum of paths from to a. But then

0=€—e=A?=A)g§+W+(2A —1)w
implies thatw=0andA =0orA = 1. O

We can now characterise the connected path algebras ofrguive
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LEMMA 3.2.8. Let Q be a finite quiver. Then kQ is connected if and only if Qésm@nected
quiver.

PROOF (Sketch) It can be shown th&Q is connected if and only if there does not exist a
partitionQg = X UY of the set of vertices such that for alE X andy € Y we haveskQey =0 =

gykQey.

Clearly if Q is not connected then there exists a partii@y= X UY so that there is no path
from a vertex inX to a vertex iny (or vice versa). Thus in this casgkQey = 0 = &/kQex, andkQ
IS not connected.

If kQ is not connected bud is connected, there exists a partitiQg = X UY as above, and
elementx € X andy € Y with an arrowa : x — y in Q. But thena € &kQey which contradicts
our assumption okQ. O

THEOREM 3.2.9. Let Q be a finite, connected, acyclic quiver. Then kQ is a bemmected
algebra with radical given by the arrow ideal.

PROOF (Sketch) By Lemma 3.2.7 we have a decomposition

kQ/Ro= D a(kQ/Ro)és.
a,beQo
As R contains all non-trivial paths each summand is non-zerg whena = b, in which case it is
isomorphic tok. Thus we will be done by Proposition 3.2.4 and Lemma 3.2.8:ifcan show that
Ro = _#. But asQ is acyclic there exists a maximal path lengthQn HenceRg =0forn>>0,
and soORC _# by Theorem 2.3.4. Itis not too hard to show that in fact angotiént ideal such
thatA/I is a product of copies & must equal 7 (A). O

Now we consider the case of bound quiver algebras.

PROPOSITION3.2.10. Let Q be a finite quiver with admissible ideal | in kQ. Then
(a) The set

{e=¢&+1:ieQo}
is a complete set of primitive orthogonal idempotents ifkQ

(b) The algebra k@I is connected if and only if Q is a connected quiver.
(c) The algebra k@I is basic, with radical R/I.

PROOF (Sketch) The proofs of (a) and (b) are similar to thosek@ Part (c) is almost
immediate from the corresponding result ke). O

We have seen that the representation theory of finite dimmeakalgebras reduces to the study
of connected basic algebras. The last result says that lupuivner algebras for connected quivers
are such algebras. We conclude this section with

THEOREM 3.2.11. Let A be a basic, connected, finite dimensional k-algebra anealge-
braically closed field. Then there is a connected quiver @eissed to A and an admissible ideal
| in kQ such that

A=KQ/I.
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Thus over algebraically closed fields the study of finite disienal algebras can be reduced
to the study of bound quiver algebras.

PROOF (Sketch) Rather than give a detailed proof, we will sketoWw ko construct the quiver
associated té.

Let{ey,...,en} be a complete set of primitive orthogonal idempotent.imhenQ has vertex
set{1,...,n}. Given 1<i,j < n, the number of arrows fromto j equals the dimension of the

vector space (7 /_7?)e;.

One then checks that this quiver is independent of the cludickempotents and is connected.
Then one defines a homomorphism fr&@ to A, and show that this is (i) surjective, and (ii) has
kernel which is an admissible ideal kQ. The result then follows from the first isomorphism
theorem. O

For a discussion of what happens whes not algebraically closed seBgn91, Section 4.1].

3.3. Simple and projective modules for bound quiver algebra

In general itis hard to determine explicitly the simple miedifor an algebra. Indeed, some of
the most important open questions in representation thetate to determining simple modules.
However, in the case of a bound quiver algebra the simple feedian be written down entirely
explicitly.

We will also see that the indecomposable projectives cantasasily constructed. The same
is true for indecomposable injectives, but we will not calesithese in detail here.

Let kQ/I be a bound quiver algebra. We know by Proposition 3.2.10 drebilem 3.1.8 that
the simple modules are parameterised by the vertic&3, @nd are all one dimensional (as the
algebras are basic). Given this, the following result isadtrclear.

PROPOSITION3.3.1. Let kQ/I be a bound quiver algebra. Fora Qo, let Sa) be the repre-
sentation of Q such that

k a=b
S(a>b: { 0 a# b
and for all arrowsa the mapg, = 0. Then
{S(a):a€ Qo}

is a complete set of non-isomorphic simple modules fol kQ

PROOF The only thing that remains to check is that the various spre not isomorphic,
but this is straightforward. O

The description of the projective moduleg&a) is slightly more complicated.

ProPOSITION3.3.2. Let kQ)/| be a bound quiver algebra, and &) the projective correspond-
ing to &5. Then Ra) can be realised in the following manner.
For b € Qo let P(a), be the k-vector space with basis the set of all elements ébthew+ | where
w is a path from a to b. Given an arrow : b — ¢, the mapg, : P(a), — P(a)c is given by left
multiplication bya +1.
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PROOF This is a straightforward consequence of the explicitiifieation of quiver represen-
tations withkQ/I-modules given earlier. O

The description of injective modules for a bound quiver blgeis similar, using Theorem
3.1.13.

3.4. Exercises

(1) LetA be an algebra containiregan idempotent, and I&fl be a leftA-module.

(&) Show thatAeis an algebra, aneM is a lefteAemodule.
(b) Show that Hom(Ae M) is a lefteAemodule where the action afc eAeon a mor-
phismg € Homa(Ae M) is given by

ap(—) = p(a-).

(c) Show that there is an isomorphism of leAemoduleseM = Homa (Ag M).

(2) Afirst course on representation theory often considelssrepresentations of finite groups
overC. In this case much can be learnt from the studgtwdracters Given a finite group
G, a representatiovi of dimensiomn can be described by giving a group homomorphism
p: G — EndV). By choosing a basis & we obtain a map fron® into GL,(C). We
define thecharacterof V to be the magky : G — C given by xv(9) = Tr(p(g)), the
trace of the matrixo(g). This looks like it throws away a lot of information; howehis
exercise will show that it is still a powerful tool.

(&) Show that the character\éfdoes not depend on the chosen basis.

(b) Show that ifv andW are two isomorphic representations®@then yy = xw. Hint:
Let ¢ be an isomorphism fror’ to W. Pick a basis fo and consider the corre-
sponding basis d#V obtained viap. Now compare the actions gf€ G on each
basis.

(c) Suppose that andW are two simple non-isomorphic representation&oBy the
Artin-Wedderburn Theoren€G is isomorphic to a direct sum of matrix algebras,
and there is a corresponding idempotent decompositienyle. Show that there
existsi such thal acts as the identity ov and as 0 oW. (You may wish to recall
Corollary 2.2.5.)

(d) Deduce from the above that\f andW are two simple representations Gfthen
V =W ifand only if xy = xw-

(3) Determine the indecomposable projectives and theical for the following bound
quivers.

(@)

a [of a:
o1 >0y 2. 03 2. 0

(b) The same quiver as in (a) but with the relatajo, = 0.
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(c)
o] i> L} j B
o, e
o3 L oy
with the relation
B2 =0.
(d) The same quiver as in (c) with the relations
BZ =0 a201 = 20403.

(4) Suppose thd is a finite acyclic quiver. Show that all the linear maps inrasheicompos-
able projective representation @fmust be injective.



