
CHAPTER 3

Projective and injective modules

3.1. Projective and injective modules

DEFINITION 3.1.1. A short exact sequenceof A-modules is a sequence of the form

0−→ L
φ

−→ M
ψ

−→ N → 0

such that the mapφ is injective, the mapψ is surjective, andimφ = kerψ. More generally, a
sequence

· · · −→ L
φ

−→ M
ψ

−→ N −→ ·· ·

is exact atM if imφ = kerψ. If a sequence is exact at every module then it is calledexact. (Thus
a short exact sequence is exact.)

Note that in a short exact sequence as above we have that

M/L ∼= N

by the isomorphism theorem, and dimM = dimL+dimN. When a sequence starts or ends in a 0
it is common to assume that it is exact (as we will do in what follows).

LEMMA 3.1.2. Given a short exact sequence of A-modules

0−→ L
φ

−→ M
ψ

−→ N → 0

the following are equivalent:
(a) There exists a homomorphismθ : N −→ M such thatψθ = idN.
(b) There exists a homomorphismτ : M −→ L such thatτφ = idL.
(c) There is a module X with M= X⊕ker(ψ).

PROOF. (Sketch) We will show that (a) is equivalent to (c); that (b)is equivalent to (c) is
similar. First suppose thatθ as in (a) exists. Thenθ must be an injective map. LetX = im(θ),
a submodule ofM isomorphic toN. It is easy to check thatX ∩ ker(ψ) = 0 and that dim(X ⊕
ker(ψ)) = dimM by exactness atM. ThereforeM = X⊕ker(ψ).

Now suppose thatM = X⊕ker(ψ). Consider the restriction ofψ to X; it is clearly an isomor-
phism and soθ can be taken to be an inverse toψ. �

DEFINITION 3.1.3.An A-module P isprojectiveif for all surjective A-module homomorphisms
θ : M −→ N and for allφ : P−→ N there existsψ : P−→ M such thatθψ = φ .
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28 3. PROJECTIVE AND INJECTIVE MODULES

Thus a moduleP is projective if there always existsψ such that the following diagram com-
mutes

P

φ
��

ψ

~~
M

θ // N // 0.

(Note that here we are using our convention about exactness for the bottom row in the diagram.)

There is a dual definition, obtained by reversing all the arrows and swapping surjective and
injective.

DEFINITION 3.1.4. An A-module I isinjective if for all injective A-module homomorphisms
θ : N −→ M and for allφ : N −→ I there existsψ : M −→ I such thatψθ = φ .

Thus a moduleI is injective if there always existsψ such that the following diagram commutes

0 // M

φ
��

θ // N

ψ
~~

I

EXAMPLE 3.1.5. For m≥ 1 the module Am is projective. To see this, denote the ith coordinate
vector(0, . . . ,0,1,0. . . ,0) by vi , and suppose thatφ(vi) = ni ∈ N. As g is surjective, there exists
mi ∈ M such that g(mi) = ni . Given a general element(a1, . . . ,am) ∈ Am define

ψ(a1, . . . ,am) =
m

∑
i=1

aimi .

It is easy to verify that this gives the desired A-module homomorphism.

We would like a means to recognise projective modulesP without having to consider all pos-
sible surjections and morphisms fromP. The following lemma provides this, and shows that the
above example is typical.

LEMMA 3.1.6. For an algebra A the following are equivalent.
(a) P is projective.
(b) Wheneverθ : M −→ P is a surjection then M∼= P⊕ker(θ).
(c) P is isomorphic to a direct summand of Am for some m.

PROOF. First suppose thatP is projective. We have by definition a commutative diagram

P

idP
��

ψ

��
M

θ // P // 0.

and by Lemma 3.1.2 this implies thatM ∼= P⊕ker(θ).
Now suppose that (b) holds. Given anyA-moduleM with generatorsmi , i ∈ I , there is a

surjection from⊕i∈I A ontoM given by the map taking 1 in theith copy ofA to mi . TakingM = P
a projective we deduce that (c) holds.
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Finally suppose thatAm∼= P⊕X for someP andX. Let π be the projection map fromAn onto
P, andι be the inclusion map fromP into Am. Given modulesM andN and a surjection fromM to
N we have the commutative diagram

An

π
��ψ1

��

P

φ
��

ι
OO

ψ1ι

~~
M

θ // P // 0.

It is easy to check thatψ1ι gives the desired mapψ for P in the definition of a projective module.
�

Suppose thatA is finite dimensional and

A= P(1)⊕·· ·⊕P(n) (1)

is a decomposition ofA into indecomposable direct summands. By the last result these summands
are indecomposable projective modules.

LEMMA 3.1.7. Suppose that A is a finite dimensional algebra. Let P be a projective A-module
with submodule N, and suppose that every homomorphismφ : P−→ P maps N to N. Then there is
a surjection fromEndA(P) ontoEndA(P/N) and if P is indecomposable then so is P/N.

PROOF. (Sketch) Givenφ : P−→ P let φ̄ be the obvious map fromP/N to P/N. Check this
is well-defined; it is clearly a homomorphism. The mapφ −→ φ̄ gives an algebra homomorphism
from EndA(P) to EndA(P/N); givenψ ∈ EndA(P/N) use the projective property ofP to construct
a mapφ so thatφ̄ = ψ.

If P is indecomposable then EndA(P) is a local algebra by Lemma 2.4.6. Therefore there is
a unique maximal right ideal in EndA(P), and hence a unique maximal ideal in EndA(P/N) (as
we have shown that this is a quotient of EndA(P)). Thus EndA(P/N) is local, and henceP/N is
indecomposable. �

THEOREM 3.1.8. Let A be a finite dimensional algebra, and decompose A as in (1). Setting
S(i) = P(i)/J P(i) we have
(a) The module S(i) is simple, and every simple A-module is isomorphic to some S(i).
(b) We have S(i)∼= S( j) if and only if P(i)∼= P( j).

PROOF. (Sketch) (a) The modulesS(i) is semisimple, so it is enough to check it is indecom-
posable. Note thatP(i) andJ P(i) satisfy the assumptions in Lemma 3.1.7, and soS(i) is inde-
composable.

Let S be a simple module and choosex 6= 0 in S. As 1x = x there is someP(i) such that
P(i)x 6= 0 (asAx 6= 0 andA is the direct sum of theP(i)). Define a homomorphism fromP(i) to S,
soS is a simple quotient ofP(i). But J P(i) is the unique maximal submodule ofP(i), and so as
S is simple we haveS∼= P(i)/J P(i).

(b) If P(i) ∼= P( j) via φ it is easy to see thatφ(J P(i)) ⊆ J P( j)). Henceφ induces a
homomorphism fromS(i) to Sj . As φ is invertible this has an inverse, and soS(i) ∼= S( j) by
Schur’s Lemma.
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If S(i) ∼= S( j) then use the projective property to construct a homomorphism ψ from P(i)
to P( j). Show that the image of this map cannot be insideJ P( j), so asJ P( j) is a maximal
submoduleψ must have image all ofP( j). By Lemma 3.1.6 we deduce thatP(i)∼= P( j)⊕ker(ψ),
and so asP(i) is indecomposable we have ker(ψ) = 0. Thusψ is an isomorphism. �

By Krull-Schmidt, this implies that a finite dimensional algebraA has only finitely many iso-
morphism classes of simple modules.

DEFINITION 3.1.9. Let M be a finite dimensional A-module. Aprojective coverfor M is a
projective module P such that

P/J P∼= M/J M
and there exists a surjectionπ : P−→ M.

LEMMA 3.1.10.Let A be a finite dimensional algebra. Every finite dimensional A-module has
a projective cover, which is unique up to isomorphism. In particular, suppose that

M/J M ∼= S(1)n1 ⊕S(2)n2 ⊕·· ·⊕S(t)nt .

Then
P= P(1)n1 ⊕P(2)n2 ⊕·· ·⊕P(t)nt

is a projective cover of M via the canonical surjection on each component.

PROOF. (Sketch) It is clear that the givenP satisfiesP/J P ∼= M/J M. Use the projective
property to construct a homomorphismπ from P to M; it is easy to see that im(π)+J M = M
by the commutativity of the related diagram. But thenJ (M/ im(π)) = (J M+ im(π))/ im(π) =
M/ im(π) and so by Nakayama’s Lemma we haveM/N = 0. Thusπ is surjective as required.�

DEFINITION 3.1.11.A projective resolutionof a module M is an exact sequence

· · · −→ P3 −→ P2 −→ P1 −→ M −→ 0

such that all the Pi are projective.

By induction using Lemma 3.1.10 we deduce

PROPOSITION 3.1.12. If A is a finite dimensional algebra then every finite dimensional A-
module has a projective resolution.

There is a similar theory for injective modules, but insteadof developing this separately we
will instead use dual modules to relate the two.

The injective analogue of a projective cover is called theinjective envelopeof M. An injective
resolutionof M is an exact sequence

0−→ M −→ I1 −→ I2 −→ I3 −→ ·· ·

such that all theIi are injective.

THEOREM 3.1.13.Suppose that A is a finite dimensional algebra and M a finite dimensional
A-module.
(a) M is simple if and only if M∗ is a simple Aop-module.
(b) M is projective if and only if M∗ is an injective Aop-module.
(c) M is injective if and only if M∗ is a projective Aop-module.
(d) The injective envelope of M is I if and only if the projective cover of the Aop-module M∗ is I∗.
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PROOF. This is a straightforward application of duality. �

Projective and injective modules play a crucial role in the study of the cohomology of rep-
resentations. In a non-semisimple representation theory there are certain spaces associated to
HomA(M,N) calledextension groupsExtiA(M,N). To introduce these properly, we would need
to work with the category of modules, and introduce the notion of a derived functor. Unfortunately
this is beyond the scope of the current course.

3.2. Idempotents and direct sum decompositions

Every algebra has at least two idempotents, 0 and 1. IfA is not local then there exists another
idempotente∈A andeand 1−eare two non-zero orthogonal idempotents, giving a decomposition
of A-modules

A= Ae⊕A(1−e).

If e is a central idempotent then so is 1−e, and the above decomposition becomes a direct sum
of algebras. Conversely, ifA = M1⊕M2 as anA-module, then the corresponding decomposition
1 = e1+ e2 is an orthogonal idempotent decomposition of 1. If the decomposition ofA is as a
direct sum of algebras, then the corresponding idempotentsare central.

DEFINITION 3.2.1. We say that an algebra isconnectedor indecomposableif 0 and1 are the
only central idempotents in A.

Note that ifA is not connected, sayA= A1⊕A2, then anyA-moduleM decomposes as a direct
sumM1⊕M2 whereMi is anAi-module fori = 1,2. (This follows by decomposing 1∈ A and
applying it toM.) Thus we can reduce the study of the representations of an algebra to the case
where the algebra is connected.

Suppose thatA is a finite dimensional algebra. By repeatedly decomposingA as anA-module
we can write

A= P1⊕·· ·⊕Pn

where thePi are indecomposable left ideals inA. (The sum is finite asA is finite dimensional.)
There is a corresponding decomposition of 1 as a sum of primitive orthogonal idempotents. Con-
versely any such decomposition of 1 gives rise to a decomposition of A into indecomposable left
ideals. Note that we can identify primitive idempotents by the following application of Lemma
2.4.6

COROLLARY 3.2.2. Suppose that A is a finite dimensional algebra. Then an idempotent e∈ A
is primitive if and only if eAe is local.

DEFINITION 3.2.3.Suppose that A is a finite dimensional algebra with a completeset{e1, . . .en}
of primitive orthogonal idempotents. Then A isbasicif Aei

∼= Aej implies that i= j.

Basic algebras have the following nice properties.

PROPOSITION3.2.4. Suppose that k is algebraically closed.
(a) A finite dimensional k-algebra A is basic if and only if

A/J ∼= k×k×·· ·×k.

(b) Every simple module over a basic algebra is one dimensional.
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PROOF. (Sketch) (a) Suppose thatA is basic and consider a complete set of primitive idempo-
tentse1, . . . ,en for A. By Theorem 3.1.8 the modulesSi = (A/J )ei are simpleA/J -modules.
Also, asA is basic these simples are non-isomorphic. Then Schur’s lemma implies that Hom-
spaces between such simples are isomorphic to 0 ork, and one can define an injective homomor-
phism

φ : A/J −→ EndA/J (S1⊕·· ·⊕Sn)∼= k×·· ·×k.

By dimensions this is an isomorphism.

If A/J is basic then theSi above are all non-isomorphic (as the primitive idempotentsare
even central inA/J ), and the same argument as above implies thatA is basic.

(b) Any simpleA-module is also anA/J -module by Nakayama’s Lemma. But by part (a)
this is isomorphic tok×·· ·×k, which implies the result. �

Given an arbitrary finite dimensional algebraA, we can associate a basic algebra to it in the
following manner.

DEFINITION 3.2.5. Suppose that A is finite dimensional and has a complete set{e1, . . .en} of
primitive orthogonal idempotents. Pick idempotents ei1, . . .eit from this set such that Aeia

∼= Aeib
implies that a= b, and so that the collection is maximal with this property. Then define

eA =
t

∑
a=1

eia

and set Ab = eAAeA, thebasic algebra associated toA. (It is easy to see that this is indeed a basic
algebra, and is independent of the choice of idempotents.)

As we have not given a precise definition of a category, we shall state the next result without
proof.

THEOREM 3.2.6. Suppose that A is a finite dimensional algebra. Then the category of finite
dimensional A-modules is equivalent to the category of finite dimensional Ab-modules.

This means that to understand the representation theory of afinite dimensional algebra it is
enough to consider representations of the corresponding basic algebra.

Let us now consider the special case of the path algebra of a quiver.

LEMMA 3.2.7. Let Q be a finite quiver. Then the sum

1= ∑
i∈Q0

εi

is a decomposition into a complete set of primitive orthogonal idempotents for kQ.

PROOF. All that remains to prove is that theεi are primitive, for which it is enough to show
thatεikQεi is local. Suppose thate∈ εikQεi is an idempotent. Thene= λεi +w whereλ ∈ k and
w is a sum of paths froma to a. But then

0= e2−e= (λ 2−λ )εi +w2+(2λ −1)w

implies thatw= 0 andλ = 0 or λ = 1. �

We can now characterise the connected path algebras of quivers.
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LEMMA 3.2.8. Let Q be a finite quiver. Then kQ is connected if and only if Q is aconnected
quiver.

PROOF. (Sketch) It can be shown thatkQ is connected if and only if there does not exist a
partitionQ0 = X∪Y of the set of vertices such that for allx∈ X andy∈Y we haveεxkQεy = 0=
εykQεx.

Clearly if Q is not connected then there exists a partitionQ0 = X∪Y so that there is no path
from a vertex inX to a vertex inY (or vice versa). Thus in this caseεxkQεy = 0= εykQεx, andkQ
is not connected.

If kQ is not connected butQ is connected, there exists a partitionQ0 = X ∪Y as above, and
elementsx∈ X andy∈Y with an arrowα : x−→ y in Q. But thenα ∈ εxkQεy which contradicts
our assumption onkQ. �

THEOREM 3.2.9. Let Q be a finite, connected, acyclic quiver. Then kQ is a basicconnected
algebra with radical given by the arrow ideal.

PROOF. (Sketch) By Lemma 3.2.7 we have a decomposition

kQ/RQ =
⊕

a,b∈Qo

εa(kQ/RQ)εb.

As Rcontains all non-trivial paths each summand is non-zero only whena= b, in which case it is
isomorphic tok. Thus we will be done by Proposition 3.2.4 and Lemma 3.2.8 if we can show that
RQ = J . But asQ is acyclic there exists a maximal path length inQ. HenceRn

Q = 0 for n>> 0,
and soR⊆ J by Theorem 2.3.4. It is not too hard to show that in fact any nilpotent idealI such
thatA/I is a product of copies ofk must equalJ (A). �

Now we consider the case of bound quiver algebras.

PROPOSITION3.2.10.Let Q be a finite quiver with admissible ideal I in kQ. Then
(a) The set

{ei = εi + I : i ∈ Q0}

is a complete set of primitive orthogonal idempotents in kQ/I.
(b) The algebra kQ/I is connected if and only if Q is a connected quiver.
(c) The algebra kQ/I is basic, with radical RQ/I.

PROOF. (Sketch) The proofs of (a) and (b) are similar to those forkQ. Part (c) is almost
immediate from the corresponding result forkQ. �

We have seen that the representation theory of finite dimensional algebras reduces to the study
of connected basic algebras. The last result says that boundquiver algebras for connected quivers
are such algebras. We conclude this section with

THEOREM 3.2.11. Let A be a basic, connected, finite dimensional k-algebra over an alge-
braically closed field. Then there is a connected quiver Q associated to A and an admissible ideal
I in kQ such that

A∼= kQ/I .
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Thus over algebraically closed fields the study of finite dimensional algebras can be reduced
to the study of bound quiver algebras.

PROOF. (Sketch) Rather than give a detailed proof, we will sketch how to construct the quiver
associated toA.

Let {e1, . . . ,en} be a complete set of primitive orthogonal idempotents inA. ThenQ has vertex
set{1, . . . ,n}. Given 1≤ i, j ≤ n, the number of arrows fromi to j equals the dimension of the
vector spaceei(J /J 2)ej .

One then checks that this quiver is independent of the choiceof idempotents and is connected.
Then one defines a homomorphism fromkQ to A, and show that this is (i) surjective, and (ii) has
kernel which is an admissible ideal inkQ. The result then follows from the first isomorphism
theorem. �

For a discussion of what happens whenk is not algebraically closed see [Ben91, Section 4.1].

3.3. Simple and projective modules for bound quiver algebras

In general it is hard to determine explicitly the simple modules for an algebra. Indeed, some of
the most important open questions in representation theoryrelate to determining simple modules.
However, in the case of a bound quiver algebra the simple modules can be written down entirely
explicitly.

We will also see that the indecomposable projectives can also be easily constructed. The same
is true for indecomposable injectives, but we will not consider these in detail here.

Let kQ/I be a bound quiver algebra. We know by Proposition 3.2.10 and Theorem 3.1.8 that
the simple modules are parameterised by the vertices ofQ, and are all one dimensional (as the
algebras are basic). Given this, the following result is almost clear.

PROPOSITION3.3.1. Let kQ/I be a bound quiver algebra. For a∈ Q0, let S(a) be the repre-
sentation of Q such that

S(a)b =

{

k a= b
0 a 6= b

and for all arrowsα the mapφα = 0. Then

{S(a) : a∈ Q0}

is a complete set of non-isomorphic simple modules for kQ/I.

PROOF. The only thing that remains to check is that the various simples are not isomorphic,
but this is straightforward. �

The description of the projective modulesP(a) is slightly more complicated.

PROPOSITION3.3.2.Let kQ/I be a bound quiver algebra, and P(a) the projective correspond-
ing to εa. Then P(a) can be realised in the following manner.
For b∈ Q0 let P(a)b be the k-vector space with basis the set of all elements of theform w+ I where
w is a path from a to b. Given an arrowα : b−→ c, the mapφα : P(a)b −→ P(a)c is given by left
multiplication byα + I.
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PROOF. This is a straightforward consequence of the explicit identification of quiver represen-
tations withkQ/I -modules given earlier. �

The description of injective modules for a bound quiver algebra is similar, using Theorem
3.1.13.

3.4. Exercises

(1) Let A be an algebra containingean idempotent, and letM be a leftA-module.

(a) Show thateAeis an algebra, andeM is a lefteAe-module.
(b) Show that HomA(Ae,M) is a lefteAe-module where the action ofa∈ eAeon a mor-

phismφ ∈ HomA(Ae,M) is given by

aφ(−) = φ(a−).

(c) Show that there is an isomorphism of lefteAe-moduleseM∼= HomA(Ae,M).

(2) A first course on representation theory often considers only representations of finite groups
overC. In this case much can be learnt from the study ofcharacters. Given a finite group
G, a representationV of dimensionn can be described by giving a group homomorphism
ρ : G−→ End(V). By choosing a basis ofV we obtain a map fromG into GLn(C). We
define thecharacterof V to be the mapχV : G −→ C given byχV(g) = Tr(ρ(g)), the
trace of the matrixρ(g). This looks like it throws away a lot of information; howeverthis
exercise will show that it is still a powerful tool.

(a) Show that the character ofV does not depend on the chosen basis.
(b) Show that ifV andW are two isomorphic representations ofG thenχV = χW. Hint:

Let φ be an isomorphism fromV to W. Pick a basis forV and consider the corre-
sponding basis ofW obtained viaφ . Now compare the actions ofg ∈ G on each
basis.

(c) Suppose thatV andW are two simple non-isomorphic representations ofG. By the
Artin-Wedderburn TheoremCG is isomorphic to a direct sum of matrix algebras,
and there is a corresponding idempotent decomposition 1= ∑ei . Show that there
existsi such thatei acts as the identity onV and as 0 onW. (You may wish to recall
Corollary 2.2.5.)

(d) Deduce from the above that ifV andW are two simple representations ofG then
V ∼=W if and only if χV = χW.

(3) Determine the indecomposable projectives and their radicals for the following bound
quivers.
(a)

•1
α1 // •2

α2 // •3
α3 // •4

(b) The same quiver as in (a) but with the relationα3α2 = 0.
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(c)

•1
α1 //

α3
��

•2

α2
��

β
uu

•3
α4 // •4

with the relation
β 2 = 0.

(d) The same quiver as in (c) with the relations

β 2 = 0 α2α1 = 2α4α3.

(4) Suppose thatQ is a finite acyclic quiver. Show that all the linear maps in an indecompos-
able projective representation ofQ must be injective.


