CHAPTER 4

Categories, functors, and equivalences

In this chapter we will introduce the basic language of caieg. This will allow us to make
more precise the notion of two algebras having the same septation theory, which we have
already appealed to on several occasions.

4.1. Categories

We have already considered classes of objects and the rsorphietween them on a number
of occasions. The notion of a category abstracts this idea.

DEFINITION 4.1.1. A categorys’ is made up a pairOb(%’), a class ofobjectsandHomy, a
class ofmorphisms Each morphism f is associated to a unique pair of obj¢atb) where a is
thesourceof f and b is thaargetof f. Usually we write this as fa— b or

a——-»D.

The class of all morphisms from a to b is denbi@m, (a, b), or justHom(a, b) if the category is
clear. For each triple of objects, &, c there exists a binary operation

Homy (a,b) x Homy(b,c) — Homy(a,c)
which we callcompositionwhich takes the pair of morphisnms$, g) to the morphism denotechd .
To be a category, the following pair of conditions must hold:

(1) (Associativity): If f:a— b, g: b— c and h: c — d are three morphisms then
ho(gof)=(hog)of.

(2) (Identity): For each a= Ob(%’) there exists a morphisid, € Homy(a,a) such that for
every pair of objects a and b and morphismsfHomy (a, b) we have

idyof = f = foidy.

Many authors will refer to morphisms asrowsor maps we will avoid the former as we have
already used this terminology for quivers.

We have used the word “class” rather than “set” to avoid wiagyabout whether we are
working in a setting where our functions form a set. Abstcategory theory is closely bound up
with set theory, and can involve the same subtle problematad®is versus classes. We wish to
avoid worrying about such things.

DEFINITION 4.1.2. A small categorys a category wher®©b(%) andHomy are sets. A cate-
gory which is not small is called largecategory.
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38 4. CATEGORIES, FUNCTORS, AND EQUIVALENCES

To avoid having large categories we often assume that wedwawe universel, and describe
an object as small if it is a member of this universe. Then thgsoof objects is actually a set. If we
talk about “the (small) category &f” we mean that all objects iK belong to some fixed universe
U. Sometimes the word “small” is omitted, and it is assumetiekiarything happens inside some
universeU. If we want to refer to only those objects which lie insidewe call these the small
objects of that type.

ExaMPLE 4.1.3. Let SET denote the large category of Sets. H&(SET) is the class of all
sets, andHomgeT is the class of all functions between sets. This is the stangleample which
illustrates why classes are necessary, as it is well-kndvan the set of all sets cannot exist (by
Russell's paradox). If we fix some universe U tBehdenotes the category whose objects are all
sets contained in U, and whose morphisms are all functiohsdsn such sets.

Many categories can be obtained by taking a subset of thetshjeSet which have some
extra properties, and then restricting to those morphishiswpreserve such properties. Here are
some examples.

EXAMPLE 4.1.4. (a) The category of all small grougSrp with morphisms given by group
homomorphisms.
(b) The category of all small vector spacésct with morphisms given by linear maps.
(c) The categoryiop of small topological spaces with morphisms given by cowtiisunaps.

One can also construct purely abstract examples of cag=gbyi picking a set to call the
objects, and another to call morphisms, and then definingoosition of the morphisms in such
a way that it satisfies the axioms. This is closer to what wewdién we considered quivers in
Chapter 1.

EXAMPLE 4.1.5. Agroupcan be considered as a category with one objetiere the elements
of the group are precisely the set of morphism freto itself, and composition of morphisms is
given by multiplication in the group. The group axioms nolinthat this is a category. Note that
in a group every morphism has an inverse. If we consider egoayewith one object with identity
morphism but without requiring that maps are invertible ve¢ gmonoid On the other hand, if
we keep invertibility but allow several objects insteadthve get agroupoid

Notice that when considering a category both the objactsthe morphisms are crucial. The
same set of objects can lie in two quite different categories example we can consider the
small set of groups but with morphisms all functions betwimenunderlying sets, or two different
groups both coming from categories with only one object. STtwaen we work with categories
we are interested in both objects and morphisms equallysaralfunction from one category to
another should respect both levels of structure. Thesdwilhe functors which we introduce next.

However, before we do this, we note that algebras and quizeesise to categories.

EXAMPLE 4.1.6. Given an algebra A we denote by A-mod the category of all ($riedt
A-modules, with morphisms the set of module homomorphidinsre is a similar version for
right A-modules which is denoted mod-A. Similarly, for avguiQ we denote by k@ mod the
category of all (small) representations of Q.
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Some people distinguish betweAmmod andA-Mod, where the former denotes only the cate-
gory of finite dimensionamodules. However this is not particularly standard, andetlaee other
notations (such a&-fdmod) that are also used.

4.2. Functors

As has already been indicated in the previous section, aduig just a morphism of cate-
gories. However, we will need to be quite careful to unpaacty what that means. We have two
kinds of structure in a category, the class of objects, anctthss of morphisms together with a
composition rule. A functor should preserve any relatigpsin such a structure.

DEFINITION 4.2.1. AfunctorF : ¥ — 2 between two categori&g and & is a pair of func-
tions (both denoted F) called thabjectand morphismfunctions, where for each objecta®’ the
object function associates to it an objectd} in 2, and for each morphism fa — b in &, the
morphism functor associates a corresponding morphism

F(f):F(a)— F(b) (2)
in 2, such that
F(ida) = idr (g
for alla € Ob(%) and
F(go f) =F(g)oF(f) 3)

for all f,g € Homy for which the composite gf is defined.

It is quite common to want to modify the definition of a catggdo allow for “functors” which
reverse the direction of a morphism. For this reason the @mgometimes called @variant
functor, and aontravariantfunctor is then defined by replacing (2) by

F(f):F(b)— F(a)

and (3) by the condition that
F(gof)=F(f)oF(g).

EXAMPLE 4.2.2. Given any of the small categories in Example 4.1.4, which ivel@note by
%, there is a functor fron¥’ to Set called theforgetful functor This is the functor that takes an
object in% (be it a group, a vector space, or a topological space) to tieo elements of that
object. Any morphism if#” is mapped to the same morphism (which is still a map betwesh se
Any functor which ‘forgets structure’ is called a forgetfuinctor; for example the functor from
A-mod toVect which forgets the module structure on a vector space.

EXAMPLE 4.2.3. Thepower seffunctor fromSet to Set takes each set to its power set, and a
function f: X — Y between sets is taken to the function which takesXJto f(U) C Y.

Contravariant functors often occur when there is some kfrahhality in the picture.

EXAMPLE 4.2.4. Let Vecty denote the category of small vector spaces over some fixddkfiel
The map which takes each vector space V to its ddak\Hom(V, k) and each linear map to its
dual is a contravariant functor froriect, to Vecty.

We want to treat functors as the morphisms that hold betwaggories. Just as for other
kinds of morphisms we can compose functors.
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DEFINITION 4.2.5.Given F: ¥ — 2 and G: ¥ — & there is a composite functor GF6' — &
which is given on objects by G&) = G(F (a)) and on morphisms by GF) = G(F(f)).

There is an identity functor ld from each category’ to itself, which acts as the identity on
objects and on morphisms. Thus we can consider the cat€girgf all small categories, whose
morphisms are the functors between categories.

DEFINITION 4.2.6. A functor F: 4 — 2 is anisomorphismif is bijective on both objects and
morphisms. Equivalently, F is an isomorphism if there isrectar G: 2 — % for which GF=Idy
and FG=Id4. In this case we say that the two categoriesiammorphic

You might expect that the notion of isomorphic categorieside the natural way in which
to consider two categories as being the same. However, waedlthat this is too restrictive a
notion, and instead introduce a weaker notion of an equicalef categories.

For functions we have notions of injectivity and surjedtiviFor functors things are a little
more complicated.

DEFINITION 4.2.7. (a) A functor F: ¥ — Z is full if for every pair gb € Ob(%) and every
function f: F(a) — F(b) in & there exists a function ga — b in ¥ with F(g) = f. In other
words, when a full functor maps a pair of objects into a nevegaty, they do not gain any more
functions between them than they had in the old category.

(b) A functor F: ¥ — & is faithful (or an embeddingif for every pair ab € Ob(%’) and every
pair of morphisms fg:a— b in %, the images of the morphisms f and g under F are distinct.
(c) A functor isfully faithful if it is full and faithful.

It is easy to see that the composite of two full functors i§ fahd of two faithful functors is
faithful.

ExXAMPLE 4.2.8.Consider the forgetful functor fro@rp to Set. This is faithful, as the equality
of two morphisms is determined by their action as maps of batss not full, as there are fewer
group morphisms than set morphisms in general.

If a functor F : ¢ — 2 is is fully faithful then it induces bijections between Hgifa, b)
and Homy, (F (a),F (b)). However, the categories are not necessarily isomorptfcragy not be
surjective on ObZ).

DEFINITION 4.2.9. A subcategory” of a categorys’ is a pair: Ob(2) C Ob(%’) a class of
objects andHomy C Homy a class of morphisms, such that

(1) If f e Homy and f:a— bin% then ab € Ob(2).
(2) Foralla € Ob(2), id3 € Homy is an element dflomy,.
(3) If f and g inHom, are composable if# then their composite is an elementtdm,;.

The obvious injection frorw to ¥ is a faithful functor, called thénclusion functor If this functor
is full then we say tha® is afull subcategory o¥'.

Notice that a full subcategory is determined by the set odatisjit contains, as then the mor-
phisms are precisely the morphisms between such objedts ioriginal category.
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EXAMPLE 4.2.10. (a) The categorie$rp and Vect are subcategories of the categdsgt. In
neither case are these full subcategories, as there are ggihisms that are not group homomor-
phisms/linear maps.

(b) The categoryibn of abelian groups is a full subcategory of the categGnp.

4.3. Equivalences of categories

Consider the (small) categoRinSet of finite sets. We can define a second categonOrd
of all finite ordinals, which is the full subcategory BinSet with objects those sets of the form
n={0,1,2,n—1} with n € N. Clearly there is a functor

F : FinOrd — FinSet

given by inclusion. Given a finite s&, there is somen with |X| = n, and so we can chose a
bijectioniy : X — n. Let us define a functor

G: FinSet— FinOrd

by settingG(X) = |X| for X € Ob(FinSet), and forf : X — Y settingG(f) =iyo fo(ix)~L (itis
easy to check that this is indeed a functor.)

These two categories are not the same, but one might regarddhk sharing the same funda-
mental properties, with the extra complexityimSetbeing caused by having extra but isomorphic
objects. We have

GF = ldrinord

but FG is not the identity functor, as it maps each set of siza FinSetto a single set of that
cardinality. We do however have that for evdryX — Y the diagram

X — %X FG(X) )

ft lFG(f)

Y —L FG(Y)
commutes. This diagram can be regarded as illustratingearslation between the action of the
identity functor Igkinset (the first column) and that of the funct®&iG (the second column). This

example should be regarded as a motivating example for themof equivalenceof categories
which we are about to introduce.

The definition of equivalence is quite complicated, and sawlleproceed in stages. First, we
want to formalise the notion illustrated by the diagram i (4

DEFINITION 4.3.1. Given (covariant) functors F and G fro#ito &, a natural transformation
6:F—>G
is a function@ which assigns to each objectcaOb(%’) a morphismb, : F(a) — G(a) in such a
way that each morphism:fa— b in % gives rise to a commutative diagram
Ba
(a) —— G(a) (5)

E
F(f)l
6b

G(f)
F(b) —>- G(b).
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If for each ac Ob(%’) the morphisn®, is an isomorphism it¥ then we calb a natural equivalence
or natural isomorphisrand we may writé : F = G.

For contravariant functors we reverse the direction of theoas labelled K f) and G f) in
the diagram.

One way to think of a natural transformation is as@arphism of functordt maps one functor
to another while preserving the composition of morphisnthéunderlying category.

EXAMPLE 4.3.2. Consider the category of commutative rifgsmmRng. We can define two
different functors from this category terp. First, let GL, be the functor which assigns to each
commutative ring R the group of«mn invertible matrices over R. A ring homomorphism f becomes
a function Gly( f) on the matrix entries.

Alternatively, consider the functer* which assigns to each commutative ring R the group
of invertible elements R This is a functor as ring homomorphisms take invertiblenaets to
invertible elements.

When a matrix M over R is invertible the determindetM is a unit in R. As the formula
for the determinant of a matrix does not depend on the uniheriyng R, the functiordek from
GLn(R) to R* leads to a commutative diagram

d
GL(R) dek R

GLn(f)J/ lf
GLn(S) dei> Sx

This shows thatletdefines a natural transformation between{&nd —*.

ExXAMPLE 4.3.3. Given a finite dimensional vector space V, we can considedula¢vector
space V and the double dual ¥. It turns out that there is a natural isomorphism from V t6'V
but no such natural isomorphism from V t6.VThis is because any choice of a map fromV toV
depends on a choice of basis, while a map F from V ‘todan be defined by setting ¥ to be the
linear function Fv) = v** on V* where v*(f) = f(v) forall f e V*.

Natural isomorphisms are very important, but we still hagequite reached the stage where
we have formalised our example of the relation betwe@®rd andFinSet For this we need

DEFINITION 4.3.4. An equivalencebetween two categorie¢g and Z is a pair of functors
F:% — 2 and G: 2 — ¥ together with natural isomorphisms

Idy 2GF and Idy =ZFG.

If you return to the example d¥inOrd andFinSet you can check that what we found was
an equivalence between these two categories. The cormspos that we gave between bound
representations of a quiver andkQ/I-modules in Section 1.4 can now be better expressed as an
equivalence of categories. We have also now explained tla@img of Theorem 3.2.6.

In representation theory we want to apply this idea to sayttha algebras have the ‘same’
representation theory.

DEFINITION 4.3.5. Two algebras A and B arslorita equivalentif there is an equivalence of
their module categories.
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4.4. Abelian categories and the Freyd-Mitchell embeddinghteorem

In this section we will briefly sketch one of the fundamengsults in category theory, which
says that any category which has certain basic properti@tasito those found in a module cate-
gory is in fact a subcategory of some module category. Unifatiely the technical definitions of
the basic properties which are needed become rather lersgtime will just sketch the main ideas
involved.

As an example of how the definitions which we need can be a tgithnical, despite corre-
sponding to intuitively simple notions, let us consider dledinition of the kernel of a morphism.

DEFINITION 4.4.1. Given a morphism fa — b in a category#’, thekernelof f is defined to
be a morphism gc — a for some object ¢ such that all morphisms of the formx h+ a such that
f oh = 0 factorise through c. Similarly we can define ttekernelof a morphism.

Note that the definition does not guarantee that kernelskaroels exist. Products and coprod-
ucts can also be defined in such a manner, by appealingritvarsal propertyhich characterises
them.

DEFINITION 4.4.2. An object a in a category¥ is initial if for each be Ob(%’) there exists
precisely one morphism from a to b. An object b is catiedninalif for each ac Ob(%’) there
exists precisely one morphism from a to b.

We can now define our class of ‘nice’ categories that we wislotopare to module categories.
DEFINITION 4.4.3. Anadditive categorys a categorys in which

(1) There exists an object (which we denotébwhich is both initial and terminal.

(2) Products and coproducts of finite collections of objectsagisvexist.

(3) Foreach pairab e Ob(%) the seHomy (a, b) has the structure of an abelian group. Fur-
ther, these structures are compatible in the sense thatlfatgects ab,c, composition
of functions induces a bilinear map

Homy (b,c) x Homy(a,b) — Homy(a,c).

An abelian categorys an additive category in which kernels and cokernels abvaxist, and for
which if f is a morphism whose kernel @sthen f is the kernel of its cokernel, and if f is a
morphism whose cokernel@sthen f is the cokernel of its kernel.

This is quite a tricky definition, and we will not be able to cheany examples in the time
available. However, here are a few to illustrate that thecephis useful.

EXAMPLE 4.4.4.(a) Given aring R, the categories of R-modules is an abels&agory. (We
defined modules for algebras, but it is easy to see that theitiefi extends to rings.)
(b) The category of vector bundles (or of sheaves) over dagpmal space is abelian.

We can now state the fundamental result about abelian aasgo

THEOREM 4.4.5 (Freyd-Mitchell embedding theorenBvery small abelian category is a full
subcategory of some category of modules over a ring.
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Freyd proved this statement without the word full, and sortdwailt is referred to variously

as due to Freyd or to Mitchell. The importance of this resagtaft from highlighting the central
nature of module categories when considering abelian cae=) is that allows one to argue in
abstract abelian categories with the language and tecksiffom the more familiar setting of
module categories.

4.5. Exercises

(1) Prove that for each object in a categ@rythe identity morphism is unique.

(2) Givena groupss, let[G, G] denote the commutator subgroup®#— the set of all products
of commutators of the forrghg—*h—! with g,h € G. This is in fact a normal subgroup of
G. Show that the assignmeBt— [G, G] defines a functor fronGrp to Grp, and that the
assignmenG — G/[G, G| defines a functor fron®rp to Abn.

(3) Show that there is no functor fro@rp to Abn sending each groug to its centreZ(G).
(Hint: Consider maps between the symmetric groups on twotlaresd elements of the

foomS -+ S —+ $)

(4) Given a grougs with multiplication, we define the opposite gro@fP to be the group
with the same set of elements, but with multiplicatié® given byg«°Ph = hxg. This
define a covariant functor°P from Grp to Grp if we set f°P = f. Show thatf®P is
indeed a group homomorphism and prove that the identitytéurdg,, is naturally iso-
morphic to the opposite functer°P.

(5) Given two group®A andB, regarded as categories with a single object, supposd-that
and G are two functors fromA to B. First note that this means thtand G are group
homomorphisms. Show that there is a natural transformdtoon F to G if and only if
there is an elemerg € B such thaf (h) = gG(h)g~* for allh € A.

(6) Given a fieldk, let Mat denote the category of all rectangular matrices with esirid,
where the objects are all natural numbers and eaem matrix is regarded as a morphism
from n to mwith the usual matrix product as composition. Prove Maty is equivalent
to the categoryinVecty of finite dimensional vector spaces ower



