
CHAPTER 4

Categories, functors, and equivalences

In this chapter we will introduce the basic language of categories. This will allow us to make
more precise the notion of two algebras having the same representation theory, which we have
already appealed to on several occasions.

4.1. Categories

We have already considered classes of objects and the morphisms between them on a number
of occasions. The notion of a category abstracts this idea.

DEFINITION 4.1.1. A categoryC is made up a pair:Ob(C ), a class ofobjectsandHomC , a
class ofmorphisms. Each morphism f is associated to a unique pair of objects(a,b) where a is
thesourceof f and b is thetargetof f . Usually we write this as f: a→ b or

a
f

// b .

The class of all morphisms from a to b is denoteHomC (a,b), or justHom(a,b) if the category is
clear. For each triple of objects a,b,c there exists a binary operation

HomC (a,b)×HomC (b,c)→ HomC (a,c)

which we callcompositionwhich takes the pair of morphisms( f ,g) to the morphism denoted g◦ f .
To be a category, the following pair of conditions must hold:

(1) (Associativity): If f : a→ b, g: b→ c and h: c→ d are three morphisms then

h◦ (g◦ f ) = (h◦g)◦ f .

(2) (Identity): For each a∈ Ob(C ) there exists a morphismida ∈ HomC (a,a) such that for
every pair of objects a and b and morphism f:∈ HomC (a,b) we have

idb◦ f = f = f ◦ ida .

Many authors will refer to morphisms asarrowsor maps; we will avoid the former as we have
already used this terminology for quivers.

We have used the word “class” rather than “set” to avoid worrying about whether we are
working in a setting where our functions form a set. Abstractcategory theory is closely bound up
with set theory, and can involve the same subtle problems about sets versus classes. We wish to
avoid worrying about such things.

DEFINITION 4.1.2. A small categoryis a category whereOb(C ) andHomC are sets. A cate-
gory which is not small is called alargecategory.
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38 4. CATEGORIES, FUNCTORS, AND EQUIVALENCES

To avoid having large categories we often assume that we havesome universeU , and describe
an object as small if it is a member of this universe. Then the class of objects is actually a set. If we
talk about “the (small) category ofX” we mean that all objects inX belong to some fixed universe
U . Sometimes the word “small” is omitted, and it is assumed that everything happens inside some
universeU . If we want to refer to only those objects which lie insideU we call these the small
objects of that type.

EXAMPLE 4.1.3. Let SET denote the large category of Sets. HereOb(SET) is the class of all
sets, andHomSET is the class of all functions between sets. This is the standard example which
illustrates why classes are necessary, as it is well-known that the set of all sets cannot exist (by
Russell’s paradox). If we fix some universe U thenSet denotes the category whose objects are all
sets contained in U, and whose morphisms are all functions between such sets.

Many categories can be obtained by taking a subset of the objects in Set which have some
extra properties, and then restricting to those morphisms which preserve such properties. Here are
some examples.

EXAMPLE 4.1.4. (a) The category of all small groupsGrp with morphisms given by group
homomorphisms.
(b) The category of all small vector spacesVect with morphisms given by linear maps.
(c) The categoryTop of small topological spaces with morphisms given by continuous maps.

One can also construct purely abstract examples of categories by picking a set to call the
objects, and another to call morphisms, and then defining composition of the morphisms in such
a way that it satisfies the axioms. This is closer to what we didwhen we considered quivers in
Chapter 1.

EXAMPLE 4.1.5.A groupcan be considered as a category with one object∗. Here the elements
of the group are precisely the set of morphism from∗ to itself, and composition of morphisms is
given by multiplication in the group. The group axioms now imply that this is a category. Note that
in a group every morphism has an inverse. If we consider a category with one object with identity
morphism but without requiring that maps are invertible we get amonoid. On the other hand, if
we keep invertibility but allow several objects instead then we get agroupoid.

Notice that when considering a category both the objectsand the morphisms are crucial. The
same set of objects can lie in two quite different categories; for example we can consider the
small set of groups but with morphisms all functions betweenthe underlying sets, or two different
groups both coming from categories with only one object. Thus when we work with categories
we are interested in both objects and morphisms equally, andso a function from one category to
another should respect both levels of structure. These willbe the functors which we introduce next.

However, before we do this, we note that algebras and quiversgive rise to categories.

EXAMPLE 4.1.6. Given an algebra A we denote by A-mod the category of all (small) left
A-modules, with morphisms the set of module homomorphisms.There is a similar version for
right A-modules which is denoted mod-A. Similarly, for a quiver Q we denote by kQ− mod the
category of all (small) representations of Q.
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Some people distinguish betweenA-mod andA-Mod, where the former denotes only the cate-
gory of finite dimensionalmodules. However this is not particularly standard, and there are other
notations (such asA-fdmod) that are also used.

4.2. Functors

As has already been indicated in the previous section, a functor is just a morphism of cate-
gories. However, we will need to be quite careful to unpack exactly what that means. We have two
kinds of structure in a category, the class of objects, and the class of morphisms together with a
composition rule. A functor should preserve any relationships in such a structure.

DEFINITION 4.2.1. A functorF : C → D between two categoriesC andD is a pair of func-
tions (both denoted F) called theobjectandmorphismfunctions, where for each object a∈ C the
object function associates to it an object F(a) in D , and for each morphism f: a → b in C , the
morphism functor associates a corresponding morphism

F( f ) : F(a)→ F(b) (2)

in D , such that
F(ida) = idF(a)

for all a ∈ Ob(C ) and
F(g◦ f ) = F(g)◦F( f ) (3)

for all f ,g∈ HomC for which the composite g f is defined.

It is quite common to want to modify the definition of a category, to allow for “functors” which
reverse the direction of a morphism. For this reason the above is sometimes called acovariant
functor, and acontravariantfunctor is then defined by replacing (2) by

F( f ) : F(b)→ F(a)

and (3) by the condition that
F(g◦ f ) = F( f )◦F(g).

EXAMPLE 4.2.2. Given any of the small categories in Example 4.1.4, which we will denote by
C , there is a functor fromC to Set called theforgetful functor. This is the functor that takes an
object inC (be it a group, a vector space, or a topological space) to the set of elements of that
object. Any morphism inC is mapped to the same morphism (which is still a map between sets).
Any functor which ‘forgets structure’ is called a forgetfulfunctor; for example the functor from
A-mod toVect which forgets the module structure on a vector space.

EXAMPLE 4.2.3. Thepower setfunctor fromSet to Set takes each set to its power set, and a
function f : X →Y between sets is taken to the function which takes U⊆ X to f(U)⊆Y.

Contravariant functors often occur when there is some kind of duality in the picture.

EXAMPLE 4.2.4. Let Vectk denote the category of small vector spaces over some fixed field k.
The map which takes each vector space V to its dual V∗ = Hom(V,k) and each linear map to its
dual is a contravariant functor fromVectk to Vectk.

We want to treat functors as the morphisms that hold between categories. Just as for other
kinds of morphisms we can compose functors.
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DEFINITION 4.2.5.Given F: C →D and G: D → E there is a composite functor GF: C → E
which is given on objects by GF(a) = G(F(a)) and on morphisms by GF( f ) = G(F( f )).

There is an identity functor IdC from each categoryC to itself, which acts as the identity on
objects and on morphisms. Thus we can consider the categoryCat of all small categories, whose
morphisms are the functors between categories.

DEFINITION 4.2.6. A functor F: C →D is anisomorphismif is bijective on both objects and
morphisms. Equivalently, F is an isomorphism if there is a functor G: D →C for which GF= IdC

and FG= IdD . In this case we say that the two categories areisomorphic.

You might expect that the notion of isomorphic categories would be the natural way in which
to consider two categories as being the same. However, we will see that this is too restrictive a
notion, and instead introduce a weaker notion of an equivalence of categories.

For functions we have notions of injectivity and surjectivity. For functors things are a little
more complicated.

DEFINITION 4.2.7. (a) A functor F: C → D is full if for every pair a,b∈ Ob(C ) and every
function f : F(a) → F(b) in D there exists a function g: a → b in C with F(g) = f . In other
words, when a full functor maps a pair of objects into a new category, they do not gain any more
functions between them than they had in the old category.
(b) A functor F: C → D is faithful (or an embedding) if for every pair a,b∈ Ob(C ) and every
pair of morphisms f,g : a→ b in C , the images of the morphisms f and g under F are distinct.
(c) A functor isfully faithful if it is full and faithful.

It is easy to see that the composite of two full functors is full, and of two faithful functors is
faithful.

EXAMPLE 4.2.8.Consider the forgetful functor fromGrp to Set. This is faithful, as the equality
of two morphisms is determined by their action as maps of sets, but is not full, as there are fewer
group morphisms than set morphisms in general.

If a functor F : C → D is is fully faithful then it induces bijections between HomC (a,b)
and HomD(F(a),F(b)). However, the categories are not necessarily isomorphic asF may not be
surjective on Ob(D).

DEFINITION 4.2.9. A subcategoryD of a categoryC is a pair: Ob(D) ⊆ Ob(C ) a class of
objects andHomD ⊆ HomC a class of morphisms, such that

(1) If f ∈ HomD and f : a→ b in C then a,b∈ Ob(D).
(2) For all a ∈ Ob(D), ida ∈ HomC is an element ofHomD .
(3) If f and g inHomD are composable inC then their composite is an element ofHomD .

The obvious injection fromD to C is a faithful functor, called theinclusion functor. If this functor
is full then we say thatD is a full subcategory ofC .

Notice that a full subcategory is determined by the set of objects it contains, as then the mor-
phisms are precisely the morphisms between such objects in the original category.
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EXAMPLE 4.2.10. (a) The categoriesGrp andVect are subcategories of the categorySet. In
neither case are these full subcategories, as there are set morphisms that are not group homomor-
phisms/linear maps.
(b) The categoryAbn of abelian groups is a full subcategory of the categoryGrp.

4.3. Equivalences of categories

Consider the (small) categoryFinSet of finite sets. We can define a second categoryFinOrd
of all finite ordinals, which is the full subcategory ofFinSet with objects those sets of the form
n= {0,1,2,n−1} with n∈ N. Clearly there is a functor

F : FinOrd → FinSet

given by inclusion. Given a finite setX, there is somen with |X| = n, and so we can chose a
bijection iX : X → n. Let us define a functor

G : FinSet→ FinOrd

by settingG(X) = |X| for X ∈ Ob(FinSet), and for f : X →Y settingG( f ) = iY ◦ f ◦ (iX)−1. (It is
easy to check that this is indeed a functor.)

These two categories are not the same, but one might regard them as sharing the same funda-
mental properties, with the extra complexity inFinSetbeing caused by having extra but isomorphic
objects. We have

GF = IdFinOrd

but FG is not the identity functor, as it maps each set of sizen in FinSet to a single set of that
cardinality. We do however have that for everyf : X →Y the diagram

X

f
��

iX // FG(X)

FG( f )
��

Y
iY // FG(Y)

(4)

commutes. This diagram can be regarded as illustrating a nice relation between the action of the
identity functor IdFinSet (the first column) and that of the functorFG (the second column). This
example should be regarded as a motivating example for the notion of equivalenceof categories
which we are about to introduce.

The definition of equivalence is quite complicated, and so wewill proceed in stages. First, we
want to formalise the notion illustrated by the diagram in (4).

DEFINITION 4.3.1. Given (covariant) functors F and G fromC to D , anatural transformation

θ : F → G

is a functionθ which assigns to each object a∈ Ob(C ) a morphismθa : F(a)→ G(a) in such a
way that each morphism f: a→ b in C gives rise to a commutative diagram

F(a)

F( f )
��

θa // G(a)

G( f )
��

F(b)
θb // G(b).

(5)
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If for each a∈Ob(C ) the morphismθa is an isomorphism inD then we callθ a natural equivalence
or natural isomorphismand we may writeθ : F ∼= G.

For contravariant functors we reverse the direction of the arrows labelled F( f ) and G( f ) in
the diagram.

One way to think of a natural transformation is as amorphism of functors. It maps one functor
to another while preserving the composition of morphisms inthe underlying category.

EXAMPLE 4.3.2. Consider the category of commutative ringsCommRng. We can define two
different functors from this category toGrp. First, let GLn be the functor which assigns to each
commutative ring R the group of n×n invertible matrices over R. A ring homomorphism f becomes
a function GLn( f ) on the matrix entries.

Alternatively, consider the functor−× which assigns to each commutative ring R the group
of invertible elements R×. This is a functor as ring homomorphisms take invertible elements to
invertible elements.

When a matrix M over R is invertible the determinantdetM is a unit in R. As the formula
for the determinant of a matrix does not depend on the underlying ring R, the functiondetR from
GLn(R) to R× leads to a commutative diagram

GLn(R)

GLn( f )
��

detR // R×

f
��

GLn(S)
detS // S×

This shows thatdetdefines a natural transformation between GLn and−×.

EXAMPLE 4.3.3. Given a finite dimensional vector space V, we can consider thedual vector
space V∗ and the double dual V∗∗. It turns out that there is a natural isomorphism from V to V∗∗

but no such natural isomorphism from V to V∗. This is because any choice of a map from V to V∗

depends on a choice of basis, while a map F from V to V∗∗ can be defined by setting F(v) to be the
linear function F(v) = v∗∗ on V∗ where v∗∗( f ) = f (v) for all f ∈V∗.

Natural isomorphisms are very important, but we still have not quite reached the stage where
we have formalised our example of the relation betweenFinOrd andFinSet. For this we need

DEFINITION 4.3.4. An equivalencebetween two categoriesC and D is a pair of functors
F : C → D and G: D → C together with natural isomorphisms

IdC
∼= GF and IdD

∼= FG.

If you return to the example ofFinOrd andFinSet you can check that what we found was
an equivalence between these two categories. The correspondence that we gave between bound
representations of a quiverQ andkQ/I -modules in Section 1.4 can now be better expressed as an
equivalence of categories. We have also now explained the meaning of Theorem 3.2.6.

In representation theory we want to apply this idea to say that two algebras have the ‘same’
representation theory.

DEFINITION 4.3.5. Two algebras A and B areMorita equivalentif there is an equivalence of
their module categories.
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4.4. Abelian categories and the Freyd-Mitchell embedding theorem

In this section we will briefly sketch one of the fundamental results in category theory, which
says that any category which has certain basic properties similar to those found in a module cate-
gory is in fact a subcategory of some module category. Unfortunately the technical definitions of
the basic properties which are needed become rather lengthy, so we will just sketch the main ideas
involved.

As an example of how the definitions which we need can be a little technical, despite corre-
sponding to intuitively simple notions, let us consider thedefinition of the kernel of a morphism.

DEFINITION 4.4.1. Given a morphism f: a→ b in a categoryC , thekernelof f is defined to
be a morphism g: c→ a for some object c such that all morphisms of the form h: x→ a such that
f ◦h= 0 factorise through c. Similarly we can define thecokernelof a morphism.

Note that the definition does not guarantee that kernels or cokernels exist. Products and coprod-
ucts can also be defined in such a manner, by appealing to auniversal propertywhich characterises
them.

DEFINITION 4.4.2. An object a in a categoryC is initial if for each b∈ Ob(C ) there exists
precisely one morphism from a to b. An object b is calledterminal if for each a∈ Ob(C ) there
exists precisely one morphism from a to b.

We can now define our class of ‘nice’ categories that we wish tocompare to module categories.

DEFINITION 4.4.3. Anadditive categoryis a categoryC in which

(1) There exists an object (which we denote by0) which is both initial and terminal.
(2) Products and coproducts of finite collections of objects always exist.
(3) For each pair a,b∈Ob(C ) the setHomC (a,b) has the structure of an abelian group. Fur-

ther, these structures are compatible in the sense that for all objects a,b,c, composition
of functions induces a bilinear map

HomC (b,c)×HomC (a,b)→ HomC (a,c).

An abelian categoryis an additive category in which kernels and cokernels always exist, and for
which if f is a morphism whose kernel is0 then f is the kernel of its cokernel, and if f is a
morphism whose cokernel is0, then f is the cokernel of its kernel.

This is quite a tricky definition, and we will not be able to check any examples in the time
available. However, here are a few to illustrate that the concept is useful.

EXAMPLE 4.4.4. (a) Given a ring R, the categories of R-modules is an abelian category. (We
defined modules for algebras, but it is easy to see that the definition extends to rings.)
(b) The category of vector bundles (or of sheaves) over a topological space is abelian.

We can now state the fundamental result about abelian categories.

THEOREM 4.4.5 (Freyd-Mitchell embedding theorem).Every small abelian category is a full
subcategory of some category of modules over a ring.
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Freyd proved this statement without the word full, and so theresult is referred to variously
as due to Freyd or to Mitchell. The importance of this result (apart from highlighting the central
nature of module categories when considering abelian categories) is that allows one to argue in
abstract abelian categories with the language and techniques from the more familiar setting of
module categories.

4.5. Exercises

(1) Prove that for each object in a categoryC , the identity morphism is unique.

(2) Given a groupG, let [G,G] denote the commutator subgroup ofG— the set of all products
of commutators of the formghg−1h−1 with g,h∈ G. This is in fact a normal subgroup of
G. Show that the assignmentG→ [G,G] defines a functor fromGrp to Grp , and that the
assignmentG→ G/[G,G] defines a functor fromGrp to Abn.

(3) Show that there is no functor fromGrp to Abn sending each groupG to its centreZ(G).
(Hint: Consider maps between the symmetric groups on two andthree elements of the
form S2 → S3 → S2.)

(4) Given a groupG with multiplication∗, we define the opposite groupGop to be the group
with the same set of elements, but with multiplication∗op given byg∗oph= h∗g. This
define a covariant functor−op from Grp to Grp if we set f op = f . Show that f op is
indeed a group homomorphism and prove that the identity functor IdGrp is naturally iso-
morphic to the opposite functor−op.

(5) Given two groupsA andB, regarded as categories with a single object, suppose thatF
andG are two functors fromA to B. First note that this means thatF andG are group
homomorphisms. Show that there is a natural transformationfrom F to G if and only if
there is an elementg∈ B such thatF(h) = gG(h)g−1 for all h∈ A.

(6) Given a fieldk, let Matk denote the category of all rectangular matrices with entries in k,
where the objects are all natural numbers and eachm×n matrix is regarded as a morphism
from n to m with the usual matrix product as composition. Prove thatMatk is equivalent
to the categoryFinVectk of finite dimensional vector spaces overk.


