CHAPTER 5

Representation type and Gabriel’'s theorem

5.1. Representation type

We have seen that a finite dimensional algebra has only fimteny isomorphism classes of
simple modules. It is natural to ask if the same is also truedécomposables. However, this is
not generally the case.

DEFINITION 5.1.1. An algebra hadinite representation typié there are only finitely many
isomorphism classes of finite dimensional indecomposabtiutes. Otherwise the algebra has
infinite representation type

By Krull-Schmidt it is clear that for a representation finitlgebra we have complete knowl-
edge of its representation theory once we have construatethplete (finite) set of indecompos-
able modules (although that is not necessarily easy!). Semple algebras are clearly of finite
representation type.

ExAamPLE 5.1.2. Suppose that k is algebraically closed. Then the algebraldx]/(x") has
finite representation type. Any A-module M is a vector spagether with a linear magp: M —
M such thatg" = 0. Considerg as a matrix with respect to some basis. Then the correspgndin
Jordan canonical form forp is a block diagonal matrix where each block is a t matrix of the
form
0O 100 --0
O 010 .--0

3(0) =

O -~ 0 0 0 1
O -~ 0 0 O O
for some t< n (as no larger block satisfieg" = 0). But if M is indecomposable then there is only
one such block. Therefore there are precisely n isomorphlasses of indecomposable modules:
one each of dimensidh 2,....n.

EXAMPLE 5.1.3. The algebra A= k[x,y]/(x?,y?) has infinite representation type. LetMk?"
for some n> 1 and chose\ € k. Then let x and y act respectively by

(35) -(3%)

where | is the nx n identity matrix, and J(A) = Jn(0) + Aly. Itis easy to verify that X=Y? =0
and XY=Y X, so this defines an A-module. One can also check it is intlgzsable. Clearly these
modules are non-isomorphic for different values of n (anf&at they are also non-isomorphic for
different values oh).
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46 5. REPRESENTATION TYPE AND GABRIEL'S THEOREM

EXAMPLE 5.1.4. Let Q be a quiver such that there exist two vertices i and j shahthere
are (at least) two arrowst, 3 : i — j. Then as in the last example we find infinitely many non-
isomorphic indecomposables by setting-MM; = k" and representingr by the matrix 4 and 3
by the matrix d(A).

LEMMA 5.1.5. If A has finite representation type and | is an ideal in A theti Aas finite
representation type.

PROOF Suppose thatl is anA/I-module. Then we can define &smodule structure oM
by settingam= (a+|)mfor alla€ Aandm e M. FurtherM is indecomposable fok if and only
if itis for A/1, and two modules are isomorphic&g -modules if and only they are isomorphic as
A-modules. O

If an algebra is not representation finite, is there any hopdassify the finite dimensional
indecomposable modules?

DEFINITION 5.1.6. Suppose that k is an infinite field. An algebra over k tzase represen-
tation typeif it is of infinite type and for all re N, all but finitely many isomorphism classes of
n-dimensional indecomposables occur in a finite number efgarameter families.

Thus there is some hope that one can classify all indecorbfsgpresentations for algebras
of tame representation type.

REMARK 5.1.7. (a) We could make precise what we mean by a one-parametdyfafmep-
resentations; for our purposes however the above defintitiroe good enough. The idea of a
one-parameter family is illustrated in the variation withof the representations defined in Exam-
ple 5.1.3.

(b) Some authors define tame representation type to incloide fepresentation type.

DEFINITION 5.1.8. A k-algebra A hawild representation typéd for all finite dimensional
k-algebras B, the representation theory of B can be embeuhdethat of A.

REMARK 5.1.9. Again, we could give a more precise definition of what we mgamnibedding
one representation theory inside another, but this woutpines the language of categories.

This means that understanding all indecomposable repedgeTs ofA implies an understand-
ing of all representations @veryfinite dimensional algebra, which should sound like a hogeele
task. That it is can be seem from

REMARK 5.1.10. It follows from an alternative definition of wild representa type that the
representation theory of(k,y) can be embedded into that of any wild algebra. But the word
problem for finitely presented groups can be embedded iaghresentation theory of(k y),
and this problem has been proved tourelecidable

The following fundamental theorem is due to Drozd.

THEOREM 5.1.11 (Trichotomy theorem)Over an algebraically closed field, every finite di-
mensional algebra is either of finite, tame, or wild represaéion type.

PROOF A proof of this theorem is beyond the scope of this course. O



5.1. REPRESENTATION TYPE 47

In general we do not have a complete classification of algatdriinite (or tame) representation
type. However in the special case of a quiver algebra or apyedgebra we can give such a
classification. We will conclude this section by considgrihe group case. As one would expect
from Maschke’s theorem, this now depends on the field as vgetha group. We begin with a
special case.

PrROPOSITIONS.1.12. Let G be a finite group of order"pand k be a field of characteristic p.
Then kG has finite representation type if and only if G is cycli

PROOF (Sketch) First suppose th@tis cyclic. Then by Example 5.1.2 it is enough to show
thatkG= k[x]/(x"). Letg be a generator faB, and define a mag: k|x] — kGby f — f(1—g).

We claim that this is a surjective algebra homomorphismh érnel containingx"). From
this it follows by comparing dimensions and Lemma 1.2.7 tpahduces the desired algebra
isomorphism. To see the claim, note thiat-g) P —1—gP in characteristip, as all other binomial
coefficients vanish, and hengéxP") = 0. Then verify that (1—g), (1—g)2,...,(1—g)? 1 form
a basis fokG.

For the reverse implication, basic group theory implies there existiN <G such thaG/N =
Cp x Cp. Itis then enough by Lemma 5.1.5 to show tkéB/N) has infinite representation type.
By a similar argument to the preceding paragraph, one cam gtad

k(G/N) = k[x.yl/ (x",yP).

As (xP,yP) C (x?,y?), it is enough to show thax,y]/(x?,y?) has infinite type. But this was done
in Example 5.1.3. O

Using this it is possible to prove

THEOREM 5.1.13 (Higman).Let G be a finite group and k a field. Then kG has finite repre-
sentation type if and only if either
(a) k has characteristic zero, or
(b) k has characteristic p- 0 and G has a cyclic Sylow p-subgroup.

PROOF (Sketch) Ifk has characteristic zero thé® is semisimple by Maschke’s theorem,
and we are done. K has positive characteristic then we would like to argue ki@aof finite type
if and only if kH is of finite type whereH is a Sylowp-subgroup ofG, as then we are done by
Proposition 5.1.12.

As H is a Sylowp-subgroup ofG the index ofH in G is coprime top, and so is non-zero ik
The reduction to the case kH now proceeds by a Maschke-type averaging argument. [J

The tame cases can also be classified.

THEOREM 5.1.14. Let G be a finite group, and k be an infinite field of characterigt> 0.
Then kG has tame representation type if and only # p and the Sylow?-subgroups of G are
dihedral, semidihedral, or generalised quaternion.
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5.2. Representation type of quiver algebras

In the special case of a quiver algebra we have a completsiftctasion of those of finite and
of tame representation types. We will begin by consider thigefitype case, for which we will
need to introduce certain Dynkin diagrams. These are iiitestl in Figure 5.1.
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FIGURE 5.1. The Dynkin diagrams of typés,, Dy, Eg, E7, andEg

THEOREM5.2.1 (Gabriel).Suppose that Q is a finite quiver. Then kQ has finite repreienta
type if and only ifQ is a disjoint union of Dynkin diagrams of types A, D, or E afigure 5.1.

If you know any of the theory of Lie algebras then you may regsg Dynkin diagrams as
being associated with a root system. (This explains thexg&rdabelling scheme: there are also
root systems of typeB,, andC,, as well ag~ andGy.)

There is a similar classification of tame quiver algebras,ttme in terms of certaiextended
Dynkin diagramgalso known a&uclidean diagramys

THEOREM 5.2.2. Suppose that Q is a finite quiver and k an infinite field. Then &Qtame
representation type if and only @ is a disjoint union of extended Dynkin diagrams as in Figure
5.2 possibly together with Dynkin diagrams of types A, D, EndSgure 5.1.

In the next two sections we will introduce some of the mairagiesed in the proof of Gabriel’s
theorem. First we will introduce some combinatorics assgted to representations which for sim-
ples and projectives only depends on the underlying grabis. grovides the link with the language
of Lie theory (although a knowledge of this is not necessarngh In the final section of this chap-
ter we will outline how this combinatorics, together witlileetion functors, can be used to prove
one implication of Gabriel's theorem.
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FIGURE 5.2. The extended Dynkin diagrams of tyges Dn, Eg, E7, andEg

5.3. Dimension vectors and Cartan matrices

In this section we will assume for convenience that the xesetQg of a finite quiverQ has
been identified witH 1, ..., n} for somen.

DEFINITION 5.3.1. Suppose that M= (M;, @) is a representation of a finite quiver Q with
verticesl, ...n. Then thalimension vectoof M is the n-tuple

dimM = (dimMg, ..., dimMy).
ExAmMPLE 5.3.2. (a) The dimension vector of the representation considerdtkample 1.4.3
is(1,2,2,3,2).

(b) Clearly the simple representations of Q have dimensemtors withl in the ith position
(for some i) and elsewhere. We will denote this vector ify)e

(c) By Proposition 3.3.2 we have thati p= dimP(i) is the vector whose jth coordinate is the
number of paths fromito j.

We can now define a matrix relatedk® which will play an important role in what follows.

DEFINITION 5.3.3. The Cartan matrixC of kQ is the nx n matrix whose ith column is the
vector [i)T.
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EXAMPLE 5.3.4. Let Q be the quiver

o1 a L) P o3 4 L Vi
This has Cartan matrix
1 000
1100
1110
1111

LEMMA 5.3.5. Foralli € Qg we have
n
e(i) =p(i)— > a(i,j)p(j) (6)
=1
where di, j) is the number of arrows from i to j.

PROOF. (Sketch) LetA = kQ, and set§ = Ag/_#&. Then we have thai(i) = dim(S) and
p(i) = dim(Aq) and so
e(i) = dim(Aq) —dim(_7&).
Thus itis enough to show that
n

dim( &) = 3 al.)p(i).

Now ¢ g is the span of all paths of positive length starting, athich equals the direct sum of alll
Aa wherea is an arrow starting at It is easy to see th#a = Agj wherea :i — ] via the map
XA —— XEj. O

COROLLARY 5.3.6. The Cartan matrix of Q is invertible ové.

PROOF. Transposing the vectors in (6) we obtain

The left-hand side is the columns of the identity matrix, ivhihe right-hand side involves the
columns ofC. ThusC has a left inversé+ (—a(i, j)). O

EXAMPLE 5.3.7. Returning to the quiver in Example 5.3.4 we see that

1 0 00
L -1 1 0o
C = o0 -1 10
0 0 -1 1

We can now use the Cartan matrix to define various form&anWe will write C~T for
CcH.
DEFINITION 5.3.8. We define th&uler characteristica (not in general symmetric) bilinear
form onZ" by
(X,y)=xC TyT
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and an associated symmetric form by
(X,y) = (X,¥) + (¥, X).
It is an elementary exercise to show that

LEMMA 5.3.9. For alliand j in Qp we have
(p(i),e(j)) = &;-
DEFINITION 5.3.10.For i € Qg define a mapjs Z" — Z" by
si(x) =x—(x,e(i))e(i).
This is a linear map and it is easy to verify thats id. We define W to be the subgroup3if,(Z)

generated by the; sWe say thak € Z" is positiveif x; > 0 for all i, with strict inequality for at
least one i, and writex > 0. Then the set opositive rootdor Q is the set

{w(e(i)) :w(e(i)) >0, weW, 1<i<n}.

Root systems arise in a variety of places, such as Lie thaoxy,are well understood. The
following fact is not hard to prove.

LEMMA 5.3.11. Suppose tha® is of type A, D, or E. Then the set
{w(e(i)): weW, 1<i<n}
(and hence the set of positive roots) is finite.

The relevance of the above combinatorial framework to sgrtation theory is the following
result.

THEOREM 5.3.12 (Gabriel).Suppose that Q is a finite quiver such tigais of type A, D or
E. Then the map V— dinV gives a bijection between isomorphism classes of finitemsmonal
indecomposable representations and the positive roots of Q

(Combining this with Lemma 5.3.11 proves that ADE type qteveave finite representation
type.)
One way to prove Theorem 5.3.12 is using reflection functors.

5.4. Reflection functors

DEFINITION 5.4.1. Let Q be a finite quiver, and suppose that i is a vertex suchttieat are
no arrows starting from i. Then we say that i is@mkin Q. Similarly, if there are no arrows ending
at i then we say that i is aourcein Q.

Suppose thaitis a sink (or source) o). We wish to define a new quiveyQ and a functor
from kQ-modules toksQ-modules. (This just means that it should m&p-modules toksQ-
modules and also map morphisms betwk@modules to corresponding morphisms kgiQ in a
compatible manner.) We begin wisQ.

DEFINITION 5.4.2. Suppose that i is a sink (or source) of Q. TheR s the quiver obtained
by reversing the direction of all arrows ending at i.
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Now suppose tha¥l = (M;, @) is a representation ). We next wish to define a representation
of sQ wheni is a sink. Suppose for concreteness that the arrows enteairgglabelledrj with
ajij—iforl<j<t.

DEFINITION 5.4.3. Let G" (M) be the Q-representation with €(M); = M; for all j #i. The
space ¢ (M); is defined by the exact sequence

0— CHM) -5 PM, L m (7)
j=1
wherey = thzl @;. The linear maps in C(M) are unchanged if the arrow has not been reversed,
and are@ followed by projection onto the relevant summand if the arh@as been reversed. Given
a morphismyp between two representations of Q a corresponding morphijsfpLcan be defined
between €-modules, which make$+0nto a functor. We call this aeflection functor

As the notation suggests, there is a relation between rneftefttnctors and the combinatorics
of the preceding section. This follows from

PROPOSITIONS5.4.4. Suppose that M is a finite dimensional indecomposable reptason
of a finite quiver Q. Then C(M) is 0 if M is a simple representation, and is indecomposable
otherwise. In the latter case we have that

dimG (M) = s (dimM).

PROOF. (Sketch) It is clear tha" (M) = 0 if M is simple. Next one shows: (i) th#d is
indecomposable only i1 is simple or the magy in (7) is surjective, and (i) that iN = C" (M)
then there is a homomorphism

Endq(M) — Endego(N)
which is surjective if (7) is surjective.

Now supposeM is indecomposable but not simple. Then B5d) is local by Lemma 2.4.6
and we have a surjection onto Egg(N). Arguing as in the proof of 3.1.7 we see that this latter
algebra is also local, and $bis indecomposable.

The dimension claim follows from elementary linear algelbogether with a comparison with
the corresponding combinatorics for dimension vectors. O

Now suppose thatis a source irQ. There is a similar definition of a reflection func@r in
this case were we reverse the direction of all the arrows)inA@ain one can show th&™ takes
simple representations to 0 and non-simple indecomposabiedecomposables as in Proposition
5.4.4. From the definitions it is easy to verify that

_ M M
CiCi+<M)g{o Mig
and similarly
_ M M
CI+CI (M) = { O M ig

From this follows
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COROLLARY 5.4.5. Suppose thatiis a sinkin Q. Then there is a bijection betweaasimple
finite dimensional indecomposable kQ-modules and nonlsiingdecomposable K3-modules
given by G. Hence kQ and k& have the same representation type.

Any finite acyclic quiver has a sink and a source. Thus we dael e vertices of) starting
with the sinks, then taking the sinks in the quiver withowd vertices, and so on. Thus we may
assume that if there is an edge frono j theni < j. We will call such a labelling aadmissible
labelling.

DEFINITION 5.4.6. Suppose that Q has an admissible labelling. Then the functor
Ct=CiCr,...Cf
is defined. We call this th€oxeter functomith respect to this ordering. Note that every arrow
in Q is reversed precisely twice in the construction of, @nd so C takes representations of Q

to representations of Q. Similarly there is a functor & C; ...C. There are corresponding
elementssands inW.

Using the finiteness of the set of positive roots from Lemn3ala. it is now possible to prove

LEMMA 5.4.7.1f y € Z" satisfies Sy =y theny = 0. Also, ifx € Z" withx > 0then(s")"x =0
forn>> 0.

Now we can sketch the proof of Theorem 5.3.12.

PROOF (Sketch) First suppose th&is of type ADE, and thatM is a finite dimensional in-
decomposable representation@f Then forn >> 0 we have(C*)"M = 0. This follows from
Lemma 5.4.7 as dif€™)"M > 0 for all n, but equalgs™)"dimM by Proposition 5.4.4.

Thus there exist® such thatX = (C™)"M # 0 but (C*)X = 0. Therefore there is an
such thatC" ;...C{ (X) # 0 butG'C* ,...C{(X) = 0. By Proposition 5.4.4 this implies that
C'...C{ (X) = S (for the relevant quiver). We can reverse our steps and steatM from S
usingC;™ functors, which also gives the dimension vector fbrin terms of the action oV on
e(i). It is easy to see that this gives the desired bijection betw@mension vectors and finite
dimensional indecomposable modules. O

This gives one half of Gabriel’s Theorem 5.2.1. To prove #ihbther quivers have infinite
representation type, one proceeds case by case. Showtiealsvsimple quivers have infinite type
by hand, such as a quiver with multiple arrows (see Examgdl&lh.or a quiver with four arrows
from distinct vertices meeting at a single vertex. Then stit@atevery quiver contains one of these
examples as a subquiver (and hence is of infinite type) exbemjuivers of type ADE. Finally by
using reflection functors we see that the representatiedgpends only on the underlying graph.

To conclude, a word or two about infinite dimensional repnéstgons. As one might expect
these are considerably more complicated. Here are two gletheorems for the finite and infinite
type cases.

THEOREM 5.4.8 (Auslander)If A is a finite dimensional algebra of finite representatigpe
then every indecomposable A-module is finite dimensiomal,exery module is a direct sum of
indecomposables.
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THEOREM 5.4.9 (Roiter).If A is a finite dimensional algebra of infinite representatiype
then there are indecomposable A-modules with arbitrariéngncomposition factors.

5.5. Exercises

(1) LetQ be the quiver

o1 T ey " o3,

(a) Show that this has six isomorphism classes of indecoafp@snodules with dimen-
sion vectorg1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1) and(1,1,1).

(b) Determine the Cartan matrix fQ.

(c) Verify that the dimension vectors of projective and siemepresentations are orthog-
onal with respect to the Euler characteristic.

(d) Determine the grouyy as a subgroup of GJ(Z), and hence verify that the dimension
vectors of indecomposable modules are in bijection withptbstive roots ofQ.

(e) Consider the reflection functor f@ corresponding to the unique sink@ Deter-
mine the effect of this functor on each of the indecomposedpeesentations dp,
verifying that in each case the new representation is indgeosable.

(2) Consider the Xronecker quiver (given by
a

7 N
~_Yy 7

ForA,u € kletM(A, u) be the representation 6f such thatM; = k?, M = k, and the
maps corresponding ta, B andy are given by the matricedl,0), (0,1), and (A, u)
respectively. Show that the representatidh§t, ) are indecomposable and pairwise
non-isomorphic (and hence that this quiver has a two-paeamfi@mily of indecompos-
ables).

L] 2.

These are not the only indecomposables (this quiver hageplgsentation type!). In
[Bar06, Proposition 2.1] it is shown that classifying the indecasgbles of this quiver
would allow one to classify the indecomposablesdoy quiver.

(3) Investigate what happens if you apply the theory of rafledunctors to the 3-Kronecker
quiver and its representatioMy A, i) described above.



CHAPTER 6

Further directions

In this Chapter we will briefly review some of the many ways ihigh the material in this
course can be extended. Given the time available we can ketgtsan indication of the kind of
topics that can be covered: more detailed surveys can be fauhe references.

6.1. Ring theory

Much of the classical material developed in Chapters 1-3atsmbe considered when the field
k is replaced by a (commutative) ring. However this can inticalconsiderable complications —
particularly when we consider representations over tregins. Good basic introductions can be
found in [Mat86] and the (194 page!) introduction t€R81]. The latter also gives an extensive
exposition of the integral representation theory of finiteups. A shorter discussion more in the
spirit of the later part of these notes can be foundBeri91.

6.2. Almost split sequences and the geometry of representans

We have only begun the study of representations of finite dgiomal algebras. There are
several important ideas which we have not had time to touchrmawe will give a brief sketch of
a few of them in this section.

Consider a short exact sequencéahodules

0-LAMANO

If M is the direct sum of andN then we call the sequensglit. Recall from Lemma 3.1.2 that
this is equvalent to the existence of a left inversetand to the existence of a right inverseyio
We call a morphism with a left inversesaction and with a right inverse getraction

Clearly if our sequence is split we understaidcompletely if we understandandN. How-
ever, we would like to be able to deal with non-split sequenédmost split sequences turn out to
play an important role.

We say that a homomorphisg: L — M is left minimalif every element® € Enda(M) with
8¢ = @is an automorphism. (There is a similar definition fight minimal) The mapgp as above
is calledleft almost spliif ¢ is not a section, and for every morphigmL — U that is not a section
there existg’ : M — U such thatt’ g = 1. This definition is similar to that for an injective module;
the corresponding ‘projective’ version is calleght almost split

Now we can give the main definition. A sequence

0-LAMANSO
55
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is almost splitif @ is left minimal and left almost split, angh is right minimal and right almost
split. It is clear that an almost split sequence is not spldwever, it is not immediately clear that
there exist any such sequences.

First one shows that i : L — M is left minimal and left almost split, theM is unique up to
isomorphism. Ifgp is merely left almost split theh must be an indecomposable. (And of course
there are similar righthand versions of these results.)sThthnere is an almost split sequence as
above ther. andN must be indecomposable, akblis uniquely determined. Furthdr,cannot be
injective andN cannot be projective.

The Auslander-Reiten translate an explicit functor which takes affmoduleM to anA-
moduletM. (The precise definition is a little too involved for the tiraeailable to us.) Using this,
Auslander and Reiten were able to prove

THEOREM 6.2.1 (Auslander-Reiten)f M is indecomposable and not projective then there is
exists an almost split sequence
O—-™—-E—-M-=D0.

There is a similar result for indecomposable noninjectix&@ag the inverse translate .

Auslander and Reiten also introduced geslander-Reiten quiverssociated to a finite dimen-
sional algebra\. This is a quiver whose vertices are the isomorphism clasiseslecomposable
representations ok, and whose arrows correspond to bases for the spaces ahderducible
morphismshetween indecomposables. Studying this, together witretteet of the Auslander-
Reiten translate upon it, is an important aspect of the motterory.

For example, using this one can prove the following conjestwf Brauer and Thrall:

THEOREM6.2.2. If A is not representation finite then A has indecomposabléutes of arbi-
trarily large dimension.

THEOREM 6.2.3. If k is algebraically closed and A is not representation @rtlhen there are
infinitely many positive integers n such that there are itélgimany non-isomorphic n-dimensional
indecomposable A-modules.

The theory of almost split sequences and AR-quivers is deeel in ARS94 and [ASSO04.

Another direction of study is inspired by the reflection ftors used in the proof of Gabriel’s
Theorem. This leads to a general aredilbhg theory, which tries to replace the algebfabe-
ing studied by a simpler algebra which is closely related.aiAgan extensive theory has been
developed — see for exampla$S04q.

Finally in this section, we should note that there is an ingrtrapproach to representations
of finite dimensional algebras which we have completely rgddn these notes, which relies on
geometric techniques.

If we fix a dimension vecton, then the space of representations of a given quiver with tha
dimension forms an algebraic variety. Thus we may use théadstof algebraic geometry to
study this variety. This is a very powerful technique, buesl@equire more geometry than we
have time to introduce in these notes. For an indication of tiee results in this course (such as
Gabriel's theorem) can be approached in this manner,Be®38]. There is also a more general
survey focussing on the geometric aspect<iB93].
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6.3. Local representation theory

We have not looked in detail at the special case of group &dgedf finite groups in character-
istic p > 0. We did see in the discussion of representation type tlea®sthow p-subgroups play a
key role. There is a general approach to studying group septations which proceeds by relating
the representation theory of a groGgo that of certain normalisers @kgroups inG.

Given H < G, we can generalise the notion of projective modules@oto relatively H-
projectivemodules. One way to define this is to copy the definition we ftaven, but add the
requirement that the desired homomorphism must exist agpmson ofkH-modules. Using this
the Green and Brauer correspondences can be defined whigerexdthe study of the representa-
tion theory of normalisers gb-groups inG.

This leads to an extensive and well-developed theory. Aeléxa introduction, which starts
in the spirit of these notes, can be found AJ86].

6.4. Representations of other algebraic objects

In this series of lecures we have concentrated on reprasergaf (mainly finite dimensional)
associative algebras. But there are other algebraic ategctve could have studied. We will
introduce a few of the most important examples.

A Lie algebrais an example of a non-associative algebra. The bilinearaghtpo elementx
andy is traditionally denoted byx,y|. To give a Lie algebra structure this map mustogisym-
metric

x,x]=0
and satisfy thdacobi identity

Xy, 2]+ [y [2X] + [z [, Y]] = O.

Given two Lie algebrag andh, ahomomorphisnfrom g to § is a linear map which respects the
Lie algebra structures, i.e. such that

o([xY]) = [@(x), p(y)]-

Note that any associative algelkaan be given a Lie algebra structure by using the standard
multiplication to define
[X,y] = xy—yx
In particular, given a vector spadé the algebra EndM) has a Lie algebra structure, and we
define arepresentatiorof g to be a vector spackl together with a Lie algebra homomorphism
from g to Endi(M).

In a similar way we can define representations of variousrattasses of algebraic objects
by showing that EngM) or Aut,(M) (the space of invertible linear maps) lies in that class, and
requiring that the linear map is a homomorphism in that class

For example, ik = C or R and we start with &ie group G(a group that is also a differentiable
manifold, such that the group operations are smooth mapg)itil is a finite dimensional vector
space then AytM) is also a Lie group. (For infinite dimensiorlmore care is needed.) Thus a
representatiorof G is a vector spac® and a homomorphism of Lie groups fra&to Auty(M).
This situation can be generalised to arbitrary algebrgicibsed fields by consideringlgebraic
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groupsand their representations. Instead of being a differentalifold we require that the group
is an algebraic variety with group operations which are rhiss of varieties.

The representation theory of Lie algebras and of Lie or alelgroups is closely related,
and all three theories have been very well developed. Aodiiction to the basics of Lie algebra
representation theory can be found@gf05] or [Hum72]. For Lie groups it is necessary to know
some basic manifold theory, while for algebraic groupsehera fair amount of algebraic geometry
required. SeefH91] (or the more advancedumO04]) for Lie groups and Jan03 for algebraic
groups — although the latter presumes a good knowledge dfabie structure of such groups as
described in$prog] or [Hum75].

Given a Lie algebra, there exists a correspondingiversal enveloping algebras(g). This
is an infinite dimensional associative algebra which (veaudkual Lie algebra structure on an as-
sociative algebra) preserves the representation thegryAtlassical introduction isix96]; see
also HumO8] for a guide to the relatedategory& of certain infinite dimensional representations
of g overC.

The special class afemisimple algebraic grougsr the associated Lie algebras) can be clas-
sified; the classification is based around Dynkin diagranterd are correspondirfgnite groups
of Lie type and one way of studying these is via a reduction from theesponding algebraic
group. An introduction to this approach can be foundP1], while [HumO6] gives a more
elementary and up-to-date survey of the field.

6.5. Quantum groups and the Ringel-Hall algebra

To define an algebra we needed a multiplication map: a biimzg fromA x Ato A. We can
define an analogous structure calledoalgebraby defining every map in the opposite direction,
and consideringomultiplication a bilinear map fromAto A x A. (There are various conditions in
the definition which we will not describe here.) Algebrasttai@e also coalgebras in a compatible
way are calledialgebras and if they have one additional property (correspondirtpeédanversion
of elements in a group) we obtainHopf algebra There are plenty of interesting examples of
Hopf algebras — including group algebras and the universadleping algebra of a Lie algebra.

Quantum groupsave been defined in a number of different ways. In each dasasic idea
is to take some Hopf algebra related to a Lie alggiaad introduce an extra parametgt k. The
structure of these algebras will dependagpibut wheng tends to 1 we should recover the original
Hopf algebra in the limit. The standard construction isiseal as a deformation of the universal
enveloping algebra df.

Quantum groups have been studied for many reasons. Theyiarttee mathematical physics
literature (which is a rich source of interesting repreaBah theories), and have since proved
very useful in the study of representations of algebraicigsdn positive characteristic. (The best
results to date on the structure of simple modules for algelgroups proceed via a comparison
with the associated quantum group.) They have also shedigleth the classical theory; certain
remarkable bases called crystal (or canonical) bases wenglfin the quantum world which were
not previously known in the classical case.
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There are many different approaches to quantum groupsctiafietheir varied applications.
Two good examples ardgn9g and [Kas95. There is also a nice introduction to the theory of
crystal bases inHK02].

Why have we made a detour into Lie theory in the last two sasflo Well, it turns out
that quantum groups are closely related to representaibfsite dimensional algebras. Ringel
(generalising work of Hall) defined certain algebras, Riegel-Hall algebrasassociated to a fi-
nite dimensional algebrA. These have basis the set of isomorphism classes of indesaiie
A-modules, and multiplication is defined in terms of poss#stéensions of one module by an-
other. Ringel then proved that for a quiver algebra thistaigés isomorphic to a quantum group
associated to the corresponding Lie algebra. Thus theytheofinite dimensional algebras is
closely related to that of Lie algebras. The relationshipvieen these two theories is described in
[DDPWOS].

6.6. Categorification and higher representation theory

Categorification is the process whereby a set-theoretictstre is enriched into a category-
theoretic structure. In this process, each set is replageal ¢ategory, with functions replaced
by functors and equations holding in the structure by natseanorphisms of functors which are
themselves related by further equations. One rather el@myeexample of a categorification is the
relation between the natural numb&rsand the category of finite sets.

Indeed, this process can be extended to categories thesasévform the notion of higher
categories. For example a 2-category will consists of dbjenorphisms between objects, and
2-morphisms between morphisms. This process is in partvatet by problems and ideas in
homotopy theory. An introduction to the general notions leafiound in BD98§].

Categorifaction has had a number of very striking applwatiin representation theory. A
survey of some of these can be foundigz12]. The most famous of these is probably the proof
of Broué’s Abelian Defect Group Conjecture for the symneegioups by Chuang and Rouquier.
The key idea in this work was to realise the complexificatibmhe character ring of the group
algebra of the symmetric group as the basic highest weigitesentation of some affine Kac-
Moody Lie algebra. This work has been extended and genedabig Rouquier, and by Khovanov
and Lauda, into a more general notion of higher represemt#tieory.
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