
Cantor’s diagonal argument

All of the infinite sets we have seen so far have been ‘the same size’; that is, we have
been able to find a bijection from N into each set. It is natural to ask if all infinite sets have
the same cardinality. Cantor showed that this was not the case in a very famous argument,
known as Cantor’s diagonal argument.

We have not yet seen a formal definition of the real numbers — indeed such a definition
is rather complicated — but we do have an intuitive notion of the reals that will do for our
purposes here. We will represent each real number by an infinite decimal expansion; for
example

1 = 1.00000 . . .
1

2
= 0.50000 . . .

1

3
= 0.33333 . . .

π

4
= 0.78539 . . .

The only way that two distinct infinite decimal expansions can be equal is if one ends in an
infinite string of 0’s, and the other ends in an infinite sequence of 9’s. For example

1.00000 . . . = 0.99999 . . .

We shall chose to represent each such number by the “zeros” version. In this way we can
represent each real number by a unique decimal expansion.

We are now in a position to prove

Theorem 1 (Cantor) The set I = {x ∈ R : 0 < x < 1} does not have cardinality ℵ0.

Proof: We have to show that there does not exist a bijection f : N → I. It is not good
enough to show that any particular map is not a bijection. This sounds difficult — there are
very many maps from N to I!

Suppose that we do have a bijection f : N → I. We will show that this assumption leads
to a contradiction (i.e. a logical impossibility), and hence deduce that it must be false. This
will be enough to prove the theorem.

Given our assumed bijection f , we can now list the elements of I in the order that they
are mapped to be f :

1 7−→ 0.a11a12a13a14 . . .

2 7−→ 0.a21a22a23a24 . . .

3 7−→ 0.a31a32a33a34 . . .

4 7−→ 0.a41a42a43a44 . . .
...

...

(1)

where each aij ∈ {0, 1, . . . , 9}. As f is a bijection, every number in I occurs somewhere in
this list. So if we can construct an element of I that does not occur in the list, then we get
a contradiction, as required.

So how do we construct such an element? Let b1 be an element of {1, 2, . . . , 8} such that
b1 6= a1; b2 be an element of {1, 2, . . . , 8} such that b2 6= a2; b3 be an element of {1, 2, . . . , 8}

1

such that b3 6= a3 and so on. Now consider the infinite decimal expansion b = 0.b1b2b3 . . ..
Clearly 0 < b < 1, and b does not end in an infinite string of 9’s. So b must occur somewhere
in our list above (as it represents an element of I). Therefore there exists n ∈ N such that
n 7−→ b, and hence we must have

0.an1an2an3 . . . = 0.b1b2b3 . . .

But ann 6= bn (by construction) and so we cannot have the above equality. This gives the
desired contradiction, and thus proves the theorem.

�

Remarks

(i) The above proof is known as the diagonal argument because we constructed our
element b by considering the diagonal elements in the array (1).

(ii) It is possible to construct ever larger infinite sets, and thus define a whole hierarchy
of cardinalities. A natural question to ask is whether the cardinality c of the set I above
is the next largest cardinality after ℵ0? The belief that there are indeed no cardinalities
between ℵ0 and c is known as the continuum hypothesis.

At the start of the twentieth century, mathematicians and logicians tried to construct a
list of axioms (i.e. basic assumptions) for set theory from which all other results could be
deduced. The most famous and widely used of these are the eight Zermolo-Fraenkel (ZF)
axioms. Remarkably, it is possible to prove that the truth of the continuum hypothesis
depends on our model of set theory (that is, on the choice of axioms that we make at the
beginning), and that the ordinary ZF axioms are not enough to distinguish between the two
possibilities. Thus, in some sense, the truth of the continuum hypothesis depends on what
kind of mathematical universe we choose to live in!
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