
 

1.11 The central rate of mortality 

 

From above, we have seen that q  represents the probability that a life of exact age  dies before 

reaching exact age . 

x x

( )1+x

Then, q  is often referred to as the initial rate of mortality at exact age . x x

 

An alternative definition of the rate of mortality is often used in demography. 

We define the central rate of mortality at exact age , denoted by , as follows: x xm
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In practice, the central rate of mortality  represents a weighted average of the force of mortality 

applying over the year of age  to ( , and can be thought as the probability that a life alive 

between ages  and (  dies before attaining exact age ( ) . 

xm

)1x +x

x )1+x 1+x

 

The importance of the central rate of mortality  arose because, historically, it was easier for 

actuaries to estimate this quantity from the observed data than either the initial rate of mortality, 

, or the force of mortality, . 

xm

xq xµ

 

1.12 Expectation of life 

 

1.12.1 Complete expectation of life 



 

From Section 1.2, the random variable T  represents the complete future lifetime for a life of exact 

age . 

x

x

Then, the expected value of the random variable T , denoted by e , is the complete expectation of 

life for a life of age . 

x

o

x

x

From (1.5.4), the probability density function of the random variable T  is given by: x

( ) txxtx ptf +µ=  for 0≥t  

 

Note that  is the expected future lifetime after age , so that, for a life of exact age , the 

expected age at death is  . 

o

xe x x






+

o

xex

Now, by definition, we have: 
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Then, from (1.5.5), we have txxtxt pp
t +µ=−

∂
∂ , and using integration by parts, we obtain: 
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Example 1.12.1 
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In a particular survival model, we have: 

xx 01.01
01.0

−
=µ  for 0 <≤ x  100

Find the complete expectation of life at exact age 20. 

 

Solution 

Firstly, we must find t , the survival function for a life of exact age 20. 20p

From (1.7.1), we have: 
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As the limiting age in the survival model is 100, the complete future lifetime for a life of exact age 

20 must be less than 80 years. 

Then, from (1.8.2), we have: 
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Thus, the complete expectation of life for a life of exact age 20 is 40 years. 

� 

 

The complete expectation of life, typically for a new-born life, is often used to compare the general 

level of health in different populations. 

For example, the life expectancy for a new-born male life in different countries is: 

 

Country Life expectancy 

Japan 77.5 

United Kingdom 75.0 

Germany 74.3 

United States 74.2 

Mexico 68.5 

Russia 62.0 

South Africa 50.4 

Zimbabwe 39.2 
 

Source: US Bureau of the Census, International data base, June 2000 

 

Also, using integration by parts, it can also be seen that: 

( ) ∫∫
∞∞

+ ××=µ×=
00

22 2 dtptdtptTE xttxxtx  

 

Thus, the variance of the complete future lifetime for a life of exact age  is given by: x

( ) ( ) ( )[ ]
2

00

22 2var 







−××=−= ∫∫

∞∞

dtpdtptTETET xtxtxxx  (1.12.3) 
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1.12.2 Curtate expectation of life 

 

The random variable  is used to represent the curtate future lifetime for a life of exact age  

(i.e. the number of complete years lived after age ). 

xK x

x

Then, the random variable  is the integer part of the complete future lifetime, T . xK x

Clearly,  is a discrete random variable taking values in the state space . xK …,2,1,0=J

We can use the distribution function of T , denoted by , to derive the probability distribution 

function of  as follows: 
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 (1.12.4) 

 

This result is intuitive. 

If the random variable  takes the value , then a life of exact age  must live for  complete 

years after age . Therefore, the life must die in the year of age  to ( ). 

xK k x

( )k

k

x x + 1++ kx

From above, we have seen that, for a life of exact age , the probability of death in the year of age 

 to  is 

x

( )kx + ( )1++ kx ( )kK
l

d
q x

x

kx
xk === + Pr . 
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Now, the expected value of the random variable , denoted by , is known as the curtate 

expectation of life for a life of age . 

xK xe

x

Thus, we have: 
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 (1.12.5) 

 

If required, we can also calculate the variance of the curtate future lifetime as follows: 

( ) ( ) ( )[ ] ( )∑
∞

=

+ −×=−=
0

2222var
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kx
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d
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1.12.3 Relationship between e and  
o

x xe

 

Assuming that the function t  is linear between integer ages, we have: xp
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Thus, the complete expectation of life at age  is approximately equal to the curtate expectation 

of life plus one-half of a year. 

x

This is equivalent to the assumption that lives dying in the year of age  to ( ) do so, 

on average, half-way through the year at age 

( )kx + 1++ kx

( ) . 2
1++ kx

This assumption is known as the uniform distribution of death assumption. 

 

It should be noted that, whilst the curtate future lifetime  is equal to the integer part of the 

complete future lifetime T , the curtate expectation of life  is not equal to the integer part of the 

complete expectation of life . 

xK

ex x

o

xe

 

1.13 Interpolation for the life table 

 

As discussed previously, it is common for the standard life table functions such as l ,  or µ  to 

be tabulated at integer ages only. 

x xq x

However, the actuary may be required to calculate probabilities involving non-integer ages or 

durations. 

Then, given a life table {  specified only at integer ages, how can we 

approximate the values of  (where  is an integer and )? 

}ω+αα= ,,1,: …xlx

txl + x 10 << t

We consider three possible approaches. 
 7 



 

1.13.1 Uniform distribution of deaths (UDD) 

 

In this case, we assume that any deaths over the year of age  to  occur uniformly over the 

year. 

x ( 1+x )

)

This is equivalent to the assumption that the function l  is linear over the interval ( ). tx+ 1, +xx

Thus, for 0 , we have l  1<< t ( ) ( ) xxxxxxxtx dtllltlltlt ×−=−×−=×+×−= +++ 111 .

Hence, under the UDD assumption, dividing both sides by  gives: xl

xxtxtxxt qtpqqtp ×=−=⇒×−= 11  

 

Then, under the assumption that the function l  is linear over the interval ( , we have: tx+ 1, +xx

x

t

sxxsxt qtdspq ×=µ= ∫ +
0

 (1.13.1) 

 

Thus, as the function q  is tabulated, we can estimate the probability t  for any non-integer 

durations t . 

x xq

Note that, differentiating both sides of this expression with respect to t , we obtain: 

( )tfpdsp
dt
dq xtxxt

t

sxxsx =µ=







µ= ++∫

0

 for 0 << t  1

  

Thus, under the assumption that the function  is linear over the interval ,  the 

distribution function of the complete future lifetime, T , is constant for 0 . 

txl + ( )1, +xx

1<tx <

Hence, deaths are uniformly distributed over the year of age  to . x ( )1+x
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We can extend this approach when both the age and the duration are non-integer values, so as to 

enable us to estimate the probability t  where  is an integer and 0 ). sxs q +− x 1<<< ts

In this case, we can write 
xs

xt
sxstsxstxsx p

p
pppp =⇒×= +−+−t . 

Thus, we can express t  as sxs q +−
xs

xt

xs

xt
sxstsxs q

q
p
p

pq
−
−

−=−=−= +−+− 1
1

111 .t  

And, using the UDD assumption, we have: 
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x
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x

x
sxst qs
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q
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×−
×−

−=+− 11
1

1  f 1or 0  <<< ts (1.13.2) 

 

Also, using the UDD assumption, we can express the central rate of mortality at age , , in two 

different ways: 

x xm

(i) If the function t  is linear for 0 , then we have xp 1≤≤ t xxt pdtp
2
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the function t  at the mid-point of the interval). Thus, we have: xp
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(ii) If the function  is constant for 0 , then we can put ( ) txxtx ptf +µ= 1≤≤ t 2
1=t  giving 

( )
2
1

2
1 +

µ= xxx ptf  for all t . Thus, we have: [ 1,0∈ ]
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1.13.2 Constant force of mortality 
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In this case, we assume that the function µ  is constant over the year of age  to ( ) . tx+ x 1+x

i.e. for integer  and , we have µ  x 10 << t constant =µ=+tx

 

Note that, in general, the value of µ , the constant force of mortality assumed over the year of age 

 to , will not be equal to either of the tabulated values µ  or µ . x ( 1+x ) x 1+x

 

Under the assumption of a constant force of mortality between integer ages, we find the value of 

the constant µ  using: 

( )xtxx pedtp lnexp
1
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+∫  (1.13.5) 

Then, for 0 , we have: 1<< t
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Similarly, when we have a non-integer age and duration, we estimate the probability t , for 

, as follows: 
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Example 1.9.1 

Given , calculate 75.090 =p 90
12
1 q  and 

12
1190

12
1 q  assuming: 

(a) a uniform distribution of deaths between integer ages, and 

(b) a constant force of mortality between integer ages. 

 

Solution 

(a) Uniform distribution of deaths 

From (1.13.1), we have: 

( ) ( ) 020833.025.01
12
11

12
1

12
1

909090
12
1 =−×=−×=×= pqq  

Also, from (1.13.2) with 
12
11

=s  and t , we have: 1=

027027.0
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111
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12
111
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111

90

90

12
1190

12
1 =
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 −
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q

q
q  

 

(b) Constant force of mortality 

First, we must find the value of , the constant force of mortality over the year of age ( ) . µ 91,90

Then, from (1.13.5), we have µ . ( ) ( ) 287682.075.0lnln 90 =−=−= p

From (1.13.6), we have: 

023688.01 12
1

90
12
1 =−=

µ×−
eq  

Also, from (1.13.7) with 
12
11

=s  and t , we have: 1=
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023688.011 12
1

12
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12
1 =−=−=

µ×−µ×





 −−

eeq  
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Note that, under the constant force of mortality assumption, the central rate of mortality at age , 

, is given by: 

x

xm
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1.13.3 The Balducci assumption 

 

The Italian actuary Balducci proposed an alternative approach for estimating probabilities at non-

integer ages and durations. 

The approach is based on the traditional actuarial method of constructing a life table, which will be 

considered in more detail later. 

The assumption is that the function l  is in form hyperbolic between integer ages. tx+

Note that, as mentioned previously, the UDD assumption implies that the function l  is linear 

between integer ages, whereas the constant force of mortality assumption implies that the function 

 is exponential between integer ages. 

tx+

txl +

 

Then, for any integer  and 0 , using hyperbolic interpolation, we have x 1<< t
1

11

++

+
−

=
xxtx l
t

l
t

l
. 

Thus, for 0 , we can write: 1<< t
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Hence, the Balducci assumption is usually expressed as: 
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Now, using the Balducci assumption, we have: 
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Hence, for integer age  and 0 , the Balducci assumption gives: x 1<< t
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By definition, the assumption of a constant force of mortality assumes that the function  is 

constant over the year of age  to ( ) . 

tx+µ

x 1+x

Now, combining (1.2.5) and (1.3.4), we have ( )tx
tx

tx l
dt
d

l +
+

+ ×−=
1

µ . 

 

For the UDD assumption, we have ( ) ( ) ( 11 ++++ −−=⇒−×−= xxtxxxxtx lll
dt
dlltl )

)

l . 

Thus, using the UDD assumption, we can express the force of mortality at age  as: ( tx +

( ) x

x

xxx

xx
tx qt

q
lltl

ll
×−

=
−×−

−
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+

+
+ 11

1  (1.13.11) 
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Thus, under the UDD assumption, the force of mortality is an increasing function over the year of 

age  to . x ( )1+x

This result can be explained by general reasoning. 

Consider a group of lives who die at a uniform rate over a given year. 

Then, to maintain a constant number of deaths over the year, the force of mortality must increase to 

offset the fact that the number of survivors is decreasing over time. 

Also, this result is intuitive and consistent with the expected pattern for the force of mortality for 

human populations (i.e. we expect the force of mortality to be an increasing function of age). 

 

Similarly, for the Balducci assumption, it can shown that the force of mortality at age ( )  is 

given by: 

tx +

( ) x

x
tx qt

q
×−−

=µ + 11
 (1.13.12) 

 

Thus, under the Balducci assumption, the force of mortality is a decreasing function over the year 

of age  to . x ( )1+x

This result is counter-intuitive and inconsistent with the expected pattern for the force of mortality 

for human populations. 

However, as mentioned previously, the assumption is useful in the traditional actuarial method of 

constructing a life table (and will be considered further later). 

 

1.14 Simple analytical laws of mortality 

 

It may be possible to postulate an analytical form for one of the standard life table functions such 

as l ,  or µ . x xq x
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Such an approach simplifies the construction of a suitable life table from crude mortality data (as 

the number of parameters required to be estimated is substantially reduced), but the mathematical 

formulae used must be representative of the actual underlying mortality experience (and is now 

considered unlikely that a simple analytical expression can be proposed that will adequately 

represent human mortality over a large range of ages). 

However, before the recent advancements in computing speed and storage capacity, this approach 

was reasonably common and we now consider some of better-known laws of mortality proposed. 

 

1.14.1 De Moivre’s Law 

 

De Moivre’s Law was proposed in 1729 and states that, for all ages  such that 0 , we 

have: 

x ω<≤ x

xx −ω
=µ

1  (1.14.1) 

 

Thus, as expected, the force of mortality is an increasing function of age. 

 

Then, we can derive the survival function as follows: 
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 (1.14.2) 

 

1.14.2 Gompertz’ Law 

 
 15 



Gompertz’ Law was proposed in 1829 and was based on the observation that, over a large range of 

ages, the function µ  is log-linear. x

Thus, for all ages , we have: 0≥x

x
x Bc=µ  (1.14.3) 

 

Then, assuming that the underlying force of mortality follows Gompertz’ Law, the parameter 

values  and  can be determined given the value of the force of mortality at any two ages. B c

To ensure that the force of mortality is a non-negative increasing function of age, we require that 

the parameter values  and  are such that  and . B c 0>B 1>c

 

We can derive the survival function as follows: 
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Now, if we define the parameter  such that g ( )
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c
Bg

ln
exp , then we can express the survival 

function as: 

( ) ( )[ ] ( )11lnexp −=−=
tx cctx

xt gccgp  (1.14.4) 
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In practice, Gompertz’ Law is often found to be a reasonable approximation for the force of 

mortality at older ages. 

 

1.14.3 Makeham’s Law 

 

Makeham’s Law was proposed in 1860, and incorporated the addition of a constant term in the 

expression for the force of mortality. 

The rationale behind this is that an age-independent allowance is required for the incidence of 

accidental deaths. 

Thus, for all ages , we have: 0≥x

x
x BcA +=µ  (1.14.5) 

 

Then, assuming that the underlying force of mortality follows Makeham’s Law, the parameter 

values ,  and  can be determined given the value of the force of mortality at any three ages. A B c

To ensure that the force of mortality is a non-negative increasing function of age, we require that 

the parameter values ,  and  are such that ,  and . A B c BA −≥ 0>B 1>c

 

We can derive the survival function using the same approach adopted above for Gompertz’ Law to 

obtain: 

( )1−=
tx cct

xt gsp  (1.14.6) 

where  and ( As −= exp ) ( )






 −
=

c
Bg

ln
exp . 

 

Example 1.14.1 

A survival model is assumed to follow Makeham’s Law for the force of mortality at age , µ . x x
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Then, given that ,  and , find the values of the parameters , 

 and . 

70.0705 =p 40.0805 =p 15.0905 =p A

B c

Hence, or otherwise, find the probability that a life of exact age 50 will die between exact ages 55 

and 65. 

 

Solution 

From (1.14.6), we have: 
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Thus, we have: 
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Then, taking logarithms of (4) and (5) gives: 
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And, dividing (  by (  gives: )7 )6
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Then, from , we have ( )4 ( ) ( )( ) 955824.0045181.0
11

70.0
40.0ln
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−−









= g
ccc

gln . 

Now, from (1.14.6), we have ( ) 002535.0
ln

exp =⇒






 −
= B

c
Bg . 

And, taking the logarithm of ( , gives: )1

( ) ( ) ( ) ( ) ( ) 077364.0lnln1ln570.0ln 570 =⇒×−+×= sgccs  

From (1.14.6), we have . ( ) 077364.0exp −=⇒−= AAs

 

Thus, the force of mortality at age  is given by . x ( )x
x 057719.1002535.0077364.0 ×+−=µ

� 

 

1.15 The select mortality table 

 

Before being accepted for life assurance cover, potential policyholders are often required to 

undergo a medical examination to satisfy the insurer that they are in a ‘reasonable’ level of health. 

Lives who fail to satisfy the requirements laid down by the insurance company will often be 

refused cover (or required to pay a higher premium for the same level of cover). 

As a result of this filtering, lives who have recently been accepted for cover can be expected to be 

in better health (and, thus, experience lighter mortality) than the general population at the same 

age. 

This effect is known as selection (i.e. the process of choosing lives for membership of a defined 

group, rather than random sampling). 
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However, as the duration since selection increases, the extent of the lighter mortality experienced 

by the select group of lives can be expected to reduce (as previously healthy individuals are 

exposed to the same medical conditions as the general population). 

In practice, select lives are often assumed to experience lighter mortality for a period of, say,   

years (known as the select period). However, once the duration since selection exceeds the select 

period, the lives are assumed to experience the ultimate mortality rates appropriate for the general 

population at the same age. 

s

Thus, we now consider the construction and application of a select life table, where mortality 

varies by age and duration since selection. 

The A1967-70 mortality table uses a select period of two years, so that select lives are assumed to 

experience lighter mortality for the first two years after selection (before reverting to the mortality 

experience of the general population, as represented by the ultimate portion of the table). 

However, the a(55) table uses a select period of one year 

And, the ELT No. 15 – Males table is an ultimate life table only (i.e. there is no select period). This 

is commonly referred to as an aggregate mortality table. 

 

Examples of selection include: 

(a) temporary initial selection 

- that exercised by a life assurance company in deciding whether or not to accept a 

person for life assurance cover 

- selection takes place by producing satisfactory medical evidence 

- known as underwriting 

(b) self selection 

- that exercised by lives when choosing to purchase an annuity (i.e. exchanging a 

capital sum for the receipt of an income for life) 
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These are examples of positive selection, where the select lives are likely to experience lower 

mortality rates than the general (or ultimate) population of the same age for a specified duration 

since selection only. 

 

However, a life retiring early on grounds of ill-health is likely to experience higher mortality than 

the ultimate population of the same age. This is an example of negative selection. 

 

1.15.1 Select, ultimate and aggregate mortality rates 

 

Most select life tables are constructed to explore the effect of temporary initial selection (i.e. where 

selected lives experience lighter mortality than the general population studied for a specified 

duration since selection). 

Suppose that the select period is  years. s

Consider a life who is currently of exact age ( , and who was selected at age . )

)

)

rx + x

Thus, the duration since selection is  years. r

Now, if r , then we expect the life to experience lower mortality than the ultimate population at 

the same age and we define the select mortality rate at age  as follows: 

s<

( rx +

[ ] ( ) ([ ]1 age before dies , ageat  groupselect  joined  who, aged now lifePr +++=+ rxxrxq rx  

 

Note that  is used to denote the age at selection and r  is the duration since selection, so that the 

current age of the life is . 

[ ]x

( )rx +

Thus, as the life is expected to experience lower mortality than an ultimate life of the same age, we 

have: 

[ ] rxrx qq ++ <  for r <  s (1.15.1) 

 

And, as before, we have  [ ] [ ] rxrx qp ++ −= 1 .
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Similarly, consider another life who is also currently of exact age , but who was selected at 

age ( ) . 

( rx + )

)

)

)

] )

)

)

1+x

Thus, in this case, the duration since selection is  years. ( 1−r

We define the select mortality rate at age  for this life as follows: ( rx +

[ ] ( ) ( ) ( ) ([ ]1 age before dies ,1 ageat  groupselect  joined  who, aged now lifePr11 ++++=−++ rxxrxq rx  

 

Note that, in this case, [  is used to denote the age at selection and (  is the duration since 

selection, so that the current age of the life is also ( ) . 

1+x 1−r

rx +

 

However, as this life has been selected more recently, we would expect this life to experience 

lighter mortality over the year of age  to (  than the life selected at age . ( )rx + 1++ rx x

Thus, we have: 

[ ] ( ) [ ] rxrx qq +−++ <11  for sr <  (1.15.2) 

 

However, if , then we expect lives of the same age who were selected  or more years 

previously have the same rates of mortality, regardless of age at selection. 

sr ≥ s

In this case, all lives selected  or more years previously will experience the rates of mortality of 

the ultimate population at the same age. 

s

 

For the A1967-70 life table, the select period is 2 years. 

Then, for lives of age (  and select durations of 2 years or more, we have: 2+x

[ ] [ ] [ ] 242312 ++−+−+ ==== xxxx qqqq …  (1.15.3) 
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However, for select durations of less than two years, we have: 

[ ] 211 +++ < xx qq  and  [ ] [ ] 2112 ++++ << xxx qqq (1.15.4) 

 

Select mortality table function are generally displayed in the form of an array. 

An extract from the A1967-70 table is shown below. 

 

age [  ]x [ ]xq  [ ] 1+xq  2+xq  age  2+x

60 0.00669904 0.00970168 0.01774972 62 

61 0.00723057 0.01055365 0.01965464 63 

62 0.00779397 0.01146756 0.02174310 64 

63 0.00839065 0.01244719 0.02403101 65 

64 0.00902209 0.01349653 0.02653550 66 
 

The convention is that each row represents how mortality rates change as duration since selection 

increases. 

Thus, for a life selected at age 60, denoted by , the rate of mortality in the year of age 60 to 61 

is ]  and the rate of mortality in the year of age 61 to 62 is q . 

[60]

[60q [ ] 160 +

However, two years after selection, the lighter mortality experienced as a result of selection is 

assumed to wear off, and the rate of mortality experienced in the year of age 62 to 63 is simply that 

of the ultimate population at the same age, . 62q

Thereafter, the life is assumed to be an ultimate life and so, for any duration since selection , 

the rate of mortality experienced in the year of age ( )  to  is . 

2≥r

rx + ( )1++ rx rxq +

 

Also, the rates displayed on the upwards diagonal represent the rate of mortality experienced by 

lives of the same age but with a different duration since selection. 
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Thus, the rates of mortality ] ,  and q  all apply to the year of age 62 to 63, but the 

duration since selection is zero years, one year and two (or more) years respectively. 

[62q [ ] 161 +q 62

As expected, we can see that , so that lives selected more recently can be 

expected to experience lighter mortality rates over the particular year of age. 

[ ] [ ] 6216162 qqq << +

 

Note the large difference that selection can make to mortality experience. 

For example, for a life of age 62, the rate of mortality for a newly-selected life, given by 

, is less than half that of an ultimate life of the same age, given by 

. 

[ ] 00723057.062 =q

01774972.062 =q

From inspection of the full table, this effect becomes more pronounced as the age at selection 

increases. 

 

1.15.2 Constructing a select mortality table 

 

As discussed previously, a life table is a convenient method of summarising the information 

contained within the survival model. 

The only difference now is that the survival probabilities depend not only on age but also on 

duration since selection. 

Given the select mortality rates, , for all possible ages at selection [  and durations since 

selection r  (where  is the chosen select period) and the ultimate mortality rates, , for all 

possible ultimate ages ( , a life table representing the select and ultimate experience can be 

constructed. 

[ ] rxq + ]x

s< s

x

sxq +

)s+

Note that, in practice, the length of the select period would usually be determined from the 

observed data by finding the duration since selection after which the mortality experience did not 

appear to differ significantly from other lives of the same age but with a lower age at selection. 
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Then, the ultimate mortality rates would be based on the grouped experience of all lives of the 

same age after the end of the chosen select period. 



 

The first step in the construction of the select mortality table is the construction of the ultimate 

mortality table as discussed previously. 

Thus, choose a starting age for the table, denoted by , and an arbitrary radix, denoted by l . α α

As mentioned previously, the starting age will often be 0 (but this will depend very much on the 

nature of the population observed). 

For example, the published version of the a(55) select mortality table begins at age 60 (although 

the full table contains data for ages 20 and upwards). 

The reason for this is that the table is based on the mortality experience of annuitants, and 

individuals seldom take out annuity contracts prior to retirement (so that the majority of the 

population observed was aged 60 and upwards). 

Then, for all ages , we calculate recursively the values of  using  and 

determine the values of  using . 

α≥x xl ( )xxx qll −×=+ 11

xd 1+−= xxx lld

When completed, this gives the ultimate portion of the table. 

 

Suppose that the select period is  years. s

Using a deterministic interpretation of the life table, we use the l  (for ) to denote the 

number of lives who are alive at age  from an initial group of l  lives selected at age . 

[ ] rx + sr <

( rx + )

)

• 

[ ]x x

Then, we calculate the values of l  recursively using: [ ] [ ] [ ] ( 11 ,,, −++ sxxx ll …

[ ] ( )
[ ]

[ ] ( ) [ ] ( )
[ ] ( )

[ ] ( )1
1

11
1 1 −+

+
−+

−+

+

−+

+
−+ −

=⇒≡=
sx

sx
sx

sx

sx

sx

sx
sx q

l
l

l
l

l
l

p  

[ ] ( )
[ ] ( )

[ ] ( )
[ ] ( )

[ ] ( )

[ ] ( )2

1
2

2

1
2 1 −+

−+
−+

−+

−+
−+ −

=⇒=
sx

sx
sx

sx

sx
sx q

l
l

l
l

p  • 

#  

[ ]
[ ]

[ ]
[ ]

[ ]

[ ]x

x
x

x

x
x q

l
l

l
l

p
−

=⇒= ++

1
11  • 
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And, then we calculate , for , using . [ ] rxd + ( 1,,2,1,0 −= sr … ) [ ] [ ] [ ] 1++++ −= rxrxrx lld

 

For example, another extract from the A1967-70 select life table is shown below. 

 

age [  ]x [xl ]  [ ] 1+xl  2+xl  age  2+x

60 29615.936 29417.538 29132.138 62 

61 29130.898 28920.265 28615.051 63 

62 28600.975 28378.059 28052.632 64 

63 28023.708 27788.571 27442.681 65 

64 27396.808 27149.632 26783.206 66 
 

We can easily recover the select and ultimate mortality rates considered above as follows: 

(i) [ ]
[ ]

[ ]
[ ] [ ]

[ ] [ ]

[ ]
00669903.0

936.29615
538.29417936.296151

60

16060
6060

60

160
60 =

−
=

−
=−=⇒= ++

l
ll

pq
l

l
p  

(ii) [ ]
[ ]

[ ] [ ]
[ ]

[ ]
00970167.0

538.29417
138.29132538.294171

160

62160
160160

160

62
160 =

−
=

−
=−=⇒=

+

+
++

+
+ l

ll
pq

l
l

p  

(iii) 01774971.0
138.29132

051.28615138.291321
62

6362
6262

62

63
62 =

−
=

−
=−=⇒=

l
ll

pq
l
l

p  

 

1.15.3 Using select life table functions 

 

Previously, for mortality dependent on age only, we considered the use of the tabulated functions 

to calculate probabilities useful in life insurance mathematics. In particular, we have: 

x

nx
xn l

l
p +=

n

, represents the probability that a life of exact age  will survive for at least 

 years to reach exact age ; and 

x

( nx + )

• 
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x

mnxnx
xmn l

ll
q +++ −

=

m

, represents the probability that a life of exact age  will die in the 

-year period between exact ages  and  

x

( nx + ) ( )mnx ++

• 

 

A useful special case of the latter relationship is 
x

nxnx
xn l

ll
q 1+++ −

=

x

, which represents the 

probability that a life of exact age  will die between exact ages (  and . x )

• 

n+ ( )1++ nx

 

Similar probabilities can be defined for a select mortality table, so that we have: 

[ ]
[ ]

[ ] rx

nrx
rxn l

l
p

+

++
+ = , represents the probability that a life of exact age , that was a 

select life at exact age , will survive for at least n  years to reach exact age ; 

and 

( rx + )

• 

x ( )nrx ++

- if r +  (where  is the length of the select period), then we replace  

in the numerator by  

sn ≥ s

xl

[ ] nrxl ++

nr++

[ ]
[ ] [ ]

[ ] rx

mnrxnrx
rxmn l

ll
q

+

+++++
+

−
=

( )nrx ++ mnrx +++

, represents the probability that a life of exact age , 

that was a select life at exact age , will die in the -year period between exact ages 

 and  

( )rx +

x m

( )

- similar comment to that above applies if  or  snr ≥+ smnr ≥++

 

Example 1.15.1 

Using the A1967-70 mortality table, calculate [ ] 1602 +q1 . 

 

Solution 
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From above, [ ] 1602 +q1  represents the probability that a life of exact age 61, that was a select life at 

exact age 60, will die between exact ages 62 and 64. 

Thus, we have [ ]
[ ] [ ]

[ ]

[ ] [ ]

[ ] 160

460260

160

211601160
1602

+

++

+

+++++
+

−
=

−
=

l
ll

l
ll

q1 . 

Now, as the A1967-70 table has a select period of years, we have  and l . [ ] 62260 ll =+ [ ] 64460 l=+

Thus, we have [ ]
[ ]

036696.0
538.29417

632.28052138.29132

160

6462
1602 =

−
=

−
=

+
+ l

ll
q1 . 
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Exercises for Chapter 1 

Exercise 1 
 
The mortality in a certain life table is such that: 
 

    
1
2

x 0

x
l l 1

110
 = × − 
 

 

 
(a) Determining the limiting age, ω 
 
(b) Obtain an expression for µx 
 
(c ) Calculate q70 
 
Exercise 2 
 
Weibull’s law of mortality states that the force of mortality at age x, µx, is given by: 
 

1
x c x   for x 0  where c>0,  >1δ−µ = δ ≥ δ . 

 
(i) Given µ =  calculate the values of the parameters c and δ. 40 600.0025 and 0.02,µ =
 
(ii) Hence, or otherwise, find the probability that a life of age 70 dies between ages 75 and 76. 
 
 
Exercise 3 
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In a particular survival model, the force of mortality at age , , is assumed to be constant for all 

ages, . 

x xµ

x

(i) Show that the complete expectation of life at age , e , is constant for all ages, . x
o

x x

(ii) Comment on whether or not you think that this is a suitable model for human mortality. 

 

Exercise 4 

A life table with a select period of 2 years is based on rates of mortality that satisfy the following 

relationship: 

[ ] xssx q
s

q ×
−

=+− 4
2  for =s  1,0

Suppose that l . 000,10068 =

Then, given ,  and q , calculate the following: 025.065 =q 026.066 =q 028.067 =

(i)  67l

(ii)  [ ] 165 +l

(iii)  [ ]65l

 

Solutions to exercises for Chapter 1 

Exercise 1 
 
(a) ω is the lowest age for which . xl 0=
 

By inspection, ω = 110. 
 

(b) From (1.8.2), x x
x

1 d
. (l

l dx
− )µ =  

 

 With 
1
2

x 0

x
1

110
 = × − 
 

l l , 
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 x

1
2(110 x)

µ =
−

 

 

(c) 

 − 
= − = −  

 − 
 

1
2

71
70

70

71
1l 110q 1 1

70l 1
110

 

           =
1
239

40
 −  
 

1  

 
           = 0.01258. 
 
Exercise 2 
 
(i)  1

40 c (40) 0.0025δ−µ = δ =
  
  1

60 c (60) 0.02δ−µ = δ =
 

 
1

60
1

40

(60) 0.02
8

(40) 0.0025

δ−

δ−

µ
⇒ = = =

µ
 

 

 

δ−
   ⇒ = ⇒ δ − × =   
   

⇒ δ − = ⇒ δ =
 
 
 

1

n n

n

n

60 60
8 ( 1) l l (8)

40 40
l (8)

1 6.128534
60

l
40

. 

 . δ− −µ = = δ ⇒ = ×1 1
40 0.0025 c (40) c 2.4795 10 2

 
 

(ii) −
= = −75 76

70 5 70 6 705
70

l l
q p

l
p  

 

  
x t

t x s
x

p exp ds
+ 

= − µ 
 

∫
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( )
( )

δ−

=δ

=

δ δ

 
⇒ = − µ 

 
 

= − δ 
 

 = −  

 = − − 

∫

∫

75

5 70 s s
70

75
1

70

s 75

s 70

p exp d

exp c s ds

exp c s

exp c 75 70

 
Similarly, 6 7  0p exp c(76 70 )δ δ = − − 
 

c=2.4795×10-12 and δ=6.128534 
 
⇒ =

=
⇒ = − =

5 70

6 70

70 5 70 6 705

p 0.767173

p 0.718894

q p p 0.048279

 

 
 

Exercise 3 

(i) We have =e . ∫
∞

0

o
dtpxtx

Now, we have t . 







µ−= ∫ +

t

sxx dsp
0

exp

As the force of mortality is constant for all ages, we have t . t
t

x edsp µ−=







µ−= ∫

0

exp

Thus, we have 
µ

=







µ

−==
∞=

=

µ−
∞

µ−∫
11

00

o
t

t

tt
x edtee  (which is independent of age, ). x

(ii) Clearly, this is not a reasonable model for human mortality. We would expect that the 

expectation of the complete future lifetime will reduce as age increases (or, 

equivalently, that the force of mortality will increase as age increases). 
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Exercise 4 

(i) 881,102
972.0
000,100972.01 676767

67

68 ==⇒=−== lqp
l
l

. 

(ii) 
[ ]

[ ] [ ] [ ] 695,104
982667.0

881,102982667.0
14

211 16566165165
165

67 ==⇒=×
−

−=−== +++
+

lqqp
l
l

. 

(iii) [ ]

[ ]
[ ] [ ] [ ] 021,106

9875.0
695,1049875.0

24
211 65656565

65

165 ==⇒=×
−

−=−==+ lqqp
l

l
. 
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