AS2051 Calculus (and Linear Algebra)

Dr Oliver Kerr

2012-13

Dr Oliver Kerr AS2051 Calculus (and Linear Algebra)

▲ □ ► < □ ►</p>

★ 문 ▶ 문

Recall...

We were looking for a rule to determine whether a stationary point of a function of several variables is a local maximum or minimum. For the sake of simplification of notation (i.e get rid of the δ s) we will move the origin to the stationary point. Then the Taylor series expansion gives

$$f(x_1, x_2, ..., x_n) = f(0, 0, ..., 0) + \frac{1}{2} \begin{pmatrix} x_1 & x_2 & ... & x_n \end{pmatrix} H_n \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \cdots$$

where

$$H_{n} = \begin{pmatrix} f_{x_{1}x_{1}}(0,0) & f_{x_{1}x_{2}}(0,0) & \cdots & f_{x_{1}x_{n}}(0,0) \\ f_{x_{2}x_{1}}(0,0) & f_{x_{2}x_{2}}(0,0) & \cdots & f_{x_{2}x_{n}}(0,0) \\ \vdots & \vdots & & \vdots \\ f_{x_{n}x_{1}}(0,0) & f_{x_{n}x_{2}}(0,0) & \cdots & f_{x_{n}x_{n}}(0,0) \end{pmatrix}$$

If f is smooth enough, then we can change the order of differentiation, and so the Hessian matrix H_n is a symmetric matrix.

Some Linear Algebra...

If A is a real symmetric matrix, then we can find an orthogonal matrix R such that

$$A = R^{-1}DR$$

where D is a diagonal matrix.

The orthogonal matrix has the properties that $R^T = R^{-1}$ and |R| = 1.

So

$$\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T R^T D R \mathbf{x} = (R \mathbf{x})^T D (R \mathbf{x})$$

伺 とう きょう とう とう

If we let

$$\begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = R \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

 and

$$f(x_1, x_2, ..., x_n) = f(0, 0, ..., 0) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \dots$$

・ロト ・回ト ・ヨト

< 注 →

æ

lf

$$f(x_1, x_2, \ldots, x_n) = f(0, 0, \ldots, 0) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \cdots + \lambda_n {x'_n}^2 \right) + \cdots$$

Then clearly if $\lambda_i > 0$ for all *i* then we have a minimum, and if $\lambda_i < 0$ for all *i* we have a maximum. (A matrix with this property is said to be positive definite).

Note that

$$|H_n| = |R^T D R| = |R||D||R| = |D| = \lambda_1 \lambda_2 \dots \lambda_n$$

If we have a non-zero H_n then we can conclude that

- if we have a minimum then we must have $|H_n| > 0$
- ▶ if we have a maximum then $|H_n| > 0$ if *n* is even and $|H_n| < 0$ if *n* is odd.

向下 イヨト イヨト

If we restrict ourselves to just looking at the first n-1 coordinates by setting $n_n = 0$, then

$$f(x_1, x_2, \dots, x_{n-1}, 0) = f(0, 0, \dots, 0) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_2}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_1}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_1}^2 + \lambda_2 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_n}^2 + \lambda_2 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_n}^2 + \lambda_n {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_n}^2 + \dots + \lambda_n {x'_n}^2 \right) + \frac{1}{2} \left(\lambda_1 {x'_n}^2 + \dots$$

will still be a maximum or minimum as before. And so

- if we have a minimum then we must have $|H_{n-1}| > 0$
- if we have a maximum then $|H_{n-1}| > 0$ if n-1 is even and $|H_{n-1}| < 0$ if n-1 is odd.

The last condition can be re-written as

- if we have a minimum then we must have $|H_{n-1}| > 0$
- if we have a maximum then $|H_{n-1}| > 0$ if *n* is odd and $|H_{n-1}| < 0$ if *n* is even.

・ 同 ト ・ ヨ ト ・ ヨ ト …

We repeat this exercise and conclude:

If we have a minimum then we have

$$|H_1| > 0, \quad |H_2| > 0, \quad |H_3| > 0, \quad \dots, \quad |H_n| > 0$$

If we have a maximum then if n is even

$$|H_1| < 0, \quad |H_2| > 0, \quad |H_3| < 0, \quad \dots, \quad |H_n| > 0$$

and if *n* is odd

 $|H_1| < 0, \quad |H_2| > 0, \quad |H_3| < 0, \quad \dots, \quad |H_n| < 0$

伺い イヨト イヨト

3

We have shown that if f has a minimum or maximum then the test must be true. We have not shown that if the test is true then f has a minimum or maximum.

This is not quite as straightforward — we need to show that if, for the case of a minimum, the determinants of all the matrices H_1 , H_2 , ... H_n are positive then indeed λ_1 , λ_2 , ... λ_n are all positive. For a flavour of a proof of this result, which is essentially Sylvester's criterion, see the Wikipedia article at

http://en.wikipedia.org/wiki/Sylvester's_criterion