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Section 5: More Differential Equations
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Order of a Differential Equation

The order of a differential equation is the highest order derivative
that appears. An example of a first order equation is:

dy

dx
= f (x)

An example of a second order equation is

ẍ + ẋ = 0
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Linear and Nonlinear Equations

An nth order differential equation for y(x) is linear if it can be
written in the form:

an(x)
dny(x)

dxn
+an−1(x)

dn−1y(x)

dxn−1
+. . . . . .+a1(x)

dy(x)

dx
+a0(x)y(x) = f (x)

If it can not be written in this form then it is said to be nonlinear.
If f (x) = 0 then the equation is said to be homogeneous and it is
said to be inhomogeneous if f (x) 6= 0.
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Why is linearity important?

If we have a linear homogeneous differential equation e.g.

d2y

dx2
+ x

dy

dx
− y = 0

and two solutions y1 and y2, then α1y1 + α2y2 is also a solution.
This can be checked as follows:

d2(α1y1 + α2y2)

dx2
+ x

d(α1y1 + α2y2)

dx
− α1y1 + α2y2 = 0

α1

(
d2y1
dx2

+ x
dy1
dx
− y1

)
+ α2

(
d2y2
dx2

+ x
dy2
dx
− y2

)
= 0

α10 + α20 = 0

0 = 0
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Linear Second Order ODEs

Consider the equation

d2y

dx2
+ b(x)

dy

dx
+ c(x)y = d(x)

When d(x) = 0 then we have the homogeneous equation:

d2y

dx2
+ b(x)

dy

dx
+ c(x)y = 0

The inhomogeneous linear ODE has the property:If y1 and y2 are
two independent solutions of the homogeneous equation and yp is
a solution of the inhomogeneous equation then:

ytot = yp + Ay1 + By2

is a solution of the inhomogeneous equation for constants A and B.
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Example

Solve

y ′′ − y = 1
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Solution

First we consider

y ′′ − y = 0

and see solutions of the form

y(x) ∼ eλx

for x ∈ R and λ ∈ C.
Differentiate y and substitute into the homogeneous equation
gives:

λ2eλx − eλx = 0

Now eλx 6= 0 so

λ2 − 1 = 0

We refer to this as the auxiliary equation.
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We solve the auxiliary equation to get λ1 = 1, λ2 = −1. Therefore

ycf = Aex + Be−x

Now we need to determine the particular solution.
We try y = c
Substituting into the equation we determine that c = −1.
Therefore the full solution is:

y = Aex + Be−x − 1
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Operator Notation
If we have a function f (x) we can write F (f (x)) for a function F
of f (x) e.g. F (f (x)) = f (x) + 2f 2(x). We can use similar notation
for an operator, which performs other manipulations of f .
Recall that we have already met this notation once before with
Laplace transforms:

L(f ) =

∫ ∞
0

f (x)e−pxdx

For linear differential equations we could write

d

dx
≡ D

Then we can write a differential equation concisely as:

P(D)f = q(x)

where P is a polynomial.
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Example

Solve
P(D)f = e3x

where P(z) = z2 + 3z + 2.
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Solution

First we note that our equation can be written more fully as:

P(D)f = 0

(D2 + 3D + 2)f = 0

d2f

dx2
+ 3

df

dx
+ 2f = 0

Recall that for a homogeneous equation we seek solutions of the
form f (x) = eλx . We then obtain, written in a concise form

P(λ)eλx = 0

From which we deduce that P(λ) = 0 i.e. λ2 + 3λ+ 2 = 0
and so

y = Ae−x + Be−2x
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Constant Coefficient Ordinary Differential Equations (In
General)

Consider

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ . . . . . .+ a2

dy2

dx2
+ a1

dy

dx
+ a0y = f (x)

where an, an−1, an−2, . . . . . . , a2, a1, a0 are constants. This is an nth

order differential equation. This can be concisely written and

P(D)y = f (x)

where

P(z) = anz
n + an−1z

n−1 + . . . . . . a2z
2 + a1z + a0

To find solutions of the homogeneous equation, consider the roots
of P(λ) = 0
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In general there will be n roots. However, these roots can be

I complex

I repeated

If P(z) = (z − λ1)(z − λ2)(z − λ3) . . . . . . (z − λn)
where all the λi are distinct, then the general solution to

P(D)f = 0

is

f =
n∑

i=1

Aie
λix
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Second Order Linear Ordinary Differential Equations with
Non-Constant coefficients

Consider

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = R(x)

We begin trying to solve this equation by first finding solutions to
the homogeneous equation:

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0
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Existence Theorem

Let

L(y) =
d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y

where p1 and p2 are continuous function in an interval I . Let x0 to
be a point in the interval I. Then there exists a y = f (x) such that

L(y) = 0

and
y(x0) = a, y ′(x0) = b where a, b are real numbers.
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Uniqueness Theorem

If f (x) and g(x) are two solutions of the given ordinary differential
equation i.e. L(f ) = 0 and L(g) = 0 and both satisfy

f (x0) = g(x0)

f ′(x0) = g ′(x0)

for some x0 in I . Then f (x) = g(x) ∀x ∈ I
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Characterization of Solutions

Consider

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0

with p1, p2 continuous on an interval I = R. Let y1(x) and y2(x)
be two non-zero functions satisfying L(y1) = 0 and L(y2) = 0 in I
such that y1(x)/y2(x) is not a constant.
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Then

I

y = c1y1(x) + c2y2(x)

(where c1, c2 are constants) is a solution to
L(y) = 0

I Conversely if we can find a solution y to L(y) = 0 then we
can find c1 and c2 such that

y = c1y1(x) + c2y2(x)

i.e. all the solutions can be expressed in terms of y1 and y2.
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The first of these two points is just a statement of linearity. For
the second point:
Consider a solution y(x) to L(y) = 0 and choose a point x0 ∈ I .
Now let y(x0) = a and y ′(x0) = b. Try to find c1 and c2 such that

a = c1y1(x0) + c2y2(x0)

and

b = c1y
′
1(x0) + c2y

′
2(x0)

We can write these two equations as:(
a
b

)
=

(
y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

)(
c1
c2

)
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Solutions will exist if ∣∣∣∣ y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

∣∣∣∣ 6= 0

So if there is a point where this determinant is non-zero then we
can find a solution.
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Can there be no such point?

Then ∣∣∣∣ y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

∣∣∣∣ = 0

∀x ∈ I i.e. y1y
′
2 − y2y

′
1 = 0.

Therefore

y ′2
y2

=
y ′1
y1

Integrating we get

ln y2 = ln y1 + ln c

or y2/y1 is a constant which breaks our assumption stated earlier.
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As this contradicts our assumption there must be a point where∣∣∣∣ y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

∣∣∣∣ 6= 0

Note that we call ∣∣∣∣ y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

∣∣∣∣
the Wronskian i.e.

W (x) = y1y
′
2 − y2y

′
1
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Consider now the inhomogeneous equation

L(y) = y ′′ + p1(x)y ′ + p2(x)y = r(x)

and two solutions y = f (x) and y = g(x). Then

L(g − f ) = L(g)− L(f ) = r(x)− r(x) = 0

and so

g − f = c1y1(x) + c2y2(x)

or
g = f + c1y1(x) + c2y2(x)
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So if we have a particular solution f (x) to the inhomogeneous
equation and y1, y2 are linearly independent solutions then a
general solution will be

y = f + c1y1(x) + c2y2(x)
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The Methods of Variation of Parameters
We want to find the solution to:

d2y

dx2
+ p1

dy

dx
+ p2y = R(x)

Let y1 and y2 be solutions of L(y) = 0 and let

W (x) = y1y
′
2 − y2y

′
1

Then the particular solution of the inhomogeneous equation is of
the from

y = u1(x)y1(x) + u2(x)y2(x)

where

u1(x) = −
∫

y2R(x)

W (x)
dx

u2(x) =

∫
y1R(x)

W (x)
dx
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Example

Find the solution of

y ′′ − y = x
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Solution

Using the techniques that you learned last year we can determine
that the solution to the example is

y = Aex + Be−x − x

However, does our new technique work to find the particular
integral for this simple example?

27 / 72

Let y1 = ex and y2 = e−x

Now

W (x) = y1y
′
2 − y2y

′
1

= −exe−x − exe−x

= −2

u1 =

∫
e−xx

−2
dx

= −x

2
e−x +

∫
e−x

2
dx

= −x

2
e−x − e−x

2
+ c
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u2 =

∫
exx

−2
dx

= −x

2
ex +

∫
ex

2
dx

= −x

2
ex +

ex

2
+ d

and so

y = u1y1 + u2y2

=

(
−x

2
e−x − e−x

2
+ c

)
ex +

(
−x

2
ex +

ex

2
+ d

)
e−x

=
−x
2
− 1

2
− x

2
+

1

2
+ cex + de−x

= −x + cex + de−x

So out solution is

y = Aex + Be−x − x + cex + de−x

or y = A′ex + B ′e−x − x
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Example

Find the solution of

y ′′ + y = sec x
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Solution

First consider the homogeneous equation for which we obtain
y1 = cos x y2 = sin x
and we obtain

W = y1y
′
2 − y ′1y2

= cos2 x + sin2 x

= 1

We now proceed to form y = u1y1 + u2y2 by first obtaining u1 and
u2
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u1 = −
∫

sec x sin x

1
dx

= −
∫

sin x

cos x
dx

= ln | cos x |+ c

u2 =

∫
sec x cos x

1
dx

=

∫
1dx

= x + d

y = y1(x)u1(x) + y2(x)u2(x)

= cos x(ln | cos x |+ c) + sin x(x + d)

Then

ytot = A cos x + B sin x + cos x ln | cos x |+ x sin x
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Deriving the expressions for u1 and u2

Seek solutions to the equation:

d2y

dx2
+ p1

dy

dx
+ p2y = R(x)

of the form

y = u1(x)y1(x) + u2(x)y2(x)

where y1 and y2 are solutions to the homogeneous equation.
We additionally specify that

u′1(x)y1(x) + u′2(x)y2(x) = 0

.
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Now differentiate y = u1(x)y1(x) + u2(x)y2(x) with respect to x .

dy

dx
= u′1y1 + u1(x)y ′1(x) + u′2y2 + u2y

′
2

= u1y
′
1 + u2y

′
2

similarly
d2y

dx2
= u′1y

′ + u1y
′′
1 + u′2y

′
2 + u2y

′′
2

Now substitute these expressions into our equation:

d2y

dx2
+ p1

dy

dx
+ p2y = R(x)

u′1y
′ + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 + p1(u1y

′
1 + u2y

′
2)

+p2(u1(x)y1(x) + u2(x)y2(x)) =

u′1y
′
1 + u′2y

′
2 + u1(y ′′1 + p1y

′
1 + p2y1) + u2(y ′′2 + p1y

′
2 + p2y2) =

u′1y
′
1 + u′2y

′
2 = R(x)
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So then we have the following pair of equations to solve.

u′1y
′
1 + u′2y

′
2 = R(x)

u′1y1 + u′2y2 = 0
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Solving to find u′1:

u′1y
′
1y2 − u′1y

′
2y1 = y2R(x)

−u′1W (x) = y2R(x)

and so

u1(x) = −
∫

y2R(x)

W (x)
dx

By a similar method you obtain

u2(x) =

∫
y1R(x)

W (x)
dx
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Example

Find the general solution for

y ′′ − 2y ′

x
+

2y

x2
= x sec2 x
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Solution

First consider

y ′′ − 2y ′

x
+

2y

x2
= 0

Seek solutions of the form y = xn

n(n − 1)xn−2 − 2n
xn−1

x
− 2

xn

x2
= 0

xn−2(n(n − 1) + 2n + 2) = 0

xn−2 6= 0 and so (n2 − 3n + 2) = 0 or (n − 1)(n − 2) = 0.
Let y1 = x and y2 = x2.
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Therefore

W (x) = x(2x)− 1x2

= x2
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Now we need to evaluate u1 and u2.

u1(x) = −
∫

y2R(x)

W (x)
dx

= −
∫

x2(x sec2 x)

x2
dx

= −
∫

x sec2 xdx

= −x tan x +

∫
tan xdx

= −x tan x − ln | cos x |+ c
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u2(x) =

∫
y1R(x)

W (x)
dx

= −
∫

x(x sec2 x)

x2
dx

= −
∫

sec2 xdx

= tan x + d

Therefore

y = (−x tan x − ln | cos x |+ c)x + (tan x + d)x2

= −x ln |cosx |+ cx + dx2

So our general solution can be written as:

y = Ax + Bx2 − x ln | cos x |
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Note: You can check that y = Ax + Bx2 − x ln(cos x) is really a
solution and it is good practice to do so. To check this
differentiate:

y ′ = − ln | cos x |+ x tan x + A + (2B)x

y ′′ = tan x + tan x + x sec2 x + 2B

then substitute into the equations you were given and show that
LHS=RHS:

LHS = y ′′ − 2y ′

x
+

2y

x2

= 2 tan x + x sec2 x + 2B

−2

x
(− ln | cos x |+ x tan x + A + (2B)x)

+
2

x2
(−x ln | cos x |+ Ax + Bx2)

= x sec2 x

= RHS
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How do we find both y1 and y2?

The method of variation of parameters requires us to know both of
y1 and y2. There is a technique that can help you to achieve this
goal if you know one solution to the homogeneous equation but do
not know the other.
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Finding a Second Solution to a Homogeneous Equation

Assume that we know one solution to

d2y

dx2
+ p1

dy

dx
+ p2y = R(x)

we try to seek a solution of the form u(x)y1(x) where we do not
yet know u(x).
We substitute this expression for y into the homogeneous equation.
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u′′y1 + 2u′y ′1 + uy ′′1 + p1u
′y1 + p1uy

′
1 + p2uy1 = 0

u′′y ′1 + 2u′y ′1 + p1u
′y1 + u(y ′′1 + p1y

′
1 + p2y1) = 0

and since y1 is a solution to the differential equation the term in
brackets is zero giving us

u′′y ′1 + 2u′y ′1 + p1u
′y1 = 0

Let v = u′ then

v ′y1 + 2vy ′1 + p1vy1 = 0

This can be written as:

v ′

v
= −2

y ′1
y1
− p1
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Integrating we obtain:

ln v = −2 ln y1 −
∫

p1dx

or

v =
e−

∫
p1dx

y21

Therefore

u′ =
e−

∫
p1dx

y21

and so

u =

∫
e−

∫
p1dx

y21
dx
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Example

Find the solution for

x2
d2y

dx2
− x(x + 2)

dy

dx
+ (x + 2)y = 0
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Solution

We can spot that y = x is a solution and so we let y1 = x .
Now we will try to use this to obtain a second solution. First we
rewrite the equation given as:

d2y

dx2
− x(x + 2)

x2
dy

dx
+

(x + 2)

x2
y = 0

Then we can see that:

p1 = −x + 2

x

= −1− 2

x

Therefore ∫
p1dx = −x − 2 ln x + c
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So

e−
∫
p1dx = e(x+2 ln x+c)

= dexx2

We are now in a position to find u

u =

∫
e−

∫
p1dx

y21
dx

= d

∫
x2ex

x2
dx

= d

∫
exdx

= dex + e

Therefore y2 = uy1 = (dex + e)x .

49 / 72

Then the general solution to the homogeneous equation is

y = A′x + Bxex

and so y2 = xex
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Obtaining a Second Solution via the Wronskian

Consider
d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0

which has two solutions y1 and y2 and let W (x) = y1y
′
2 − y2y

′
1.

Then

dW

dx
= y ′1y

′
2 + y1y

′′
2 − y ′′1 y2 − y ′1y

′
2

= y1y
′′
2 − y ′′1 y2
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However y ′′i + p1y
′
i + p2yi = 0.

dW

dx
= y1(−p1y ′2 − p2y2)− y2(−p1y ′1 − p2y1)

= −p1y1y ′2 − p2y1y2 + p1y2y
′
1 + p2y1y2

= −p1W (x)

W ′

W
= −p1

lnW =

∫
−p1dx

W = e
∫
−p1dx
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Using the definition of W :

y1y
′
2 − y2y

′
1 = e

∫
−p1dx

y ′2
y1
− y2y

′
1

y21
=

e
∫
−p1dx

y21

d

dx

(
y2
y1

)
=

e
∫
−p1dx

y21

y2
y1

=

∫
e
∫
−p1dx

y21
dx

From which we can determine y2 .
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Example

Solve

xy ′′ − xy ′ + y = x2
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Solution
First consider

xy ′′ − xy ′ + y = 0

One obvious solution for this equation is y1 = x . Seek a second
solution by looking for y2 = xu(x).

x(xu′′ + 2u′)− x(xu′ + u) + xu = 0

x2u′′ + (2x − x2)u′ + (−x + x)u = 0

Let v = u′

v ′

v
= −2x − x2

x2

= −2

x
+ 1

ln v = − ln x2 + x + c
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u′ = a
ex

x2

u = a

∫
ex

x2
dx

So then we can write the solution to the homogeneous equation as:

y = Ax + Bx

∫
ex

x2
dx
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To find the particular integral we rewrite the equation as:

y ′′ − y ′ +
1

x
y = x

Use

y = −y1
∫

y2R

W
dx + y2

∫
y1R

W
dx

W = y1y
′
2 − y ′1y2

= x

[∫
ex

x2
dx +

xex

x2

]
− 1

[
x

∫
ex

x2
dx

]
=

x2ex

x2

= ex
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Now we need to evaluate

u1 = −
∫

y2R

W
dx

and

u2 =

∫
y1R

W
dx
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Start with u2

u2 =

∫
y1R

W
dx

=

∫
x2

ex
dx

=

∫
x2e−xdx

=

[
−x2e−x +

∫
2xe−xdx

]
=

[
−x2e−x − 2xe−x +

∫
2e−xdx

]
= −x2e−x − 2xe−x − 2e−x

= −(x2 + 2x + 2)e−x
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u1 = −
∫

y2R

W
dx

= −
∫

x2
∫

ex

x2
dx

ex
dx

= −
∫

(x2e−x
∫

ex

x2
dx)dx

= +(x2 + 2x + 2)e−x
∫

ex

x2
dx −

∫
(x2 + 2x + 2)

e−xex

x2
dx

= +(x2 + 2x + 2)e−x
∫

ex

x2
dx −

∫
1 +

2

x
+

2

x2
dx

= +(x2 + 2x + 2)e−x
∫

ex

x2
dx − x − 2 ln x +

2

x
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Now

yp = −y1
∫

y2R

W
dx + y2

∫
y1R

W
dx

= −x2 − 2x ln x + 2

Therefore

y = Ax + Bx

∫
ex

x2
dx − x2 − 2x ln x + 2
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Solution by Power Series

Consider

d2y

dx2
+ p1(x)

dy

dx
+ p2y = R(x)

and a point of interest x0.
Seek solution in the form of a power series

y(x) =
∞∑
n=0

an(x − x0)n
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Example

(1− x2)
d2y

dx2
− 5x

dy

dx
− 3y = 0

and x0 = 0

63 / 72

Solution

We seek a solution of the form:

y(x) =
∞∑
n=0

an(x)n

= y(0) + y ′(0)x + y ′′
x2

2!
+ ...

Let x = 0 then the equation yields

y ′′(0) = 3y(0)
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Now differentiating our equation once we get

(1− x2)
d3y

dx3
− 2x

d2y

dx2
− 5x

d2y

dx2
− 5

dy

dx
− 3

dy

dx
= 0

Let x = 0 and we obtain

y ′′′(0) = 8y ′(0)

If we differentiate the equation given n times we obtain

(1−x2)
dn+2y

dxn+2
−2xn

dn+1y

dxn+1
−(n2−n)

dny

dxn
−5x

dn+1y

dxn+1
−5n

dny

dxn
−3

dny

dxn
= 0
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Substitute x = 0 and we obtain

yn+2(0) + [−n(n − 1)− 5n − 3]yn(0) = 0

yn+2(0)− [n2 + 4n + 3]yn(0) = 0

yn+2(0) = (n + 1)(n + 3)yn(0)
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So our expansion can we written as

y(x) = y(0) + y ′(0)x +
3

2
y(0)x2 +

8

3!
y ′(0)x3 + . . . . . .

where we have used:

y ′′(0) = 3y(0)

y ′′′(0) = 8y ′(0)

y ′′′′(0) = 15y ′′(0)

= 45y(0)

y ′′′′′(0) = 24y ′′′(0)

= 196y ′(0)

etc.
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This can be written as:

y(x) = y(0)

[
1 +

3

2
x2 +

45

4!
x4 . . . . . .

]
+y ′(0)

[
x +

8

3!
x3 +

196

5!
x5 . . . . . .

]

68 / 72

Example

Solve
xy ′′ + (1 + x)y ′ + 2y = 0

where x0 = 0
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Solution

Differentiating n times to get

xyn+2 + nyn+1 + (1 + x)yn+1 + nyn + 2yn = 0

Setting x = 0 we obtain:

(n + 1)yn+1(0) + (n + 2)yn(0) = 0

yn+1 = −n + 2

n + 1
yn(0)
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So

y ′(0) = −2y(0)

y ′′(0) = −3

2
y ′(0)

= 3y(0)

y ′′′(0) = −4

3
y ′′(0)

= −4y(0)
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Therefore

y(x) = y(0)− 2y(0)x + 3y(0)
x2

2
− 4y(0)

x3

3!
+ . . . . . .

= y(0)

[
1− 2x +

3

2!
x2 − 4

3!
x3 +

5

4!
x4 + . . . . . .

]
Note that 1− 2x + 3

2!x
2 − 4

3!x
3 + 5

4!x
4 − . . . . . . reminds us of

e−x = [1− x + 1
2!x

2 − 1
3!x

3 − . . . . . .]
So what happens if we integrate our expression for y .

∫
y(x)dx = y(0)x

[
1− x +

1

2!
x2 − 1

3!
x3 − . . . . . .

]
= y(0)xe−x

Now differentiate again

y(x) = y(0)[1− x ]e−x
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