DIFFERENTIAL EQUATIONS FOR FINANCE SHEET 3: NUMERICAL METHODS

1. Use an explicit method to solve

$$\frac{\partial U}{\partial \tau} = \frac{\partial^2 U}{\partial x^2}$$

with $U = \sin \pi x$ at $\tau = 0$ and U = 0 at x = 0 and x = 1 for $\tau \ge 0$. Find the solution at intervals of 0.2 in τ and 0.02 in τ up to $\tau = 0.06$. Repeat your calculations for the first time step using the Crank-Nicolson method. Solve the problem by the method of separation of variables and compare the solution obtained by each method at x = 0.4 and $\tau = 0.02$. What happens to U as $\tau \to \infty$?

2. Derive an explicit finite difference scheme for solution of the equation

$$\frac{\partial U}{\partial \tau} = \frac{\partial^2 U}{\partial x^2} + U \frac{\partial U}{\partial x}$$

in the region $-1 \le x \le 1$ based on a forward difference in τ and central differences in x. Find the principal part of the local truncation error at $x = i\Delta x$, $\tau = j\Delta \tau$ where Δx and $\Delta \tau$ are the step lengths in x and τ respectively and hence confirm that your scheme is consistent.

Use two time steps of the scheme to find a numerical solution for U at intervals of $\frac{1}{2}$ in x at time $\tau = \frac{1}{4}$, given that U = -1 at x = -1 and U = 1 at x = 1 for $\tau \ge 0$ and that U = x at $\tau = 0$ for $-1 \le x \le 1$.

3. Derive an explicit scheme for solution of the equation

$$\frac{\partial U}{\partial \tau} = \frac{\partial^2 U}{\partial x^2} + 8xU^2$$

in the region $0 \le x \le 1$, $\tau \ge 0$ subject to $\partial U/\partial x = 0$ at x = 0 and x = 1, and U = 0.1 at $\tau = 0$. Find the principal part of the local truncation error at $x = i\Delta x$, $\tau = j\Delta \tau$ where Δx and $\Delta \tau$ are the step lengths in x and τ respectively and hence confirm that your scheme is consistent.

Use two time steps of the scheme to find a numerical solution for U at intervals of $\frac{1}{2}$ in x at time $\tau = \frac{1}{4}$.

4. The equation

$$\frac{\partial U}{\partial \tau} - \frac{\partial^2 U}{\partial x^2} = \sin \pi x$$

is to be solved in the region $0 \le x \le 1$, $\tau \ge 0$ subject to U = 0 at x = 0 and x = 1 and U = 0 at $\tau = 0$. Use the Crank-Nicolson scheme with step lengths of $\frac{1}{3}$ in x and $\frac{1}{9}$ in τ to find numerical approximations for U at $x = \frac{1}{3}$ and $x = \frac{2}{3}$ when $\tau = \frac{1}{9}$. By writing $U = F(\tau) \sin \pi x$, or otherwise, find the exact solution for U. What is the error in your two numerical approximations?

Show that the scheme

$$\frac{\theta u_{i,j-1} + (1-\theta)u_{i,j+1} - u_{i,j}}{\Delta \tau} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{(\Delta x)^2}$$

is a consistent discretization of the equation

$$\frac{\partial U}{\partial \tau} = \frac{\partial^2 U}{\partial x^2}$$

at $(i\Delta x, j\Delta \tau)$ only if $\theta = 0$. What equation does the scheme consistently represent for general θ and for what value of $\alpha = \Delta \tau / (\Delta x)^2$ is the truncation error significantly reduced for general θ ?

6. By considering the error $e_{ij} = U_{ij} - u_{ij}$, prove that under certain assumptions, which should be stated, the solution u_{ij} of the scheme

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta \tau} = \frac{G(i\Delta x)}{(\Delta x)^2} \{ u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \}$$

converges as Δx and $\Delta \tau$ tend to zero, to the solution U of the equation

$$\frac{\partial U}{\partial \tau} = G(x) \frac{\partial^2 U}{\partial x^2}$$

at any point $x = i\Delta x$, $\tau = j\Delta \tau$ in the region $0 \le x \le 1$, given that $G(x) \ge 0$ for $0 \le x \le 1$. Determine the restriction on the value of $\alpha = \Delta \tau/(\Delta x)^2$ for the case where $G(x) = x^2(1-x)$. If in this case U = x(1-x) at $\tau = 0$, use one time step of the scheme with $\Delta x = 0.1$ to find u at x = 0.5, $\tau = 0.01$.

7. State an explicit scheme based on a forward difference in τ and central differences in x to solve

$$\frac{\partial U}{\partial \tau} = \frac{\partial^2 U}{\partial \tau^2} + 10 \frac{\partial U}{\partial \tau} + 25 U^2$$

in the region $0 \le x \le 1, \tau \ge 0$ subject to the boundary conditions U=0 at x=0 and U=1 at x=1, and the initial condition U=x at $\tau=0$. Find the principal part of the local truncation error at $x=i\Delta x, \tau=j\Delta \tau$ where Δx and $\Delta \tau$ are the step lengths in x and τ respectively, and hence confirm that your scheme is consistent.

Use two time steps of the scheme to find a numerical approximation to U at intervals of 0.2 in x at time $\tau=0.008$, giving your answers to four significant figures.

8. State a Crank-Nicolson scheme for solving the equation

$$\frac{\partial U}{\partial \tau} = \frac{\partial^2 U}{\partial x^2} - 10U$$

in the domain $0 \le x \le 1, \tau \ge 0$ subject to the boundary conditions U=0 at x=0 and x=1, and the initial condition $U=\sin \pi x$ at $\tau=0$. Use one time step of the scheme to find a numerical approximation to U at intervals of 0.2 in x at time $\tau=0.04$, giving your answers to four significant figures.

Compare your numerical values with those given by the exact solution $U = F(\tau) \sin \pi x$, where F is a function of τ to be determined.