of A. For what values of A do oscillations occur? Give the phase plane diagram for this case. Find the complete solution and give the phase plane diagram for A=0. Discuss the period of the motion for A in the range $-\frac{4}{27} \leq A \leq 0$.

- 6. If $x = x^3 3x^2 6x + 8$, for what range of x do oscillations occur? Give the phase plane diagram.
- 7. If x = f(x) where (i) f = 1 x (ii) $f = 1 x^3$ (iii) $f = \cos x$ (iv) $f = x^3 x$ find the equilibrium positions and determine the stability properties in each case.
- 8. A rocket is launched vertically from the Earth's surface r=R with speed $\dot{r}=V$, so that the angular momentum h=0. Use Newton's law and the inverse square law of gravitational attraction to determine the relationship

$$\hat{r}^2 = \frac{2\mu}{r} + V^2 - \frac{2\mu}{R}.$$

Use the phase plane to discuss the motion for different values of V and find the complete solution for r as a function of t in the case when $V^2 = 2\mu/R$.

- 9. An infinite string $(-\infty < x < \infty)$ is given a displacement $\eta = \operatorname{sech} x$ at t = 0 and is released from rest. Find and sketch its subsequent displacement $\eta(x,t)$.
- 10. A semi-infinite string $x \ge 0$ is held fixed with zero displacement η at x = 0 for all $t \ge 0$. If it is released from rest at t = 0 with displacement $\eta = xe^{-3x}$, find and sketch its subsequent displacement $\eta(x,t)$. Find the slope of the string at x = 0.
- 11. A semi-infinite string $x \ge 0$ is forced to oscillate by a vertical displacement $\eta = a \sin \omega t$ of its end x = 0. If the string is at rest with zero displacement at t = 0, find and sketch its displacement $\eta(x,t)$ for $t \ge 0$.
- 12. The displacement x of a damped spring system is governed by the equation

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 0.$$

If the system is released with zero displacement and initial speed $\frac{dx}{dt} = 1$ at t = 0, find x as a function of t. Find the maximum displacement and show that it occurs at time $t = \frac{1}{3} \ln 4$. Sketch x as a function of t.

The system is now forced so that x satisfies the equation

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 34\cos t$$

and the system is now released from rest with zero displacement at t=0. Find x as a function of t and show that at large times there is a periodic motion with amplitude $\sqrt{34}$.