
Semantics of Multithreaded Java

Jeremy Manson and William Pugh

Institute for Advanced Computer Science and Department of Computer Science
University of Maryland, College Park
{jmanson,pugh}@cs.umd.edu

January 11, 2002

Abstract

Java has integrated multithreading to a far greater
extent than most programming languages. It is also
one of the only languages that specifies and requires
safety guarantees for improperly synchronized pro-
grams. It turns out that understanding these issues
is far more subtle and difficult than was previously
thought. The existing specification makes guarantees
that prohibit standard and proposed compiler opti-
mizations; it also omits guarantees that are necessary
for safe execution of much existing code. Some guar-
antees that are made (e.g., type safety) raise tricky
implementation issues when running unsynchronized
code on SMPs with weak memory models.

This paper reviews those issues. It proposes a new
semantics for Java that allows for aggressive com-
piler optimization and addresses the safety and mul-
tithreading issues.

1 Introduction

Java has integrated multithreading to a far greater
extent than most programming languages. One de-
sired goal of Java is to be able to execute untrusted
programs safely. To do this, we need to make safety
guarantees for unsynchronized as well as synchro-
nized programs. Even potentially malicious programs
must have safety guarantees.

Pugh [Pug99, Pug00b] showed that the existing
specification of the semantics of Java’s memory model
[GJS96, §17] has serious problems. However, the so-
lutions proposed in the first paper [Pug99] were näıve
and incomplete. The issue is far more subtle than
anyone had anticipated.

Many of the issues raised in this paper have been
discussed on a mailing list dedicated to the Java

This work was supported by National Science Foundation
grants ACI9720199 and CCR9619808, and a gift from Sun Mi-
crosystems.

Memory Model [JMM]. There is a rough consensus
on the solutions to these issues, and the answers pro-
posed here are similar to those proposed in another
paper [MS00] (by other authors) that arose out of
those discussions. However, the details and the way
in which those solutions are formalized are different.

The authors published a somewhat condensed ver-
sion of this paper [MP01]. Some of the issues dealt
with in this paper, such as improperly synchronized
access to longs and doubles, were elided in that pa-
per.

2 Memory Models

Almost all of the work in the area of memory models
has been done on processor memory models. Pro-
gramming language memory models differ in some
important ways.

First, most programming languages offer some
safety guarantees. An example of this sort of guaran-
tee is type safety. these guarantees must be absolute:
there must not be a way for a programmer to circum-
vent them.

Second, the run-time environment for a high level
language contains many hidden data structures and
fields that are not directly visible to a programmer
(for example, the pointer to a virtual method table).
A data race resulting in the reading of an unexpected
value for one of these hidden fields could be impossi-
ble to debug and lead to substantial violations of the
semantics of the high level language.

Third, some processors have special instructions for
performing synchronization and memory barriers. In
a programming language, some variables have special
properties (e.g., volatile or final), but there is usually
no way to indicate that a particular write should have
special memory semantics.

Finally, it is impossible to ignore the impact of
compilers and the transformations they perform.
Many standard compiler transformations violate the
rules of existing processor memory models [Pug00b].

1

2.1 Terms and Definitions

In this paper, we concern ourselves with the seman-
tics of the Java virtual machine [LY99]. While defin-
ing a semantics for Java source programs is impor-
tant, there are many issues that arise only in the
JVM that also need to be resolved. Informally, the
semantics of Java source programs is understood to
be defined by their straightforward translation into
classfiles, and then by interpreting the classfiles us-
ing the JVM semantics.

A variable refers to a static variable of a loaded
class, a field of an allocated object, or element of
an allocated array. The system must maintain the
following properties with regards to variables and the
memory manager:

• It must be impossible for any thread to see a vari-
able before it has been initialized to the default
value for the type of the variable.

• The fact that a garbage collection may relocate a
variable to a new memory location is immaterial
and invisible to the semantics.

• The fact that two variables may be stored in ad-
jacent bytes (e.g., in a byte array) is immaterial.
Two variables can be simultaneously updated by
different threads without needing to use synchro-
nization to account for the fact that they are
“adjacent”. Any word-tearing must be invisible
to the programmer.

3 Proposed Informal Semantics

The proposed informal semantics are very similar to
lazy release consistency [CZ92, GLL+90]. A formal
operational semantics is provided in Section 8.

All Java objects act as monitors that support reen-
trant locks. For simplicity, we treat the monitor as-
sociated with each Java object as a separate variable.
The only actions that can be performed on the moni-
tor are Lock and Unlock actions. A Lock action by a
thread blocks until the thread can obtain an exclusive
lock on the monitor.

The actions on individual monitors and volatile
fields are executed in a sequentially consistent man-
ner (i.e., there must exist a single, global, total exe-
cution order over these actions that is consistent with
the order in which the actions occur in their original
threads). Actions on volatile fields are always imme-
diately visible to other threads, and do not need to
be guarded by synchronization.

If two threads access a normal variable, and one
of those accesses is a write, then the program should

be synchronized so that the first access is visible to
the second access. When a thread T1 acquires a lock
on/enters a monitor m that was previously held by
another thread T2, all actions that were visible to T2

at the time it released the lock on m become visible
to T1.

If thread T1 starts thread T2, then all actions visible
to T1 at the time it starts T2 become visible to T2

before T2 starts. Similarly, if T1 joins with T2 (waits
for T2 to terminate), then all accesses visible to T2

when T2 terminates are visible to T1 after the join
completes.

When a thread T1 reads a volatile field v that was
previously written by a thread T2, all actions that
were visible to T2 at the time T2 wrote to v be-
come visible to T1. This is a strengthening of volatile
over the existing semantics. The existing semantics
make it very difficult to use volatile fields to com-
municate between threads, because you cannot use a
signal received via a read of a volatile field to guar-
antee that writes to non-volatile fields are visible.
With this change, many broken synchronization id-
ioms (e.g., double-checked locking [Pug00a]) can be
fixed by declaring a single field volatile.

There are two reasons that a value written to a
variable might not be available to be read after it
becomes visible to a thread. First, another write to
that variable in the same thread can overwrite the
first value. Second, additional synchronization can
provide a new value for the variable in the ways de-
scribed above. Between the time the write becomes
visible and the time the thread no longer can read
that value from that variable, the write is said to be
eligible to be read.

When programs are not properly synchronized,
very surprising behaviors are allowed.

There are additional rules associated with final
fields (Section 5) and finalizers (Section 6)

4 Safety guarantees

Java allows untrusted code to be executed in a sand-
box with limited access rights. The set of actions
allowed in a sandbox can be customized and depends
upon interaction with a security manager, but the
ability to execute code in this manner is essential. In
a language that allows casts between pointers and in-
tegers, or in a language without garbage collection,
any such guarantee is impossible. Even for code that
is written by someone you trust not to act maliciously,
safety guarantees are important: they limit the pos-
sible effects of an error.

Safety guarantees need to be enforced regardless of

2

whether a program contains a synchronization error
or data race.

In this section, we go over the implementation is-
sues involved in enforcing certain virtual machine
safety guarantees, and in the issues in writing li-
braries that promise higher level safety guarantees.

4.1 VM Safety guarantees

Consider execution of the code on the left of Figure
1a on a multiprocessor with a weak memory model
(all of the ri variables are intended to be registers
that do not require memory references). Can this
result in r2 = -1? For this to happen, the write to p
must precede the read of p, and the read of *r1 must
precede the write to y.

It is easy to see how this could happen if the MemBar
(Memory Barrier) instruction were not present. A
MemBar instruction usually requires that actions that
have been initiated are completed before any further
actions can be taken. If a compiler or the processor
tries to reorder the statements in Thread 1 (leading to
r2 = -1), then a MemBar would prevent that reorder-
ing. Given that the instructions in thread 1 cannot be
reordered, you might think that the data dependence
in thread 2 would prohibit seeing r2 = -1. You’d be
wrong. The Alpha memory model allows the result
r2 = -1. Existing implementations of the Alpha do
not actually reorder the instructions. However, some
Alpha processors can fulfill the r2 = *r1 instruction
out of a stale cache line, which has the same effect.
Future implementations may use value prediction to
allow the instructions to be executed out of order.

Stronger memory orders, such as TSO (Total Store
Order), PSO (Partial Store Order) and RMO (Re-
laxed Memory Order) would not allow this reorder-
ing. Sun’s SPARC chip typically runs in TSO mode,
and Sun’s new MAJC chip implements RMO. Intel’s
IA-64 memory model does not allow r2 = -1; the
IA-32 has no memory barrier instructions or formal
memory model (the implementation changes from
chip to chip), but many knowledgeable experts have
claimed that no IA-32 implementation would allow
the result r2=-1 (assuming an appropriate ordering
instruction was used instead of the memory barrier).

Now consider Figure 1b. This is very similar to
Figure 1a, except that y is replaced by heap allocated
memory for a new instance of Point. What happens
if, when Thread 2 reads Foo.p, it sees the address
written by Thread 1, but it doesn’t see the writes
performed by Thread 1 to initialize the instance?

When thread 2 reads r2.x, it could see whatever
was in that memory location before it was allocated

from the heap. If that memory was uninitialized be-
fore allocation, an arbitrary value could be read. This
would obviously be a violation of Java semantics. If
r2.x were a reference/pointer, then seeing a garbage
value would violate type safety and make any kind of
security/safety guarantee impossible.

One solution to this problem is allocate objects out
of memory that all threads know to have been zeroed
(perhaps at GC time). This would mean that if we
see an early/stale value for r2.x, we see a zero or
null value. This is type safe, and happens to be the
default value the field is initialized with before the
constructor is executed.

Now consider Figure 1c. When thread 2 dispatches
hashCode(), it needs to read the virtual method table
of the object referenced by r2. If we use the idea
suggested previously of allocating objects out of pre-
zeroed memory, then the repercussions of seeing a
stale value for the vptr are limited to a segmentation
fault when attempting to load a method address out
of the virtual method table. Other operations such
as arraylength, instanceOf and checkCast could also
load header fields and behave anomalously.

But consider what happens if the creation of the
Bar object by Thread 1 is the very first time Bar
has been referenced. This forces the loading and ini-
tialization of class Bar. Then not only might thread
2 see a stale value in the instance of Bar, it could
also see a stale value in any of the data structures or
code loaded for class Bar. What makes this partic-
ularly tricky is that thread 2 has no indication that
it might be about to execute code of a class that has
just been loaded.

4.1.1 Proposed VM Safety Guarantees

Synchronization errors can only cause surprising or
unexpected values to be returned from a read action
(i.e., a read of a field or array element). Other ac-
tions, such as getting the length of an array, per-
forming a checked cast or invoking a virtual method
behave normally. They cannot throw any exceptions
or errors because of a data race, cause the VM to
crash or be corrupted, or behave in any other way
not allowed by the semantics.

Values returned by read actions must be both type-
safe and “not out of thin air”. To say that a value
must be “not out of thin air” means that it must be
a value written previously to that variable by some
thread. For example, Figure 9 must not be able to
produce any result other than i == j == 0; for ex-
ample, the value 42 cannot be assigned to i and j as if
by “magic”. The exception to this is that incorrectly
synchronized reads of non-volatile longs and doubles

3

Initially
p = &x; x = 1; y = -1

Thread 1 Thread 2

y = 2 r1 = p
MemBar r2 = *r1
p = &y

Could result in
r2 = -1

Initially
Foo.p = new Point(1,2)

Thread 1 Thread 2

r1 = new Point(3,4) r2 = Foo.p
MemBar r3 = r2.x
Foo.p = r1

Could result in
r3 = 0 or garbage

Initially
Foo.o = “Hello”

Thread 1 Thread 2

r1 = new Bar(3,4) r2 = Foo.o
MemBar r3 = r2.hashCode()
Foo.o = r1

Could result in
almost anything

(a) (b) (c)

Figure 1: Surprising results from weak memory models

are not required to respect the “not out of thin air”
rule (see Section 8.8 for details).

4.2 Library Safety guarantees

Many programmers assume that immutable objects
(objects that do not change once they are con-
structed) do not need to be synchronized. This is only
true for programs that are otherwise correctly syn-
chronized. However, if a reference to an immutable
object is passed between threads without correct syn-
chronization, then synchronization within the meth-
ods of the object is needed to ensure that the object
actually appears to be immutable.

The motivating example is the java.lang.String
class. This class is typically implemented using a
length, offset, and reference to an array of characters.
All of these are immutable (including the contents of
the array), although in existing implementations are
not declared final.

The problem occurs if thread 1 creates a String ob-
ject S, and then passes a reference to S to thread 2
without using synchronization. When thread 2 reads
the fields of S, those reads are improperly synchro-
nized and can see the default values for the fields of
S. Later reads by thread 2 can then see the values set
by thread 1.

As an example of how this can affect a pro-
gram, it is possible to show that a String that is
supposed to be immutable can appear to change
from “/tmp” to “/usr”. Consider an implementa-
tion of StringBuffer whose substring method cre-
ates a string using the StringBuffer’s character ar-
ray. It only creates a new array for the new
String if the StringBuffer is changed. We cre-
ate a String using new StringBuffer ("/usr/tmp")
.substring(4);. This will produce a string with an
offset field of 4 and a length of 4. If thread 2 in-
correctly sees an offset with the default value of 0,
it will think the string represents “/usr” rather than
“/tmp”. This behavior can only occur on systems

with weak memory models, such as an Alpha SMP.
Under the existing semantics, the only way to pro-

hibit this behavior is to make all of the methods
and constructors of the String class synchronized.
This solution would incur a substantial performance
penalty. The impact of this is compounded by the
fact that the synchronization is not necessary on all
platforms, and even then is only required when the
code contains a data race.

If an object contains mutable data fields, then syn-
chronization is required to protect the class against
attack via data race. For objects with immutable
data fields, we propose allowing the class to be de-
fended by use of final fields.

5 Guarantees for Final fields

Final fields must be assigned exactly once in the con-
structor for the class that defines them. The existing
Java memory model contains no discussion of final
fields. In fact, at each synchronization point, final
fields need to be reloaded from memory just like nor-
mal fields.

We propose additional semantics for final fields.
These semantics will allow more aggressive optimiza-
tions of final fields, and allow them to be used to
guard against attack via data race.

5.1 When these semantics matter

The semantics defined here are only significant for
programs that either:

• Allow objects to be made visible to other threads
before the object is fully constructed

• Have data races

We strongly recommend against allowing objects to
escape during construction. Since this is simply a
matter of writing constructors correctly, it is not too
difficult a task. While we also recommend against

4

class ReloadFinal extends Thread {

final int x;

ReloadFinal() {

synchronized(this) {

start();

sleep(10);

x = 42;

}

}

public void run() {

int i,j;

i = x;

synchronized(this) {

j = x;

}

System.out.println(i + ", " + j);

// j must be 42, even if i is 0

}

}

Figure 2: Final fields must be reloaded under existing
semantics

data races, defensive programming may require con-
sidering that a user of your code may deliberately in-
troduce a data race, and that there is little or nothing
you can do to prevent it.

5.2 Final fields of objects that escape
their constructors

Figure 2 shows an example of where the existing spec-
ification requires final fields to be reloaded. In this
example, the object being constructed is made visi-
ble to another thread before the final field is assigned.
That thread reads the final field, waits to be signaled
that the constructor has assigned the final field, and
then reads the final field again. The current specifi-
cation guarantees that even if the first read of tmp1.x
in foo sees 0, the second read will see 42.

The (informal) rule for final fields is that you must
ensure that the constructor for a object has com-
pleted before another thread is allowed to load a ref-
erence to that object. These are called “properly con-
structed” final fields. We will deal with the seman-
tics of properly constructed final fields first, and then
come to the semantics of improperly constructed final
fields.

5.3 Informal semantics of final fields

The formal detailed semantics for final fields are given
in Section 8.7. For now, we just describe the informal
semantics of final fields that are constructed properly.

The first part of the semantics of final fields is:

F1 When a final field is read, the value read is the
value assigned in the constructor.

Consider the scenario postulated at the bottom of
Figure 3. The question is: which of the variables i1
- i7 are guaranteed to see the value 42?

F1 alone guarantees that i1 is 42. However, that
rule isn’t sufficient to make Strings absolutely im-
mutable. Strings contain a reference to an array of
characters; the contents of that array must be seen
to be immutable in order for the String to be im-
mutable. Unfortunately, there is no way to declare
the contents of an array as final in Java. Even if
you could, it would mean that you couldn’t reuse the
mutable character buffer from a StringBuffer in con-
structing a String.

To use final fields to make Strings immutable re-
quires that when we read a final reference to an array,
we see both the correct reference to the array and the
correct contents of the array. Enforcing this should
guarantee that i2 is 42. For i3, the relevant ques-
tion is: do the contents of the array need to be set
before the final field is set (i.e, i3 might not be 42),
or merely before the constructor completes (i3 must
be 42)?

Although this point is debatable, we believe that
a requirement for objects to be completely initialized
before they are assigned to final fields would often be
ignored or incorrectly performed. Thus, we recom-
mend that the semantics only require that such ob-
jects be initialized before the constructor completes.

Since i4 is very similar to i2, it should clearly be
42. What about i5? It is reading the same location
as i4. However, simple compiler optimizations would
simply reuse the value loaded for j as the value of i5.
Similarly, a processor using the Sparc RMO memory
model would only require a memory barrier at the
end of the constructor to guarantee that i4 is 42.
However, ensuring that i5 is 42 under RMO would
require a memory barrier by the reading thread. For
these reasons, we recommend that the semantics not
require that i5 be 42.

All of the examples to this point have dealt with
references to arrays. However, it would be very con-
fusing if these semantics applied only to array ele-
ments and not to object fields. Thus, the semantics
should require that i6 is 42.

We need to decide if these special semantics ap-
ply only to the fields/elements of the object/array
directly referenced, or if it applies to those referenced
indirectly. If the semantics apply to indirectly refer-
enced fields/elements, then i7 must be 42. We be-

5

class FinalTest {

public static FinalTest ft;

public static int [] x = new int[1];

public final int a;

public final int [] b,c,d;

public final Point p;

public final int [][] e;

public FinalTest(int i) {

a = i;

int [] tmp = new int[1];

tmp[0] = i;

b = tmp;

c = new int[1];

c[0] = i;

FinalTest.x[0] = i;

d = FinalTest.x;

p = new Point();

p.x = i;

e = new int[1][1];

e[0][0] = i;

}

static void foo() {

int [] myX = FinalTest.x;

int j = myX[0];

FinalTest f1 = ft;

if (f1 == null) return;

// Guaranteed to see value

// set in constructor?

int i1 = f1.a; // yes

int i2 = f1.b[0]; // yes

int i3 = f1.c[0]; // yes

int i4 = f1.d[0]; // yes

int i5 = myX[0]; // no

int i6 = f1.p.x; // yes

int i7 = f1.e[0][0]; // yes

// use j, i1 ... i7

}

}

// Thread 1:

// FinalTest.ft = new FinalTest(42);

// Thread 2;

// FinalTest.foo();

Figure 3: Subtle points of the revised semantics of final

6

lieve making the semantics apply only to directly ref-
erenced fields would be difficult to program correctly,
so we recommend that i7 be required to be 42.

To formalize this idea, we say that a read r2 is
derived from a read r1 if

• r2 is a read of a field or element of an address
that was returned by r1, or

• there exists a read r3 such that r3 is derived from
r1 and r2 is derived from r3.

Thus, the additional semantics for final fields are:

F2 Assume thread T1 assigns a value to a final field
f of object X defined in class C. Assume that
T1 does not allow any other thread to load a
reference to X until after the C constructor for
X has terminated. Thread T2 then reads field
f of X. Any writes done by T1 before the class
C constructor for object X terminates are guar-
anteed to be ordered before and visible to any
reads done by T2 that are derived from the read
of f.

5.4 Improperly Constructed Final
Fields

Conditions [F1] and [F2] suffice if the object which
contains the final field is not made visible to another
thread before its constructor ends. Additional seman-
tics are needed to describe the behavior of a program
that allows references to objects to escape their con-
structor.

The basic question of what should be read from a
final field which is improperly constructed is a simple
one. In order to maintain not-out-of-thin-air safety,
it is necessary that the value read out of such a final
field is either the default value for its type, or the
value written to it in its constructor.

Figure 4 demonstrates some of the issues with
improperly synchronized final fields. The variables
proper and improper refer to the same object. proper
points to the correctly constructed version of the ob-
ject, because the reference was written to it after the
constructor completed. improper is not guaranteed
to point to the correctly constructed version of the
object, because it was set before the object was fully
constructed.

When thread 1 reads the improperly constructed
reference into i, and tries to reference i.x through
that reference, we cannot make the guarantee that
the constructor has finished. The resulting value of
i1 may be either a reference to the point or the default
value for that field (which is null).

If i1 is not null, and we then try to read i1.x, should
we be forced to see the correctly constructed value of
42? After all, the write to improper occurred after
the write of 42; one line of reasoning would suggest
that if you can see the write to improper, you should
be able to see the write to improper.x. This is not
the case, however. The write to improper can be re-
ordered to before the write to improper.x. Therefore,
i2 can have either the value 42 or the value 0.

Because we have guaranteed that p will not be null,
the reads from p should return the correctly con-
structed values for the fields. This is discussed in
section 5.3.

Now we come to i3 and i4. It is not unreasonable,
initially, to believe that i3 and i4 should have the cor-
rect values in them. After all, we have just ensured
that the thread has seen that object; it has been refer-
enced through p. However, the compiler could reuse
the values of i1 and i2 for i3 and i4 through common
subexpression elimination. The values for i3 and i4
must therefore remain the same as those of i1 and i2.

5.5 Final Static Fields

Final static fields must be initialized by the class ini-
tializer for the class in which they are defined. The
semantics for class initialization guarantee that any
thread that reads a static field sees all the results of
the execution of the class initialization.

Note that final static fields do not have to be
reloaded at synchronization points.

Under certain complicated circumstances involving
circularities in class initialization, it is possible for a
thread to access the static variables of a class before
the static initializer for that class has started. Under
such situations, a thread which accesses a final static
field before it has been set sees the default value for
the field. This does not otherwise affect the nature
or property of the field (any other threads that read
the static field will see the final value set in the class
initializer). No special semantics or memory barriers
are required to observe this behavior; the standard
memory barriers required for class initialization en-
sure it.

5.6 Native code changing final fields

JNI allows native code to change final fields. To allow
optimization (and sane understanding) of final fields,
that ability will be prohibited. Attempting to use
JNI to change a final field should throw an immediate
exception.

7

class Improper {
public final Point p;
public static Improper proper;
public static Improper improper;

public Improper(int i) {

p = new Point();
p.x = i;

improper = this;
}

static void foo() {

Improper p = proper;
Improper i = improper;

if (p == null) return;
// Possible Results

Improper i1 = i; // reference to point or null
int i2 = i.x; // 42 or 0

Improper p1 = p; // reference to point
int p2 = p.x; // 42

Improper i3 = i; // reference to point or null
int i4 = i.x; // 42 or 0

}
}

// Thread 1:
// Improper.proper = new Improper(42);

// Thread 2;
// Improper.foo();

Figure 4: Improperly Constructed Final Fields

8

5.6.1 Write Protected Fields

System.in, System.out, and System.err are final
static fields that are changed by the methods System.
setIn, System.setOut and System.setErr. This is
done by having the methods call native code that
modifies the final fields. We need to create a special
rule to handle this situation.

These fields should have been accessed via getter
methods (e.g., System.getIn()). However, it would
be impossible to make that change now. If we sim-
ply made the fields non-final, then untrusted code
could change the fields, which would also be a serious
problem (functions such as System.setIn have to get
permission from the security manager).

The (ugly) solution for this is to create a new kind
of field, write protected, and declare these three fields
(and only these fields) as write protected. They
would be treated as normal variables, except that
the JVM would reject any bytecode that attempts to
modify them. In particular, they need to be reloaded
at synchronization points.

6 Guarantees for Finalizers

When an object is no longer reachable, the
finalize() method (i.e., the finalizer) for the ob-
ject may be invoked. The finalizer is typically run
in a separate finalizer thread, although there may be
more than one such thread.

The loss of the last reference to an object acts as
an asynchronous signal to another thread to invoke
the finalizer. In many cases, finalizers should be syn-
chronized, because the finalizers of an unreachable
but connected set of objects can be invoked simul-
taneously by different threads. However, in practice
finalizers are often not synchronized. To näıve users,
it seems counter-intuitive to synchronize finalizers.

Why is it hard to make guarantees? Consider the
code in Figure 5. If foo() is invoked, an object is
created and then made unreachable. What is guar-
anteed about the reads in the finalizer?

An aggressive compiler and garbage collector may
realize that after the assignment to ft.y, all ref-
erences to the object are dead and thus the ob-
ject is unreachable. If garbage collection and fi-
nalization were performed immediately, the write to
FinalizerTest.z would not have been performed
and would not be visible.

But if the compiler reorders the assignments to
FinalizerTest.x and ft.y, the same would hold for
FinalizerTest.x. However, the object referenced

class FinalizerTest {
static int x = 0;
int y = 0;
static int z = 0;

protected void finalize() {
int i = FinalizerTest.x;
int j = y;
int k = FinalizerTest.z;
// use i, j and k
}

public static void foo() {
FinalizerTest ft = new FinalizerTest();
FinalizerTest.x = 1;
ft.y = 1;
FinalizerTest.z = 1;
ft = null;
}

}

Figure 5: Subtle issues involving finalization

by ft is clearly reachable at least until the assign-
ment to ft.y is performed.

So the guarantee that can be reasonably made is
that all memory accesses to the fields of an object X
during normal execution are ordered before all mem-
ory accesses to the fields of X performed during the
invocation of the finalizer for X. Furthermore, all
memory accesses visible to the constructing thread at
the time it completes the construction of X are visi-
ble to the finalizer for X. For a uniprocessor garbage
collector, or a multiprocessor garbage collector that
performs a global memory barrier (a memory barrier
on all processors) as part of garbage collection, this
guarantee should be free.

For a garbage collector that doesn’t “stop the
world”, things are a little trickier. When an object
with a finalizer becomes unreachable, it must be put
into special queue of unreachable objects. The next
time a global memory barrier is performed, all of the
objects in the unreachable queue get moved to a fi-
nalizable queue, and it now becomes safe to run their
finalizer. There are a number of situations that will
cause global memory barriers (such as class initial-
ization), and they can also be performed periodically
or when the queue of unreachable objects grows too
large.

9

Thread 1:

while (true)

synchronized (o)

{

// does not call

// Thread.yield(),

// Thread.sleep()

}

Thread 2:

synchronized (o)

{

// does nothing.

}

Figure 6: Fairness

7 Fairness Guarantees

Without a fairness guarantee for virtual machines,
it is possible for a running thread to be capable of
making progress and never do so. Java currently has
no official fairness guarantee, although, in practice,
most JVMs do provide it to some extent. An example
of a potential weak fairness guarantee would be one
that states that if a thread is infinitely often allowed
to make progress, it would eventually do so.

An example of how this issue can impact a program
can be seen in Figure 6. Without a fairness guarantee,
it is perfectly legal for a compiler to move the while
loop inside the synchronized block; Thread 2 will
be blocked forever.

Any potential fairness guarantee would be inextri-
cably linked to the threading model for a given vir-
tual machine. A threading model that only switches
threads when Thread.yield() is called will never al-
low Thread 2 to execute. A fairness guarantee would
make this sort of implementation, which is used in a
number of JVMs, illegal; it would force Thread 2 to
be scheduled. Because this kind of implementation is
often desirable, our proposed specification does not
include a fairness guarantee.

The flip side of this issue is the fact that library
calls like Thread.yield() and Thread.sleep() are
given no meaningful semantics by the Java API. The
question of whether they should have one is outside
the scope of this discussion, which centers on VM
issues, not API changes.

8 Formal Specification

The following is a formal, operational semantics for
multithreaded Java. It isn’t intended to be a method
anybody would use to implement Java. A JVM im-
plementation is legal iff for any execution observed on
the JVM, there is a execution under these semantics
that is observationally equivalent.

The model is a global system that atomically ex-
ecutes one operation from one thread in each step.
This creates a total order over the execution of all

operations. Within each thread, operations are usu-
ally done in their original order. The exception is that
writes and stores may be done presciently, i.e., exe-
cuted early (§8.5.1). Even without prescient writes,
the process that decides what value is seen by a read
is complicated and nondeterministic; the end result
is not sequential consistency.

8.1 Operations

An operation corresponds to one JVM opcode. A
getfield, getstatic or array load opcode corresponds
to a Read. A putfield, putstatic or array store op-
code corresponds to a Write. A monitorenter opcode
corresponds to a Lock, and a monitorexit opcode cor-
responds to an Unlock.

8.2 Simple Semantics, excluding Final
Fields and Prescient Writes

Establishing adequate rules for final fields and pre-
scient writes is difficult, and substantially complicates
the semantics. We will first present a version of the
semantics that does not allow for either of these.

8.2.1 Types and Domains

value A primitive value (e.g., int) or a reference to
a object.

variable Static variable of a loaded class, a field of
an allocated object, or element of an allocated
array.

GUID A globally unique identifier assigned to each
dynamic occurrence of write. This allows, for
example, two writes of 42 to a variable v to be
distinguished.

write A tuple of a variable, a value (the value writ-
ten to the variable), and a GUID (to distinguish
this write from other writes of the same value to
the same variable).

8.3 Simple Semantics

There is a set allWrites that denotes the set of all
writes performed by any thread to any variable. For
any set S of writes, S(v) ⊆ S is the set of writes to v
in S.

For each thread t, at any given step, overwrittent is
the set of writes that thread t knows are overwritten
and previoust is the set of all writes that thread t

10

knows occurred previously. It is an invariant that for
all t,

overwrittent ⊂ previoust ⊆ allWrites

Furthermore, all of these sets are monotonic: they
can only grow.

When each variable v is created, there is a write
w of the default value to v s.t. allWrites(v) = {w}
and for all t, overwrittent(v) = {} and previoust(v) =
{w}.

When thread t reads a variable v, the value re-
turned is that of an arbitrary write from the set

allWrites(v)− overwrittent

This is the set of writes that are eligible to be
read by thread t for variable v. Every monitor and
volatile variable x has an associated overwrittenx and
previousx set. Synchronization actions cause infor-
mation to be exchanged between a thread’s previous
and overwritten sets and those of a monitor or
volatile. For example, when thread t locks mon-
itor m, it performs previoust∪ = previousm and
overwrittent∪ = overwrittenm. The semantics of
Read, Write, Lock and Unlock actions are given in
Figure 7.

If your program is properly synchronized, then
whenever thread t reads or writes a variable v, you
must have done synchronization in a way that ensures
that all previous writes of that variable are known to
be in previoust. In other words,

previoust(v) = allWrites(v)

From that, you can do an induction proof that ini-
tially and before and after thread t reads or writes a
variable v,

| allWrites(v)− overwrittent |= 1

Thus, the value of v read by thread t is always the
most recent write of v: allWrites(v) − overwrittent.
In a correctly synchronized program, there will there-
fore only be one eligible value for any variable in any
thread at a given time. This results in sequential
consistency.

8.4 Explicit Thread Communication

Starting, interrupting or detecting that a thread has
terminated all have special synchronization seman-
tics, as does initializing a class. Although we could
add special rules to Figure 7 for these operations, it
is easier to describe them in terms of the semantics
of hidden volatile fields.

1. Associated with each thread T1 is a hidden
volatile start field. When thread T2 starts T1,
it is as though T2 writes to the start field, and
the very first action taken by T1 is to read that
field.

2. When a thread T1 terminates, as its very last
action it writes to a hidden volatile terminated
field. Any action that allows a thread T2 to de-
tect that T1 has terminated is treated as a read
of this field. These actions include:

• Calling join() on T1 and having it return
due to thread termination.

• Calling isAlive() on T1 and having it return
false because T1 has terminated.

• Being in a shutdownHook thread after ter-
mination of T1, where T1 is a non-daemon
thread that terminated before virtual ma-
chine shutdown was initiated.

3. When thread T2 interrupts or stops T1, it is as
though T2 writes to a hidden volatile interrupted
field of T1, that is read by T1 when it detects or
receives the interrupt/threadDeath.

4. After a thread T1 initializes a class C, but be-
fore releasing the lock on C, it writes “true” to
a hidden volatile static field initialized of C.

If another thread T2 needs to check that C has
been initialized, it can just check that the ini-
tialized field has been set to true (which would
be a read of the volatile field). T2 does not need
to obtain a lock on the class object for C if it
detects that C is already initialized.

8.5 Semantics with Prescient Writes

In this section, we add prescient writes to our seman-
tics.

8.5.1 Need for Prescient Writes

Consider the example in Figure 8. If the actions
must be executed in their original order, then one
of the reads must happen first, making it impossible
to get the result i == j == 1. However, a com-
piler might decide to reorder the statements in each
thread, which would allow this result.

In order to allow standard compiler optimizations
to be performed, we need to allow Prescient Writes.
A compiler may move a write earlier than it would
be executed by the original program if the following
conditions are absolutely guaranteed:

11

writeNormal(Write 〈v, w, g〉)
overwrittent∪ = previoust(v)
previoust+ = 〈v, w, g〉
allWrites+ = 〈v, w, g〉

readNormal(Variable v)
Choose 〈v, w, g〉 from

allWrites(v)− overwrittent
return w

lock(Monitor m)
Acquire/increment lock on m
previoust∪ = previousm;
overwrittent∪ = overwrittenm;

unlock(Monitor m)
previousm∪ = previoust;
overwrittenm∪ = overwrittent;
Release/decrement lock on m

readVolatile(Variable v)
previoust∪ = previousv;
overwrittent∪ = overwrittenv;
return volatileValuev

writeVolatile(Write 〈v, w, g〉)
volatileValuev = w
previousv∪ = previoust;
overwrittenv∪ = overwrittent;

Figure 7: Formal semantics without final fields or
prescient writes

1. The write will happen (with the variable and
value written guaranteed as well).

2. The prescient write can not be seen in the same
thread before the write would normally occur.

3. Any premature reads of the prescient write must
not be observable as a previousRead via synchro-
nization.

When we say that something is guaranteed, this
includes the fact that it must be guaranteed over all
possible results from improperly synchronized reads
(which are non-deterministic, because |allWrites(v)−
overWritest| > 1). Figure 9 shows an example of a
behavior that could be considered “consistent” (in
a very perverted sense) if prescient writes were not
required to be guaranteed across non-deterministic
reads (the value of 42 appears out of thin air in this
example).

Initially:
a = b = 0

Thread 1:
j = b;
a = 1;

Thread 2:
i = a;
b = 1;

Can this result in i == j == 1?

Figure 8: Motivation for Prescient Writes

Initially:
a = 0

Thread 1:
j = a;
a = j;

Thread 2:
i = a;
a = i;

Must not result in i == j == 42

Figure 9: Prescient Writes must be Guaranteed

Initially:
a = b = c = 0

Thread 1:
i = a;
j = a;
if (i == j)
b = 2;

Thread 2:
k = b;
a = k;

Can i == j == k == 2?

Figure 10: Motivation for guaranteedRedun-
dantRead

12

Initially:
x = y = 0

Thread 1:
x = 0;
if (x == 0)
y = 2;

Thread 2:
x = y;

Can x == 0, y == 2?

Figure 11: Motivation for guaranteedReadOfWrite

8.5.2 Need for GuaranteedRedundantRead

The need for the guaranteedRedundantRead action
stems from the use of prescient writes. Consider the
example in Figure 10. It would be perfectly reason-
able for a compiler to determine that the if test in
Thread 1 will always evaluate to true, and then elim-
inate it. The compiler could then perform the write
to b in Thread 1 early; the result of this code could
be i = j = k = 2.

For this result to be possible in the semantics, how-
ever, a prescient write of 2 to y must occur at the
beginning of thread 1. However, i and j can read
different values from a. This may cause the i == j
test to fail; the actual write to b might not occur. To
have a prescient write in this case is not allowed by
the semantics described in Section 8.5.1.

The solution to this problem is to introduce guar-
anteed reads for i and j. If we guarantee that i and
j will read the same value from a, then the if condi-
tion will always be true. This removes the restriction
from performing a prescient write of b = 2; that is
in place if b = 2; is not executed.

A guaranteedRedundantRead is simply a read that
provides the assurance that the GUID read will be the
same as another guaranteedRedundantRead’s GUID.
This allows the model to circumvent the restrictions
of prescient writes when necessary.

8.5.3 Need for GuaranteedReadOfWrite

The guaranteedReadOfWrite action is quite similar
to the guaranteedRedundantRead action. In this
case, however, a read is guaranteed to see a particular
write’s GUID.

Consider Figure 11. We wish to have the result
x == 0, y == 2. To do this we need a prescient
write of y = 2. Under the rules for prescient writes,
this cannot be done unless the condition of the if
statement is guaranteed to evaluate to true. This
is accomplished by changing the read of x in the if
statement to a guaranteedReadOfWrite of the write

x == 0.

8.5.4 Overview

The semantics of each of the actions are given in Fig-
ure 12. The write actions take one parameter: the
write to be performed. The read actions take two pa-
rameters: a local that references an object to be read,
and an element of that object (field or array element).
The lock and unlock actions take one parameter: the
monitor to be locked or unlocked.

We use
infox∪ = infoy

as shorthand for

previousReadsx ∪ = previousReadsy
previousx ∪ = previousy

overwrittenx ∪ = overwritteny

8.5.5 Static variables

Before any reference to a static variable, the thread
must insure that the class is initialized.

8.5.6 Semantics of Prescient writes

Each write action is broken into two parts: initWrite
and performWrite. The performWrite is always per-
formed at the point where the write existed in the
original program. Each performWrite has a corre-
sponding initWrite that occurs before it and is per-
formed on a write tuple with the same GUID. The
initWrite can always be performed immediately be-
fore the performWrite. The initWrite may be per-
formed prior to that (i.e., presciently) if the write
is guaranteed to occur. This guarantee extends over
non-deterministic choices for the values of reads.

We must guarantee that no properly synchronized
read of the variable being written can be observed
between the prescient write and the execution of the
write by the original program. To accomplish this,
we create a set previousReads(t) for every thread t
which contains the set of values of variables that t
knows have been read. A read can be added to this
set in two ways: if t performed the read, or t has
synchronized with a thread that contained the read
in its previousReads(t) set.

If a properly synchronized read of the variable were
to occur between the initWrite and the performWrite,
the read would be placed in the previousReads set of
the thread performing the write. We assert that this
cannot happen; this maintains the necessary condi-
tions for prescient writes.

13

initWrite(Write 〈v,w, g〉)
allWrites+ = 〈v, w, g〉
uncommittedt+ = 〈v, w, g〉

performWrite(Write 〈v, w, g〉)
Assert 〈v, w, g〉 6∈ previousReadst
overwrittent∪ = previoust(v)
previoust+ = 〈v, w, g〉
uncommittedt− = 〈v, w, g〉

readNormal(Variable v)
Choose 〈v, w, g〉 from allWrites(v)
−uncommittedt − overwrittent

previousReadst+ = 〈v, w, g〉
return w

guaranteedReadOfWrite(Variable v, GUID g)
Assert ∃〈v, w, g〉 ∈ previoust
−uncommittedt − overwrittent

previousReadst+ = 〈v, w, g〉
return w

guaranteedRedundantRead(Variable v, GUID
g)
Let 〈v, w, g′〉 be the write seen by g
Assert 〈v, w, g′〉 ∈ previousReadst
−uncommittedt − overwrittent

return w

readStatic(Variable v)
Choose 〈v, w, g〉 from allWrites(v)
−uncommittedt − overwrittent

previousReadst+ = 〈v, w, g〉
return w

lock(Monitor m)
Acquire/increment lock on m
infot∪ = infom;

unlock(Monitor m)
infom∪ = infot;
Release/decrement lock on m

readVolatile(Variable v)
infot∪ = infov
return volatileValuev

writeVolatile(Write 〈v, w, g〉)
volatileValuev = w
infov∪ = infot;

Figure 12: Semantics of Program Actions Without
Final Fields

The set uncommittedt contains the set of pre-
sciently performed writes by a thread whose per-
formWrite action has not occurred. Writes contained
in a thread’s uncommittedt set are invisible to that
thread. This set exists to reinforce the fact that the
prescient write is invisible to the thread that executed
it until the performWrite action. This would be han-
dled by the assertion in performWrite, but making it
clear that this is not a choice clarifies what it means
for a prescient write to be guaranteed.

Guaranteed Reads are simply ordinary reads, the
results of which are determined by the GUID they
take as input.

8.5.7 Prescient Reads?

The semantics we have described does not need any
explicit form of prescient reads to reflect ordering that
might be done by a compiler or processor. The effects
of prescient reads are produced by other parts of the
semantics.

If a Read action were done early, the set of values
that could be returned by the read would just be a
subset of the values that could be done at the original
location of the Read. So the fact that a compiler or
processor might perform a read early, or fulfill a read
out of a local cache, cannot be detected and is allowed
by the semantics, without any explicit provisions for
prescient reads.

8.5.8 Other reorderings

The legality of many other compiler reorderings can
be inferred from the semantics. These compiler re-
orderings could include speculative reads or the delay
of a memory reference. For example, in the absence
of synchronization operations, constructors and final
fields, all memory references can be freely reordered
subject to the usual constraints arising in transform-
ing single-threaded code (e.g., you can’t reorder two
writes to the same variable).

8.6 Non-Atomic Volatiles

In this section, we describe why volatile variables
must execute in more than one stage; we call this
a non-atomic write to a volatile.

8.6.1 Need for Non-Atomic Volatiles

The example in Figure 13 gives a motivation for non-
atomic volatile writes. Consider a processor architec-
ture which allows writes by one processor to become
visible to different processors in different orders.

14

Initially:
a = b = 0

a, b are volatile
Thread 1 Thread 2 Thread 3 Thread 4
a = 1; int u = 0, v = 0; b = 1; int w = 0, x = 0;

u = b; w = a;
v = a; x = b;

Figure 13: Can u == w == 0, v == x == 1?

Each thread in our example executes on a different
processor. Thread 3’s update to b may become visible
to Thread 4 before Thread 1’s update to a. This
would result in w == 0, x == 1. However, Thread
1’s update to amay become visible to Thread 2 before
Thread 3’s update to b. This would result in u ==
0, v == 1.

The simple semantics enforce a total order over all
volatile writes. This means that each thread must
see accesses to every volatile variable in the order in
which they were written. If this restriction is relaxed
so that there is only a total order over writes to indi-
vidual volatile variables, then the above situation is
fixed.

So the design principle is simple: if two threads per-
form volatile writes to two different variables, then
any threads reading those variables can read the
writes in any order. We still want to enforce a to-
tal order over writes to the same variable, though; if
two threads perform volatile writes to the same vari-
able, they are guaranteed to be seen in a total order
by reading threads.

8.6.2 Semantics of Non-Atomic Volatiles

To accomplish these goals, the semantics splits
volatile writes into two actions: initVolatileWrite and
performVolatileWrite. Each write to a volatile vari-
able in the original code is represented by this two-
stage instruction. The performVolatileWrite must be
immediately preceded in the thread in which it occurs
by the initVolatileWrite for that write. There can be
no intervening instructions.

After an initVolatileWrite, other threads can see
either the value that it wrote to the volatile, or the
original value. Once a thread sees the new value
of a partially completed volatile write, that thread
can no longer see the old value. When the perfor-
mVolatileWrite occurs, only the new value is visi-
ble. If one thread performs an initVolatileWrite of
a volatile variable, any other thread that attempts
to perform an initVolatileWrite of that variable is

readVolatile(Local 〈a, oF, kF〉, Element e)
Let v be the volatile referenced by a.e
if (uncommittedVolatileValuev 6= n/a) or

(readThisVolatile
t,〈w,infot〉 = false)

infot∪ = infov
return 〈volatileValuev, kF, oF〉

else
〈w, infou〉 = uncommittedVolatileValuev
volatileValuev = w
infov∪ = infou

initVolatileWrite(Write 〈v, w, g〉)
Assert uncommittedVolatileValuev 6= n/a
∀t ∈ threads :

readThisVolatile
t,〈w,infot〉 = false

uncommittedVolatileValuev = 〈w, infot〉

performVolatileWrite(Write 〈v, w, g〉)
uncommittedVolatileValuev = n/a
volatileValuev = w
infov∪ = infot

Figure 14: Semantics for Non-Atomic Volatiles

blocked until the first thread performs the perfor-
mVolatileWrite.

The semantics for non-atomic volatile accesses can
be seen in Figure 14.

8.7 Full Semantics

In this section, we add semantics for final fields, as
discussed in section 5. The addition of final fields
completes the semantics.

8.7.1 New Types and Domains

local A value stored in a stack location or local (e.g.,
not in a field or array element). A local is repre-
sented by a tuple 〈a, oF, kF〉, where a is a value
(a reference to an object or a primitive value),
oF is a set of writes known to be overwritten
and kF is a set of writes to final fields known to

15

have been frozen. oF and kF exist because of the
special semantics of final fields.

8.7.2 Freezing final fields

When a constructor terminates normally, the thread
performs freeze actions on all final fields defined in
that class. If a constructor A1 for A chains to another
constructor A2 for A, the fields are only frozen at the
completion of A1. If a constructor B1 for B chains to
a constructor A1 for A (a superclass of B), then upon
completion of A1, final fields declared in A are frozen,
and upon completion of B1, final fields declared in B
are frozen.

Associated with each final variable v are

• finalValuev (the value of v)

• overwrittenv (the write known to be overwritten
by reading v)

Every read of any field is performed through a lo-
cal 〈a, oF, kF〉. A read done in this way cannot re-
turn any of the writes in the set oF due to the spe-
cial semantics of final fields. For each final field v,
overwrittenv is the overwrittent set of the thread that
performed the freeze on v, at the time that the freeze
was performed. overwrittenv is assigned when the
freeze on v is performed. Whenever a read of a final
field v is performed, the tuple returned contains the
value of v and the union of overwrittenv with the lo-
cal’s oF set. The effect of this is that the writes in
overwrittenv cannot be returned by any read derived
from a read of v (condition F2).

The this parameter to the run method of a thread
has an empty oF set, as done the local generated by
a NEW operation.

8.7.3 Pseudo-final fields

If a reference to an object with a final field is loaded
by a thread that did not construct that object, one
of two things should be true:

• That reference was written after the appropriate
constructor terminated, or

• synchronization is used to guarantee that the ref-
erence could not be loaded until after the appro-
priate constructor terminated.

The need to detect this is handled by the
knownFrozen sets.

Each thread, monitor, volatile and reference
(stored either in a heap variable or in a local) has
a corresponding set knownFrozen of fields it knows

to be frozen. When a final field is frozen, it is added
to the knownFrozen set of the thread. A reference to
an object consists of two things: the actual reference,
and a knownFrozen set. When a reference 〈r, kF〉 is
written to a variable v, v gets 〈r, kF∪knownFrozent〉,
where knownFrozent is the knownFrozen set for that
thread.

When a heap variable is read into a local,
that reference’s knownFrozen set and the thread’s
knownFrozen set are combined into a knownFrozen
set for that local.

If that heap variable was written before a final field
f was frozen (the end of f ’s constructor), and there
has been no intervening synchronization to commu-
nicate the knownFrozen set from the thread that ini-
tialized f to the thread that is now reading it, then
the local will not contain f in its knownFrozen set.
If an attempt is then made to read a final field a.f ,
where a is a local f will be read as a pseudo-final
field.

If that reference was written after f was frozen, or
there has been intervening synchronization to com-
municate the knownFrozen set from the thread that
initialized f to the thread that is now reading it, then
the local will contain f in its knownFrozen set. Any
attempt to read a.f will therefore see the correctly
constructed version.

A read of a pseudo-final field non-deterministically
returns either the default value for the type of that
field, or the value written to that field in the con-
structor (if that write has occurred).

Furthermore, if a final field is pseudo-final, it does
not communicate any information about overwritten
fields (as described in Section 8.7.2). No guarantee
is made that objects accessed through that final field
will be correctly constructed.

Objects can have multiple constructors (e.g., if
class B extends A, then a B object has a B con-
structor and an A constructor). In such a case, if
a B object becomes visible to other threads after the
A constructor has terminated, but before the B con-
structor has terminated, then the final fields defined
in B become pseudo-final, but the final fields of A
remain final.

Final fields and Prescient writes An initWrite
of a reference a must not be reordered with an earlier
freeze of a field of the object o referenced by a. This
prevents a prescient write from allowing a reference
to o to escape the thread before o’s final fields have
been frozen.

16

8.7.4 Overview

The final version of the semantics closely resembles
the one in Figure 12. The freeze actions take one
parameter: the final variable to be frozen.

We use
infox∪ = infoy

as shorthand for

previousReadsx ∪ = previousReadsy
previousx ∪ = previousy

overwrittenx ∪ = overwritteny
knownFrozenx ∪ = knownFrozeny

8.7.5 Static Variables

Because of the semantics of class initialization, no
special final semantics are needed for static variables.

8.8 Non-atomic longs and doubles

A read of a long or double variable v can return a
combination of the first and second half of any two
of the eligible values for v. If access to v is properly
synchronized, then there will only be one write in
the set of eligible values for v. In this case, the new
value of v will not be a combination of two or more
values (more precisely, it will be a combination of the
first half and the second half of the same value). The
specification for reads of longs and doubles is shown
in Figure 16. The way in which these values might be
combined is implementation dependent. This allows
machines that do not have efficient 64-bit load/store
instructions to implement loads/stores of longs and
doubles as two 32-bit load/stores.

Note that reads and writes of volatile and final long
and double variables are required to be atomic.

8.9 Finalizers

Finalizers are executed in an arbitrary thread t that
holds no locks at the time the finalizer begins execu-
tion. For a finalizer on an object o, overwrittent is the
union of all writes to any field/element of o known to
be overwritten by any thread at the time o is deter-
mined to be unreachable, along with the overwritten
set of the thread that constructed o as of the moment
the constructor terminated. The set previoust is the
union of all writes to any field/element of o known
to be previous by any thread at the time o is deter-
mined to be unreachable, along with the previous set
of the thread that constructed o as of the moment
the constructor terminated.

Thread 1:

synchronized (

new Object()) {

x = 1;

}

synchronized (

new Object()) {

j = y;

}

Thread 2:

synchronized (

new Object()) {

y = 1;

}

synchronized (

new Object()) {

i = x;

}

Figure 17: “Useless” synchronization

It is strongly recommended that objects with non-
trivial finalizers be synchronized. The semantics
given here for unsynchronized finalization are very
weak, but it isn’t clear that a stronger semantics
could be enforced.

8.10 Related Work

The simple semantics is closely related to Location
Consistency [GS98]; the major difference is that in
location consistency, an acquire or release affects only
a single memory location. However, location consis-
tency is more of an architectural level memory model,
and does not directly support abstractions such as
monitors, final fields or finalizers. Also, location con-
sistency allows actions to be reordered “in ways that
respect dependencies”. We feel that our rules for
prescient writes are more precise, particularly with
regard to compiler transformations.

To underscore the similarity to Location Consis-
tency, the previoust(v) can be seen to be the same
as the set {e | t ∈ processorset(e)} and everything
reachable from that set by following edges backwards
in the poset for v. Furthermore, the MRPW set is
equal to previoust(v)− overwrittent.

9 Optimizations

A number of papers [WR99, ACS99, BH99, Bla99,
CGS+99] have looked at determining when synchro-
nization in Java programs is “useless”, and removing
the synchronization. A “useless” synchronization is
one whose effects cannot be observed. For example,
synchronization on thread-local objects is “useless.”

The existing Java thread semantics [GJS96, §17]
does not allow for complete removal of “useless” syn-
chronization. For example, in Figure 17, the existing
semantics make it illegal to see 0 in both i and j,
while under these proposed semantics, this outcome
would be legal. It is hard to imagine any reasonable

17

updateReference(Value w, knownFrozen kf)
if w is primitive, return w
let [r, k] = w
return [r, k ∪ kF]

initWrite(Write 〈v, w, g〉)
w′ = updateReference (w, knownFrozent)
allWrites+ = 〈v, w′, g〉
uncommittedt+ = 〈v, w′, g〉

performWrite(Write 〈v, w, g〉)
w′ = updateReference (w, knownFrozent)
Assert 〈v, w′, g〉 6∈ previousReadst
overwrittent∪ = previoust(v)
previoust+ = 〈v, w′, g〉
uncommittedt− = 〈v, w′, g〉

readNormal(Local 〈a, oF, kF〉, Element e)
Let v be the variable referenced by a.e
Choose 〈v, w, g〉 from allWrites(v)− oF

−uncommittedt − overwrittent
previousReadst+ = 〈v, w, g〉
〈r, kF′〉 = updateReference(w, knownFrozent)
return 〈r, kF′, oF〉

guaranteedReadOfWrite(Value 〈a, oF, kF〉, Element
e, GUID g)
Let v be the variable referenced by a.e
Assert ∃〈v, w, g〉 ∈ previoust

−uncommittedt − overwrittent
previousReadst+ = 〈v, w, g〉
〈r, kF′〉 = updateReference(w, knownFrozent)
return 〈r, kF′, oF〉

guaranteedRedundantRead(Value 〈a, oF, kF〉, Ele-
ment e, GUID g)
Let v be the variable referenced by a.e
Let 〈v, w, g′〉 be the write seen by g
Assert 〈v, w, g′〉 ∈ previousReadst

−uncommittedt − overwrittent
〈r, kF′〉 = updateReference(w, knownFrozent)
return 〈r, kF′, oF〉

readStatic(Variable v)
Choose 〈v, w, g〉 from allWrites(v)

−uncommittedt − overwrittent
previousReadst+ = 〈v, w, g〉
〈r, kF′〉 = updateReference(w, knownFrozent)
return 〈r, ∅, kF′〉

lock(Monitor m)
Acquire/increment lock on m
infot∪ = infom;

unlock(Monitor m)
infom∪ = infot;
Release/decrement lock on m

readVolatile(Local 〈a, oF, kF〉, Element e)
Let v be the volatile referenced by a.e
if (uncommittedVolatileValuev 6= n/a) or

(readThisVolatile
t,〈w,infot〉 = false)

infot∪ = infov
return 〈volatileValuev , kF, oF〉

else
〈w, infou〉 = uncommittedVolatileValuev
volatileValuev = w
infov∪ = infou

initVolatileWrite(Write 〈v, w, g〉)
Assert uncommittedVolatileValuev 6= n/a
∀t ∈ threads :

readThisVolatile
t,〈w,infot〉 = false

uncommittedVolatileValuev = 〈w, infot〉

performVolatileWrite(Write 〈v, w, g〉)
uncommittedVolatileValuev = n/a
volatileValuev = w
infov∪ = infot

writeFinal(Write 〈v,w, g〉)
finalValuev = w

freezeFinal(Variable v)
overwrittenv = overwrittent
knownFrozent+ = v

readFinal(Local 〈a, oF, kF〉, Element e)
Let v be the final variable referenced by a.e
if v ∈ kF

oF′ = overwrittenv
return 〈finalValuev, kF, oF ∪ overwrittenv〉

else
w =either finalValuev or defaultV aluev
return 〈w, kF, oF〉

Figure 15: Full Semantics of Program Actions

18

readNormalLongOrDouble(Value 〈a, oF〉, element e)
Let v be the variable referenced by a.e
Let v′ and v′′ be arbitrary values from allWrites(v)− overwrittent − uncommittedt − oF
return 〈 combine(firstPart(v′), secondPart(v′′)), kFv′ ∪ kFv′′ , oF, 〉

Figure 16: Formal semantics for longs and doubles

programming style that depends on the ordering con-
straints arising from this kind of “useless” synchro-
nization.

The semantics we have proposed make a number
of synchronization optimizations legal, including:

1. Complete elimination of lock and unlock opera-
tions on a monitor unless more than one thread
performs lock/unlock operations on that moni-
tor. Since no other thread will see the informa-
tion associated with the monitor, the operations
have no effect.

2. Complete elimination of reentrant lock/unlock
operations (e.g., when a synchronized method
calls another synchronized method on the same
object). Since no other thread can touch the in-
formation associated with the monitor while the
outer lock is in effect, any inner lock/unlock ac-
tions have no effect.

3. Lock coarsening. For example, given two succes-
sive calls to synchronized methods on the same
monitor, it is legal simply to perform one Lock,
before the first method call, and perform one Un-
lock, after the second call. This is legal because
if no other thread acquired the lock between the
two calls, then the Unlock/Lock actions between
the two calls have no effect. Note: there are
liveness issues associated with lock coarsening,
which need to be addressed separately. The Java
specification should probably require that if a
lower priority thread gives up a lock and a higher
priority thread is waiting for a lock on the same
object, the higher priority thread is given the
lock. For equal priority threads, some fairness
guarantee should be made.

4. Replacement of a thread local volatile field (i.e.,
one accessed by only a single thread) with a nor-
mal field. Since no other thread will see the infor-
mation associated with the volatile, the overwrit-
ten and previous information associated with the
volatile will not be seen by other threads; since
the variable is thread local, all accesses are guar-
anteed to be correctly synchronized.

Initially:
p.next = null

Thread 1:
p.next = p

Thread 2:
List tmp = p.next;
if (tmp == p

&& tmp.next == null) {
// Can’t happen under CRF
}

Figure 18: CRF is constrained by data dependences

Initially:
a = 0

Thread 1:
a = 1;
i = a;

Thread 2:
a = 2;
j = a;

CRF does not allow i == 2 and j == 1

Figure 19: Global memory constraints in CRF

5. Forward substitution across lock acquires. For
example, if a variable x is written, a lock is ac-
quired, and x is then read, then it is possible to
use the value written to x as the value read from
x. This is because the lock action does not guar-
antee that any values written to x by another
thread will be returned by a read in this thread
if this thread performed an unsynchronized write
of x. In general, it is possible to move most op-
erations to normal variables inside synchronized
blocks.

10 Related Work

Maessen et al. [MS00] present an operational seman-
tics for Java threads based on the CRF model. At the
user level, the proposed semantics are very similar to
those proposed in this paper (due to the fact that we

19

met together to work out the semantics). However,
we believe are some troublesome (although perhaps
not fatal) issues with that paper.

Perhaps most seriously, the CRF model doesn’t
distinguish between final fields and non-final fields as
far as seeing the writes performed in a constructor.
As discussed in [MS00, §6.1], they rely on memory
barriers at the end of constructors to order the writes
and data dependences to order the reads. This
means that in Figure 1b, their semantics prohibit r3
== 0, even though the x field is not final. Since
this guarantee requires additional memory barriers
on systems using the Alpha memory model, it is un-
desirable to make it for non-final fields.

Another problem is that [MS00] does not allow as
much elimination of “useless synchronization”. The
CRF-based specification provides a special rule to
allow skipping coherence actions associated with a
monitorenter if the thread that previously released
the lock is the same thread as the current thread.
However, no such rule applies to monitorexit. As a
result, in Figure 17 it is illegal to see 0 in both i and
j. Also, their model doesn’t provide any “coherence-
skipping” rule for volatiles, so memory barriers must
be associated with thread-local volatile fields. Also,
while the CRF semantics allow skipping the memory
barrier instructions associated with monitorenter on
thread local monitors, it isn’t clear that it allows com-
piler reordering past thread-local synchronization.

In contrast, under our model most synchronization
optimizations, such as removal of “useless synchro-
nization”, fall out naturally as a consequence of using
a lazy release consistency [CZ92] style semantics.

Furthermore, the handling of control and data de-
pendences is worrisome. Speculative reads are rep-
resented by moving Load instructions earlier in exe-
cution. However, for an operational semantics, it is
hard to imagine executing a Load instruction before
you know the address that needs to be Loaded. In
fact, they specifically prohibit it [MS00, §6.1] in order
to get the required semantics for final fields.

For example, the code in Figure 18 shows a behav-
ior prohibited by CRF. Since the read of tmp.next is
data dependent on the read of p.next, it must follow
the read of p.next.

While it is hard to imagine a compiler transforma-
tion or processor architecture in which this reordering
could occur, it none the less imposes a proof burden:
showing that any implementation does not allow this
reordering which is not allowed by CRF.

Similarly, because CRF models a single global
memory through which all communication is per-
formed, certain behaviors are prohibited. For exam-

ple, in Figure 19 it is prohibited that i = 2 and j = 1.
This prohibition has nothing to do with safety guar-
antees or execution of correctly synchronized pro-
grams. Rather, it is just an artifact of the CRF
model. An implementation of Java on an aggressive
SMP architecture that allowed this behavior would
not correctly adhere to these semantics.

11 Conclusion

We have proposed both an informal and formal mem-
ory model for multithreaded Java programs. This
model will both allow people to write reliable multi-
threaded programs and give JVM implementors the
ability to create efficient implementations.

It is essential that a compiler writer understand
what optimizations and transformations are allowed
by a memory model. Ideally, in code that doesn’t
contain synchronization operations, all the standard
compiler optimizations would be legal. In fact, no
proof of this could be forthcoming because there are
a very few standard optimizations that are not legal.
In particular, in a single-threaded environment, if you
prove there are no writes to a variable between two
reads, you can assume that both reads return the
same value, and possibly omit some bounds check-
ing or null-pointer checks that would otherwise be
required. In a multithreaded setting, no such causal
assumptions can be made.

However, the process of understanding and docu-
menting the interactions between the memory model
and optimizations is of vital importance and will be
the focus of continuing work.

Now that a broad community has reached rough
consensus on an informal semantics for multithreaded
Java, the important step now is to formalize that
model. Doing so requires figuring out all of the corner
cases, and providing a framework that would allow
formal reasoning about the model. We believe that
this proposal both provides the guarantees needed by
Java programmers and the freedoms needed by JVM
implementors.

Acknowledgments

Thanks to the many people who have partici-
pated in the discussions of this topic, particularly
Sarita Adve, Arvind, Joshua Bloch, Joseph Bow-
beer, David Detlefs, Sanjay Ghemawat, Paul Haahr,
David Holmes, Doug Lea, Tim Lindholm, Jan-Willem
Maessen, Xiaowei Shen, Raymie Stata, Guy Steele
and Dennis Sosnoski.

20

References

[ACS99] Jonathan Aldrich, Craig Chambers, and
Emir Gun Sirer. Eliminating unnecessary syn-
chronization from java programs. In OOPSLA
poster session, October 1999.

[BH99] Jeff Bogda and Urs Hoelzle. Removing unnec-
essary synchronization in java. In OOPSLA,
October 1999.

[Bla99] Bruno Blanchet. Escape analysis for object
oriented languages; application to Java. In
OOPSLA, October 1999.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Ser-
rano, Vugranam Sreedhar, and Sam Midkiff.
Escape analysis for Java. In OOPSLA, Octo-
ber 1999.

[CZ92] Pete Keleher Alan L. Cox and Willy
Zwaenepoel. Lazy release consistency for soft-
ware distributed shared memory. In The Pro-
ceedings of the 19 th International Symposium
of Computer Architecture, pages 13–21, May
1992.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison Wesley,
1996.

[GLL+90] K. Gharachorloo, D. Lenoski, J. Laudon,
P. Gibbons, A. Gupta, , and J. L. Hennessy.
Memory consistency and event ordering in
scalable shared-memory multiprocessors. In
Proceedings of the Seventeenth International
Symposium on Computer Architecture, pages
15–26, May 1990.

[GS98] Guang Gao and Vivek Sarkar. Location consis-
tency – a new memory model and cache consis-
tency protocol. Technical Report 16, CAPSL,
Univ. of Deleware, February 1998.

[JMM] The Java memory model. Mailing list and web
page. http://www.cs.umd.edu/ ∼pugh/ java/
memoryModel.

[LY99] Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison Wes-
ley, 2nd edition, 1999.

[MP01] Jeremy Manson and William Pugh. Core se-
mantics of multithreaded Java. In ACM Java
Grande Conference, June 2001.

[MS00] Arvind Jan-Willem Maessen and Xiaowei
Shen. Improving the Java memory model us-
ing CRF. In OOPSLA, pages 1–12, October
2000.

[Pug99] William Pugh. Fixing the Java memory model.
In ACM Java Grande Conference, June 1999.

[Pug00a] William Pugh. The double checked locking is
broken declaration. http://www.cs.umd.edu/
users/ pugh/ java/ memoryModel/ Dou-
bleCheckedLocking.html, July 2000.

[Pug00b] William Pugh. The Java memory model is fa-
tally flawed. Concurrency: Practice and Expe-
rience, 12(1):1–11, 2000.

[WR99] John Whaley and Martin Rinard. Composi-
tional pointer and escape analysis for Java pro-
grams. In OOPSLA, October 1999.

A Class Initialization

The JVM specification requires [LY99, §5.5] that
before executing a GETSTATIC, PUTSTATIC, IN-
VOKESTATIC or a NEW instruction on a class C,
or initializing a subclass of C, class C must be ini-
tialized. Furthermore, class C may not be initialized
before it is required by the above rule.

Although the JVM specification does not spell it
out, it is clear that any situation that requires that
a thread T1 check to see that a class C has been
initialized must also require that T1 see all of the
memory actions resulting from the initialization of
class C.

This has a number of subtle and surprising im-
plications for compilation, and interactions with the
threading model.

Initializing a class invokes the static initializer for
the class, which can be arbitrary code. Thus, any
GETSTATIC, PUTSTATIC, INVOKESTATIC or a
NEW instruction on a class C, which might be the
very first invocation of an instruction on class C,
must be treated as a potential call of the initial-
ization code. Thus, if A and B are classes, the ex-
pression A.x+B.y+A.x cannot always be optimized
to A.x*2+B.y; the read of B.y may have side effects
that change the value of A.x (because it might invoke
the initialization code for B that could modify A.x).

It would be possible to perform static analysis to
verify that a particular instruction could not possibly
be the first time a thread was required to check that
a class was initialized. Also, you could check that the
results of initializing a class were not visible outside
the class. Either analysis would allow the instruction
to be reordered with other instructions.

A quick reading of the spec might suggest that a
thread can simply check a boolean flag to see if the
class is initialized, and skip initialization code if the
class is already initialized. This is almost true. How-
ever, the thread checking to see that the class is ini-
tialized must see all updates caused by initializing
the class. This may require flushing registers and
performing a memory barrier.

Classes can also be initialized due to use of reflection or
by being designated as the initial class of the JVM.

21

Similarly, once a xxxSTATIC or NEW instruction
has been invoked, it is tempting to rewrite the code
to eliminate the initialization check. However, this
rewrite cannot be done until all threads have done
the barrier required to see the effects of initializing
the class.

Another surprising result is that the existing spec
allows a thread to invoke methods and read/write
instance fields of an instance of a class C before see-
ing all of the effects of the initialization of that class.
How could this happen? Consider if thread T1 ini-
tializes class C, creates an instance x of class C, and
then stores a reference to the instance into a global
variable. Thread T2 could then, without synchro-
nization, read the global variable, see the reference
to x, and invoke a virtual method on x. At this
point, although C has been initialized, T2 hasn’t done
the memory barrier or register flushes that would
be required to see the updates performed by initial-
izing class C. This means that even within virtual
methods of class C, we can’t automatically elimi-
nate/skip initialization checks associated with GET-
STATIC, PUTSTATIC, INVOKESTATIC or NEW
instructions on a class C.

22

	Introduction
	Memory Models
	Terms and Definitions

	Proposed Informal Semantics
	Safety guarantees
	VM Safety guarantees
	Proposed VM Safety Guarantees

	Library Safety guarantees

	Guarantees for Final fields
	When these semantics matter
	Final fields of objects that escape their constructors
	Informal semantics of final fields
	Improperly Constructed Final Fields
	Final Static Fields
	Native code changing final fields
	Write Protected Fields

	Guarantees for Finalizers
	Fairness Guarantees
	Formal Specification
	Operations
	Simple Semantics, excluding Final Fields and Prescient Writes
	Types and Domains

	Simple Semantics
	Explicit Thread Communication
	Semantics with Prescient Writes
	Need for Prescient Writes
	Need for GuaranteedRedundantRead
	Need for GuaranteedReadOfWrite
	Overview
	Static variables
	Semantics of Prescient writes
	Prescient Reads?
	Other reorderings

	Non-Atomic Volatiles
	Need for Non-Atomic Volatiles
	Semantics of Non-Atomic Volatiles

	Full Semantics
	New Types and Domains
	Freezing final fields
	Pseudo-final fields
	Overview
	Static Variables

	Non-atomic longs and doubles
	Finalizers
	Related Work

	Optimizations
	Related Work
	Conclusion
	Class Initialization

