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What is a Concurrent Program?

A sequential program has a 
single thread of control.

A concurrent program has 
multiple threads of control 
allowing it perform multiple 
computations in parallel and to 
control multiple external 
activities which occur at the 
same time. 

Concurrency: introduction 3

©Magee/Kramer

Why Concurrent Programming?

◆Performance gain from multiprocessing hardware 

⚫ parallelism.

◆Increased application throughput 

⚫ an I/O call need only block one thread.

◆Increased application responsiveness 

⚫ high priority thread for user requests.

◆More appropriate structure

⚫ for programs which interact with the environment, control 

multiple activities and handle multiple events.
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Do I need to know about concurrent programming?

 Therac - 25 computerised radiation therapy machine

Concurrent programming errors contributed to accidents 
causing deaths and serious injuries.

 Mars Rover

Problems with interaction between concurrent tasks
caused periodic software resets reducing availability for
exploration. 

Concurrency is widespread but error prone.
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a Cruise Control System

 Is the system safe? 

 Would testing be sufficient to discover all errors?

When the car ignition is 
switched on and the on 
button is pressed, the 
current speed is recorded 
and the system is enabled: 
it maintains the speed of 
the car at the recorded 
setting. 

Pressing the brake, 
accelerator or off button 
disables the system. 
Pressing resume re-enables 
the system.

buttons
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models

A model is a simplified representation of the real world. 

Engineers use models to gain confidence in the adequacy 
and validity of a proposed design.

 focus on an aspect of interest - concurrency

 model animation to visualise a behaviour

 mechanical verification of properties (safety & progress)

Models are described using state machines, known as 
Labelled Transition Systems LTS. These are described 
textually as finite state processes (FSP) and displayed 
and analysed by the LTSA analysis tool.
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modeling the Cruise Control System

engineOn

speed

engineOff

0 1

Later chapters will explain how 
to construct models such as this 
so as to perform animation and 
verification.

LTS of the process 
that monitors speed.

LTSA Animator to step through 
system actions and events.
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programming practice in Java

Java is

 widely available, generally accepted and portable

 provides sound set of concurrency features

Hence Java is used for all the illustrative examples, the 
demonstrations  and the exercises. Later chapters will 
explain how to construct Java programs such as the 
Cruise Control System.

“Toy” problems are also used as they 
crystallize particular aspects of 
concurrent programming problems!
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course objective

This course is intended to provide a sound 
understanding of the concepts, models and practice
involved in designing concurrent software. 

The emphasis on principles and concepts provides a 
thorough understanding of both the problems and the 
solution techniques. Modeling provides insight into 
concurrent behavior and aids reasoning about particular 
designs. Concurrent programming in Java provides the 
programming practice and experience. 
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Learning outcomes…

After completing this course, you will know

◆how to model, analyze, and program concurrent object-

oriented systems.

◆ the most important concepts and techniques for 

concurrent programming.

◆what are the problems which arise in concurrent 

programming.

◆what techniques you can use to solve these problems.
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Course Outline

 Processes and Threads

 Concurrent Execution

 Shared Objects & Interference

 Monitors & Condition Synchronization

 Deadlock

 Safety and Liveness Properties

 Model-based Design

 Dynamic systems 

 Message Passing

Concepts

Models

Practice

Concurrent Software Architectures

Timed Systems
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Web based course material

◆  Java examples and demonstration programs

◆  State models for the examples

◆  Labelled Transition System Analyser (LTSA) for 

modeling concurrency, model animation and model 

property checking.

staff.city.ac.uk/c.kloukinas/concurrency

(www.doc.ic.ac.uk/~jnm/book/)
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Summary

◆Concepts

⚫ we adopt a model-based approach for the design and 

construction of concurrent programs

◆Models

⚫ we use finite state models to represent concurrent behavior.

◆Practice

⚫ we use Java for constructing concurrent programs. 

 Examples are used to illustrate the concepts, models and 

demonstration programs. 
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Chapter 2

Processes & Threads
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concurrent processes

We structure complex systems as sets 

of simpler activities, each represented 

as a sequential process. Processes 

can overlap or be concurrent, so as to 

reflect the concurrency inherent in the 

physical world, or to offload time-

consuming tasks, or to manage 

communications or other devices. 

Designing concurrent software can be 

complex and error prone. A rigorous 

engineering approach is essential.

Model processes as 

finite state 

machines.

Program processes 

as threads in Java.

Concept of a 

process as a 

sequence of actions.
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processes and threads

Concepts: processes - units of sequential execution.

Models: finite state processes (FSP) 

                  to model processes as sequences of actions.

  labelled transition systems (LTS)

   to analyse, display and animate behavior.

Practice: Java threads
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2.1  Modelling Processes

Models are described using state machines, known 

as Labelled Transition Systems LTS. These are 

described textually as finite state processes (FSP) 

and displayed and analysed by the LTSA analysis 

tool.

 LTS - graphical form

 FSP - algebraic form

The FSP quick reference is available at  

doc.ic.ac.uk/~jnm/book/ltsa/Appendix-A-2e.html 
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modelling processes 

A process is the execution of a sequential program. It is 

modelled as a finite state machine which transits from state 

to state by executing a sequence of atomic actions.

a light switch 

LTS

on→off→on→off→on→off→ ……….
a sequence of 

actions or trace

on

off

0 1

Can finite state models produce infinite traces?
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FSP - action prefix

If x is an action and P a process then (x-> P) describes a 

process that initially engages in the action x and then 

behaves exactly as described by P.

ONESHOT = (once -> STOP). ONESHOT state 

machine

(terminating process)

Convention:  actions begin with lowercase letters

     PROCESSES begin with uppercase letters

once

0 1

x -> P ~ x ; P
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FSP - action prefix & recursion

SWITCH = OFF,

  OFF    = (on -> ON),

  ON     = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,

  OFF    = (on ->(off->OFF)).

And again:

SWITCH = (on->off->SWITCH).

on

off

0 1

Scope:

OFF and ON are 

local subprocess 

definitions, local to 

the SWITCH 
definition.

cf. private methods.

OFF ON
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animation using LTSA

Ticked actions are eligible for 

selection.

In the LTS, the last action is 

highlighted in red. 

The LTSA animator can be 

used to produce a trace.

on

off

0 1
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FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange

          -> TRAFFICLIGHT).

LTS generated using LTSA:

Trace:

FSP model of a traffic light :

red→orange→green→orange→red→orange→green …

red orange green

orange

0 1 2 3
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FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a 

process which initially engages in either of the actions x 

or y.  After the first action has occurred, the subsequent 

behavior is described by P if the first action was x and Q 

if the first action was y.

Who or what makes the choice?

Is there a difference between input and output 

actions?
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FSP - choice

DRINKS = (red->coffee->DRINKS 

         |blue->tea->DRINKS

         ).

LTS generated using LTSA:

Possible traces?

FSP model of a drinks machine :

red

blue

coffee

tea

0 1 2

input? 

output?

Coffee 

probability? 
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Could we make this deterministic                          

and trace equivalent?    

Would it really have equivalent behaviour?

Non-deterministic choice

Process (x-> P | x -> Q) describes a process which 

engages in x and then behaves as either P or Q.

COIN = (toss->HEADS|toss->TAILS),

HEADS= (heads->COIN),

TAILS= (tails->COIN).

Tossing a

coin.
toss

toss

heads

tails

0 1 2

Heads probability?

Possible traces?

Action x doesn’t DETERMINE
the future behaviour!
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Modelling failure

How do we model an unreliable communication channel 

which accepts in actions and if a failure occurs produces no 

output, otherwise performs an out action?

Use non-determinism...

CHAN = (in->CHAN

       |in->out->CHAN

       ).

in

in

out

0 1

Probability of message delivery?

Deterministic form?    
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Single slot buffer that inputs a value in the range 0 to 3 and 

then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]->BUFF).

equivalent to

or using a process parameter with default value:

BUFF = (in[0]->out[0]->BUFF

       |in[1]->out[1]->BUFF

       |in[2]->out[2]->BUFF

       |in[3]->out[3]->BUFF

       ).

BUFF(N=3) = (in[i:0..N]->out[i]->BUFF).

indexed actions 

generate labels of 

the form: 

action.index

Let’s draw it!
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const N = 1

range T = 0..N

range R = 0..2*N

SUM        = (in[a:T][b:T]->TOTAL[a+b]),

TOTAL[s:R] = (out[s]->SUM).

index expressions to 

model calculation:

in.0.0

in.0.1

in.1.0

in.1.1

out.0

out.1

out.2

0 1 2 3

FSP - indexed processes and actions

Local indexed process 

definitions are equivalent 

to process definitions for 

each index value
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FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when 

the guard B is true then the actions x and y are both 

eligible to be chosen, otherwise if B is false then the 

action x cannot be chosen. 

COUNT (N=3)   = COUNT[0],

COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

                |when(i>0) dec->COUNT[i-1]

                ).

inc inc

dec

inc

dec dec

0 1 2 3

2015 Concurrency: processes & threads

17

©Magee/Kramer 2nd Edition

FSP - guarded actions

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),

COUNTDOWN[i:0..N] = 

  (when(i>0) tick->COUNTDOWN[i-1]

    |when(i==0)beep->STOP

  |stop->STOP

  ).

A countdown timer which, once started, beeps after N ticks, 

or can be stopped.

start

stop

tick

stop

tick

stop

tick beep

stop

0 1 2 3 4 5
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FSP - guarded actions

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),

COUNTDOWN[i:0..N] = 

  (when(i>0) tick->COUNTDOWN[i-1]

    |when(i==0)beep->STOP

  |stop->STOP

  ).

A countdown timer which, once started, beeps after N 

ticks, or can be stopped.

start

stop

tick

stop

tick

stop

tick beep

stop

0 1 2 3 4 5
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FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0

BIZARRE = (when (False) doanything-> BIZARRE).

 

Answer:

STOP
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FSP - process alphabets

The alphabet of a process is the set of actions in which it 

can engage. 

Process alphabets are 

implicitly defined by the 

actions in the process 

definition.

The alphabet of a process 

can be displayed using the 

LTSA alphabet window.

Process:

 COUNTDOWN

Alphabet:

 { beep,

   start,

   stop,

   tick

 }

What’s the alphabet of BIZARRE?
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FSP - process alphabet extension

Alphabet extension can be used to extend the implicit 

alphabet of a process:

Alphabet of WRITER is  the set {write[0..3]}

(we make use of alphabet extensions in later chapters to 

control interaction between processes)

WRITER = (write[1]->write[3]->WRITER) 

  +{write[0..3]}.
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Revision & Wake-up Exercise

In FSP, model a process FILTER, that filters out values greater 

than 2 :

ie. it inputs a value v between 0 and 5, but only outputs it if  v <= 

2, otherwise it discards it. 

FILTER = (in[v:0..5] -> DECIDE[v]),

DECIDE[v:0..5] = ( ? ).
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2.2   Implementing processes

Modeling processes as 

finite state machines 

using FSP/LTS.

Implementing threads in 

Java.

Note: to avoid confusion, we use the term process when referring to the 

models, and thread when referring to the implementation in Java.
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Implementing processes - the OS view

A (heavyweight) process in an operating system is represented by its code, 

data and the state of the machine registers, given in a descriptor. In order to 

support multiple (lightweight) threads of control, it has multiple stacks, one 

for each thread. 

D a ta C o de

O S P roc ess

D e sc rip to r

T hrea d 1 T hrea d 2 T hrea d n

S ta c k
S ta c k S ta c k

D e sc rip to r D e sc rip to r

D e sc rip to r
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Psycho Killer Process Stack?!? Qu’est-ce-que c’est?

int foo(int a) { return a+2; }

int bar(int b) { return foo(b)*3; }

int main() {
 int i = foo(4);
 int j = bar(5);
 return i+j;
} 

Who calls foo?

How does foo know where to return?
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foo(5)

foo(4) bar(5) bar(5) bar(5)

main main main main main main

Psycho Killer Process Stack?!? Qu’est-ce-que c’est?

int foo(int a) { return a+2; }

int bar(int b) { return foo(b)*3; }

int main() {
 int i = foo(4);
 int j = bar(5);
 return i+j;
} 

Who calls foo?

How does foo know where to return?

“Le Stack”

Program execution

2015 Concurrency: processes & threads

27

©Magee/Kramer 2nd Edition

threads in Java

A Thread class manages a single sequential thread of control. 

Threads may be created and terminated dynamically.

Thread

run()

MyThread

run()

The Thread class executes instructions from its method 

run(). The actual code executed depends on the 

implementation provided for run() in a derived class. 

class MyThread extends Thread {

 public void run() {

  //......

 }

}

Creating and starting a thread object: 

 Thread a = new MyThread();

 a.start();

2015 Concurrency: processes & threads

28

©Magee/Kramer 2nd Edition

threads  in Java

Since Java does not permit multiple inheritance, we often implement 

the run() method in a class not derived from Thread but from the 

interface Runnable. This is also more flexible and maintainable.

Runnable

run()

MyRun

run()

public interface Runnable {

public abstract void run();

}

class MyRun implements Runnable{

public void run() {

//.....

}

}

Thread
target

Creating and starting a thread object: 

 Thread b = new Thread(new MyRun());

 b.start(); 2015 Concurrency: processes & threads
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thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

run() returns

The predicate isAlive() can be

used to test if a thread has been started but 

not terminated. Once terminated, it cannot 

be restarted (cf. mortals).

start() causes the thread to call its 

run() method.
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thread alive states in Java

Once started, an alive thread has a number of substates :

Non-Runnable

yield() 

timeslice

Running

dispatch

wait()

start()

run() returns

wait() makes a Thread Non-Runnable (Blocked), 

notify()can, and notifyAll()does, make it 

Runnable   (described in later chapters).

sleep()

Alive
Runnable

interrupt() interrupts the 

Thread and sets interrupt status if 

Running/Runnable, otherwise 

raises an exception (used later).
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Java thread lifecycle - an FSP specification

THREAD       = CREATED,

CREATED      = (start           ->RUNNABLE),

RUNNABLE     = (dispatch        ->RUNNING),

RUNNING      = ({sleep,wait}    ->NON_RUNNABLE  

               |{yield,timeslice}->RUNNABLE   

               |end             ->TERMINATED         

               |run             ->RUNNING),

NON_RUNNABLE = ({timeout,notify}->RUNNABLE),

TERMINATED   = STOP.

Dispatch,timeslice,end,run,and timeout  are not methods 

of class Thread, but model the thread execution and scheduler .
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Java thread lifecycle - an LTS specification

States 0 to 4 correspond to CREATED, RUNNABLE, RUNNING, 

TERMINATED and NON-RUNNABLE respectively.
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CountDown timer example

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),

COUNTDOWN[i:0..N] = 

  (when(i>0) tick->COUNTDOWN[i-1]

    |when(i==0)beep->STOP

  |stop->STOP

  ).

Implementation in Java? 
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CountDown timer - class diagram

The class CountDown derives from Applet and contains the 

implementation of the run() method which is required by Thread.

Applet

init()

start()

stop()

run()

tick()

beep()

Runnable

CountDown

NumberCanvas

setvalue()

Threadcounter

display

target

The class NumberCanvas 

provides the display canvas.
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CountDown class

public class CountDown extends Applet 

                       implements Runnable {

  volatile Thread counter; int i;

  final static int N = 10;

  AudioClip beepSound, tickSound;

  NumberCanvas display;

  public void init()  {...}

  public void start() {...}

  public void stop()  {...}

  public void run()   {...}

  private void tick() {...} // private

  private void beep() {...} // private

}
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CountDown class - start(), stop() and run()

public void start(){//event handler

    counter = new Thread(this);

    i = N; counter.start();

  }

  public void stop(){//event handler

    counter = null;

  }

  public void run() {

    while(true) {

     if (counter == null) return;

     if (i>0)  { tick(); --i; }

     if (i==0) { beep(); return; }

    }

  }

COUNTDOWN Model
start ->COUNTDOWN[N]

stop ->

COUNTDOWN[i] process

recursion as a while loop

    STOP

 when(i>0) tick -> CD[i-1]

 when(i==0)beep -> STOP

STOP when run() returns

Event handlers run concurrently with your thread(s),
so comm uses locks or volatile variables!
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Summary

◆Concepts

⚫ process - unit of concurrency, execution of a program 

◆Models

⚫ LTS to model processes as state machines - sequences of 

atomic actions

⚫ FSP to specify processes using prefix “->”, choice ” | ” and 

recursion.

◆Practice

⚫ Java threads* to implement processes.

⚫ Thread lifecycle - created, running, runnable, non-runnable, 

terminated.
* see also java.util.concurrency

* cf. POSIX pthreads in C 2015 Concurrency: processes & threads
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Chapter 2 – Sequential processes – Summary

◆Modelling – Seq procs syntax summary

◆Design principles

◆Java threads

◆Reality…
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FSP – Sequential Processes (syntax summary)

(x-> P) ~ x ; P

Define & re-use process’ name to go to its state

Recursion4iteration: SWITCH = (on->off->SWITCH).

Sub-processes define internal states: (other procs cannot use ‘em!)

   SWITCH = OFF,   // comma: def continues

     OFF    = (on -> ON), 

     ON     = (off-> OFF). // dot: def finished

(when (Grd1) x-> P | when (Grd2) y-> Q) x!=y DET else NONDET

Process parameters & action/sub-process indices:

 COUNTDOWN (N=3) = (start->COUNTDOWN[N]),

   COUNTDOWN[i:0..N] =(when (i>0) tick[i] ->COUNTDOWN[i-1]

                      |when (i==0) beep -> STOP

                      |stop -> STOP).

Alphabet ext: WR =(write[1]->write[3]->WR) + { write[0..3] }.
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FSP – we don’t know/care!   

◆Action speed (could fluctuate!)

◆ Input/output actions/who does an action

◆Choice probability/resolution mechanism

◆Next state after a non-deterministic choice

(choice action doesn’t determine the future behaviour)
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Design – Modeling as in OOAD (verb/subject/object)

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),

  COUNTDOWN[i:0..N] = 

  (when (i>0) tick -> COUNTDOWN[i-1]

    |when (i==0) beep -> STOP

  |stop -> STOP ).

A countdown timer which, once started, beeps after N 

ticks, or can be stopped.

start

stop

tick

stop

tick

stop

tick beep

stop

0 1 2 3 4 5

◆ Action on object?

Public method

◆ Action from object?

Private method
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CountDown class - start(), stop() and run()

public void start() {

    counter = new Thread(this);

    i = N; counter.start();

  }

  public void stop() {

    counter = null;

  }

  public void run() {

    while(true) {

     if (counter == null) return;

     if (i>0)  { tick(); --i; }

     if (i==0) { beep(); return; }

    }

  }

COUNTDOWN Model
start ->COUNTDOWN[N]

stop ->

COUNTDOWN[i] process

recursion as a while loop

    STOP

 when(i>0) tick -> CD[i-1]

 when(i==0)beep -> STOP

STOP when run() returns
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Reality – your “sequence” is a SUGGESTION

◆ Java/C/C++/…:

a = ++i;

b = ++j;

◆ Compiler can re-order these statements!

(I mean, why not?)

◆ What about assembly/machine code?

◆ CPU can re-order these statements!

(if b & j are in cache but a | i aren’t…)

◆ Concurrency – NEVER ASSUME SEQUENTIAL ORDER
(unless you ENFORCE IT!)

(locks, memory barriers,…)

◆ Stay sane – program with FSP first!
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Chapter 3

Concurrent Execution
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Concurrent execution

Concepts: processes - concurrent execution 
        and interleaving.
    process interaction.

Models: parallel composition of asynchronous processes 
       - interleaving

  interaction  - shared actions
  process labeling, and action relabeling and hiding
  structure diagrams

Practice:  Multithreaded Java programs
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Definitions

◆Concurrency
⚫ Logically simultaneous processing.

Does not imply multiple processing 

elements (PEs).  Requires 

interleaved execution on a single PE. 

◆Parallelism
⚫ Physically simultaneous processing.

Involves multiple PEs and/or 

independent device operations.

Both concurrency and parallelism require controlled access to 
shared resources . We use the terms parallel and concurrent 
interchangeably and generally do not distinguish between real and 
pseudo-parallel execution.

A

Time

B

C
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3.1  Modeling Concurrency

◆  How should we model process execution speed?

⚫  arbitrary speed 

 (we abstract away time. Arbitrary: can change!)

◆  How do we model concurrency?

⚫  arbitrary relative order of actions from different processes 

(interleaving but preservation of each process order )

◆  What is the result?

⚫  provides a general model independent of scheduling 

(asynchronous model of execution)
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Asynchronous model

◆A-synchronous = NOT Synchronous

◆There’s no global clock to signal everyone for next action 
“My CPU runs at 2.6 GHz!”

◆Synchronous action duration ≤ clock period

⚫  ⇒ Clock period set by the slowest component

⚫ Max action duration is known!

◆  “Sequential” vs “Concurrent”

◆ “Concurrent”: “Synchronous” vs “Asynchronous”

◆Communication:

⚫ Synch: simple – read (previous) values of others

⚫ Asynch: not simple… must synchronize
Concurrency: concurrent execution 6
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parallel composition - action interleaving 

think→talk→scratch

think→scratch→talk

scratch→think→talk

Possible traces as a 
result of action 
interleaving. 
*talk→think* 

impossible

If P and Q are processes then (P||Q) represents the 
concurrent execution of P and Q. The operator || is 
the parallel composition operator.

ITCH  = (scratch->STOP).

CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).
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parallel composition - action interleaving

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH

2 states
3 states

2 x 3 states

ITCH

scratch

0 1
CONVERSE

think talk

0 1 2

CONVERSE_ITCH

scratch

think

scratch

talk scratch

talk think

0 1 2 3 4 5
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parallel composition - algebraic laws

Commutative:  (P||Q) = (Q||P)
Associative:   (P||(Q||R)) = ((P||Q)||R) 
      = (P||Q||R).

Clock radio example:

CLOCK = (tick->CLOCK).

RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS?   Traces?   Number of states? 
Concurrency: concurrent execution 9

©Magee/Kramer

modeling interaction - shared actions

MAKER = (make->ready->MAKER).

USER  = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

MAKER 
synchronizes 
with USER 
when ready.

If processes in a composition have actions in common, 
these actions are said to be shared.  Shared actions are 
the way that process interaction is modeled. While 
unshared actions may be arbitrarily interleaved, a 
shared action must be executed at the same time by 
all processes that participate in the shared action.

LTS?   Traces?   Number of states?
(UML seq. diagram?) 
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MAKERv2 = (make->ready->used->MAKERv2).

USERv2  = (ready->use->used ->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

modeling interaction - handshake

A handshake is an action acknowledged by another:

Interaction 
constrains 
the overall 
behaviour!

3 states

3 states

3 x 3 
states?

4 states
make ready use

used

0 1 2 3
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modeling interaction - multiple processes

MAKE_A   = (makeA->ready->used->MAKE_A).

MAKE_B   = (makeB->ready->used->MAKE_B).

ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Multi-party synchronization:

makeA

makeB makeA ready assemble

used

makeB

0 1 2 3 4 5
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composite processes

A composite process is a parallel composition of primitive 
processes. These composite processes can be used in the 
definition of further compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

Substituting the definition for MAKERS in FACTORY and applying the 
commutative and associative laws for parallel composition results in 
the original definition for FACTORY in terms of primitive processes.

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).
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process labeling

a:P prefixes each action label in the alphabet of P with a.  

SWITCH =  (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).

||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

An array of instances of the switch process:

a:SWITCH

a.on

a.off

0 1

b:SWITCH

b.on

b.off

0 1
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process labeling by a set of prefix labels

{a1,..,ax}::P replaces every action label n in the 
alphabet of P with the labels a1.n,…,ax.n. Further, 
every transition (n->X) in the definition of P is 
replaced with the transitions ({a1.n,…,ax.n} ->X).

Process prefixing is useful for modeling shared resources:

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER 
       || {a,b}::RESOURCE).
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process prefix labels for shared resources

How does the model ensure 
that the user that acquires 
the resource is the one to 
release it?

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE

a.acquire

b.acquire

a.release

b.release

0 1

RESOURCE_SHARE

a.acquire

b.acquire b.use

b.release

a.use

a.release

0 1 2 3 4
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action relabeling

Relabeling to ensure that composed 
processes synchronize on particular actions. 

Relabeling functions are applied to processes to change 
the names of action labels. The general form of the 
relabeling function is:
           /{newlabel_1/oldlabel_1,… newlabel_n/oldlabel_n}.

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

Concurrency: concurrent execution 17
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action relabeling

||CLIENT_SERVER = (CLIENT || SERVER)

                 /{call/request, reply/wait}.

CLIENT
call reply

continue

0 1 2

SERVER
call service

reply

0 1 2

CLIENT_SERVER
call service reply

continue

0 1 2 3
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action relabeling - prefix labels

SERVERv2 = (accept.request

            ->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request

            ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)

                    /{call/accept}.

An alternative formulation of the client server system is 
described below using qualified or prefixed labels:
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action hiding - abstraction to reduce complexity

When applied to a process P, the hiding operator \{a1..ax} 
removes the action names a1..ax from the alphabet of P 
and makes these concealed actions "silent". These silent 
actions are labeled tau.  Silent actions in different 
processes are not shared.

When applied to a process P, the interface 
operator @{a1..ax} hides all actions in the 
alphabet of P not labeled in the set a1..ax.

(like making these methods private)

Sometimes it is more convenient to specify the set of 
labels to be exposed....         (like defining an interface)
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action hiding

USER = (acquire->use->release->USER)

       \{use}.

USER = (acquire->use->release->USER)

  @{acquire,release}.

The following definitions are equivalent:

acquire tau

release

0 1 2

Minimization (minimal) 
removes hidden tau actions 
to produce an LTS with 
equivalent observable 
(trace) behavior.

acquire

release

0 1
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structure diagrams

P a

b
Process P with
alphabet {a,b}.

P a b Q
m

Parallel Composition
(P||Q) / {m/a,m/b,c/d}

P Qa

c dc

x xx

S

yx

Composite process
||S = (P||Q) @ {x,y}
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structure diagrams

We use structure 
diagrams to capture the 
structure of a model 
expressed by the static 
combinators: 
parallel composition, 
relabeling and hiding.

range T = 0..3

BUFF = (in[i:T]->out[i]->BUFF).

||TWOBUF = ?

a:BUFF b:BUFF
a.out

TWOBUFF

outin

inoutin out
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structure diagrams

Structure diagram for CLIENT_SERVER ?

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2
call

servicecontinue

CLIENT call request SERVER
call

replywait
reply

servicecontinue
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structure diagrams - resource sharing

a:USER

printer

b:USER

printer

printer:

RESOURCE

acquire

release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER =     (printer.acquire->use

->printer.release->USER).

||PRINTER_SHARE 

= (a:USER||b:USER||{a,b}::printer:RESOURCE).
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3.2   Multi-threaded Programs in Java

Concurrency in Java occurs when more than one thread is alive. 

ThreadDemo has two threads which rotate displays.  
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ThreadDemo model

Interpret 
run, 
pause, 

stop as 
inputs, 
rotate as 
an output.

ROTATOR = PAUSED,

PAUSED  = (run->RUN | pause->PAUSED

          |stop->STOP),

RUN     = (pause->PAUSED |{run,rotate}->RUN

          |stop->STOP).

||THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

     /{stop/{a,b}.stop}.

b:ROTATOR

a.run

a.pause

a.rotate

b.run

b.pause

b.rotate

THREAD_DEMO 

a:ROTATOR
stop
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ThreadDemo implementation in Java - class diagram

ThreadDemo creates two ThreadPanel displays when initialized. 

ThreadPanel manages the display and control buttons, and delegates calls to 

rotate() to DisplayThread. Rotator implements the runnable interface.

Applet

ThreadDemo ThreadPanel

rotate()

start()

stop()

A,B

init()

start()

stop()

Runnable

Rotator

run()

GraphicCanvas

Panel

Thread

DisplayThread

display

thread

target

rotate()
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Rotator class

class Rotator implements Runnable {

  public void run() {

    try {

      while(true) ThreadPanel.rotate();

    } catch(InterruptedException e) {}//exit

  }

}

Rotator implements the runnable interface, calling 

ThreadPanel.rotate() to move the display.

 run()finishes if an exception is raised by Thread.interrupt()

Can re-assert your interrupt: Thread.currentThread.interrupt();
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ThreadPanel class

public class ThreadPanel extends Panel {

  // construct display with title and segment  color c

  public ThreadPanel(String title, Color c) {…}

  // rotate display of currently running thread 6 degrees 

  // return value not used in this example 

  public static boolean rotate() 

         throws InterruptedException {…}

  // create a new thread with target r and start it running

  public void start(Runnable r) {

thread = new DisplayThread(canvas,r,…);

thread.start();

   }

  // stop the thread using Thread.interrupt()

  public void stop() {thread.interrupt();}

}

ThreadPanel 

manages the display 

and control buttons for 

a thread. 

Calls to  rotate() 

are delegated to 
DisplayThread. 

Threads are created by 
the start() method, 

and terminated by the 
stop() method.
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ThreadDemo class

public class ThreadDemo extends Applet {

  ThreadPanel A; ThreadPanel B;

  public void init() {

    A = new ThreadPanel("Thread A",Color.blue);

    B = new ThreadPanel("Thread B",Color.blue);

    add(A); add(B);

  }

  public void start() {

    A.start(new Rotator());

    B.start(new Rotator());

  }

  public void stop() {

    A.stop();

    B.stop();

  }

}

ThreadDemo creates two 

ThreadPanel displays 

when initialized and two 

threads when started. 

ThreadPanel is used 

extensively in later 

demonstration programs.
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Summary

◆Concepts

⚫ concurrent processes and process interaction

◆Models

⚫ Asynchronous (arbitrary speed) & so interleaving (arbitrary order).

⚫ Parallel composition as a finite state process with action 

interleaving.

⚫ Process interaction by shared actions.

⚫ Process labeling and action relabeling and hiding.

⚫ Structure diagrams

◆Practice

⚫ Multiple threads in Java.
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Summary

◆ Concepts

⚫ concurrent processes and process interaction

⚫ Synchronous (clock signal) vs A-synchronous processes

◆ Models

⚫ Asynchronous (arbitrary speed) & so interleaving (arbitrary order).

⚫ Process interaction by shared actions.

⚫ Control interaction? Control action names!!!

{a,b}:P, {a,b}::Q, P / {new/old}, P \ { 𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍𝒌 }, P @ { 𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍𝒌 }

⚫ Structure diagrams  get the arch right before behaviour!

◆ Practice

⚫ Multiple threads in Java.

◆InterruptedException for termination!

◆Method forwards action to multiple threads for shared actions
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Chapter 4

Shared Objects & 

Mutual Exclusion
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Shared Objects & Mutual Exclusion

Concepts:  process interference.
    mutual exclusion.  

Models: model checking for interference
  modeling mutual exclusion

Practice: thread interference in shared Java objects
  mutual exclusion in Java 
  (synchronized objects/methods).
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4.1  Interference

Garden

West

Turnstile

East

Turnstile

people

People enter an ornamental garden through either of two 
turnstiles. Management wish to know how many are in the 
garden at any time.

The concurrent program consists of two concurrent 
threads and a shared counter object.

Ornamental garden problem:
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ornamental garden Program - class diagram

The Turnstile thread simulates the periodic arrival of a visitor to 

the garden every second by sleeping for a second and then invoking 

the increment() method of the counter object.

setvalue()

NumberCanvas

Applet

init()

go()

Garden

Thread

Turnstile

run()

Counter

increment()

displaydisplay

east,west people

eastD,
westD,

counterD
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ornamental garden program

private void go() {

  counter = new Counter(counterD);

  west = new Turnstile(westD,counter);

  east = new Turnstile(eastD,counter);

  west.start();

  east.start();

}

The Counter object and Turnstile threads are created by the 

go() method of the Garden applet:

Note that counterD, westD and eastD are objects of 

NumberCanvas used in chapter 2.
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Turnstile class

class Turnstile extends Thread {

  NumberCanvas display;

  Counter people;

  Turnstile(NumberCanvas n,Counter c)

    { display = n; people = c; }

  public void run() {

    try{

      display.setvalue(0);

      for (int i=1;i<=Garden.MAX;i++){

        Thread.sleep(500); //0.5 second between arrivals

        display.setvalue(i);

        people.increment();

      }

    } catch (InterruptedException e) {}

  }

}

The run() 

method exits 

and the thread 

terminates after 
Garden.MAX 

visitors have 

entered.
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Counter class

class Counter {

  int value=0;

  NumberCanvas display;

  Counter(NumberCanvas n) {

    display=n;

    display.setvalue(value);

  }

  void increment() {

    int temp = value;   //read value

    ++temp;             //compute

    Simulate.HWinterrupt();

    value=temp;         //write value

    display.setvalue(value);

  }

}

Hardware interrupts can occur at 

arbitrary times.

The counter simulates a 

hardware interrupt during an 
increment(), between reading 

and writing to the shared counter 
value. Interrupt randomly calls 

Thread.yield() to force a 

thread switch.

data=ReadFromDB(query);

newData=Compute(data);

WriteToDB(newData);
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ornamental garden program - display

After the East and West turnstile threads have each 
incremented its counter 20 times, the garden people 
counter is not the sum of the counts displayed. Counter 
increments have been lost.  Why?
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concurrent method activation

Java method activations are not atomic - thread 
objects east and west may be executing the code for 
the increment method at the same time.

eastwest

increment:

   read value

   write value + 1

program
counter program

counter

PC PC
shared code
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ornamental garden Model – Structure Diagram

Process VAR models read and write access to the shared 
counter value. 

Increment is modeled inside TURNSTILE since Java method 
activations are not atomic i.e. thread objects east and west 

may interleave their read and write actions.

value:VAR
display

write

GARDEN

west:

TURNSTILE

value

end
go

arrive

east:

TURNSTILE

value

end
go

arrive

go

end

read
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ornamental garden Model – Structure in FSP

const N = 4 range T = 0..N // domain
   // structure diagram
set TurAlpha = { go, end, arrive, value.{read[T],write[T]} }
set VarAlpha = { read[T],write[T] } 
Var = STOP + VarAlpha .             // STOP = behaviour?
Turnstile = STOP + TurAlpha .       // STOP = behaviour?
||Garden = ( { west, east }:Turnstile
            || { west, east, display }::value:Var )
     / { go/{west,east}.go, end/{west,east}.end } .

value:VAR
display

write

GARDEN

west:

TURNSTILE

value

end
go

arrive

east:

TURNSTILE

value

end
go

arrive

go

end

read
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ornamental garden model

const N = 4

range T = 0..N

set VarAlpha = { value.{read[T],write[T]} } 

VAR      = VAR[0],

VAR[curV:T] = (read[curV] ->VAR[curV] // output

            |write[newV:T]->VAR[newV]).// input

TURNSTILE = (go    -> RUN),

RUN       = (arrive-> INCREMENT

            |end   -> TURNSTILE),

INCREMENT = (value.read[x:T]           // input

             -> value.write[x+1]->RUN // output

            )+VarAlpha.

||GARDEN = (east:TURNSTILE || west:TURNSTILE 

           || { east,west,display} ::value:VAR)

            /{ go /{ east,west} .go,

              end/{ east,west} .end} .

The alphabet of 
process VAR is 

declared explicitly 
as a set constant, 

VarAlpha.

The alphabet of 
TURNSTILE is 

extended with 
VarAlpha to ensure 

no unintended free 
actions in VAR  ie. all 

actions in VAR must 

be controlled by a 
TURNSTILE.
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checking for errors - animation

Scenario checking 
- use animation to 
produce a trace.

Is this trace 
correct?

Does it mean our 
program is 
correct?
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checking for errors - exhaustive analysis

TEST       = TEST[0],              // the “display”

TEST[v:T]  = 

     (when (v<N){east.arrive,west.arrive}->TEST[v+1] 

     |end->CHECK[v]

     ),

CHECK[v:T] = 

    (display.value.read[u:T] -> 

       (when (u==v) right -> TEST[v]

       |when (u!=v) wrong -> ERROR

       )

    )+{display.VarAlpha}.

Exhaustive checking - compose the model with a TEST 
process which sums the arrivals and checks against the 
display value:

Like STOP, ERROR is 
a predefined FSP 
local process (state), 
numbered -1 in the 
equivalent LTS.

Concurrency: shared objects & mutual exclusion 15

©Magee/Kramer

ornamental garden model - checking for errors

||TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR.

Trace to property violation in TEST:

 go

 east.arrive

 east.value.read.0

 west.arrive

 west.value.read.0

 east.value.write.1

 west.value.write.1

 end

 display.value.read.1

  wrong

LTSA produces 
(one of)
the shortest 
path to reach 
ERROR.
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Interference and Mutual Exclusion

Destructive update, caused by the arbitrary 
interleaving of read and write actions, is termed 
interference.              (aka a “data race”)

Interference bugs are extremely difficult to locate.
The general solution is to give methods mutually exclusive 
access to shared objects.

Mutual exclusion can be modeled as atomic actions.

(functional programming: no updates ⟶ no interference)
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The Java  Tutorials: Concurrency

Immutable Objects

“An object is considered immutable if its state cannot change 
after it is constructed. Maximum reliance on immutable 
objects is widely accepted as a sound strategy for creating 
simple, reliable code.

Immutable objects are particularly useful in concurrent 
applications. Since they cannot change state, they cannot be 
corrupted by thread interference or observed in an 
inconsistent state.”

docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

(The fewer moving things when juggling, the better – code “more 
functional”)
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4.2  Mutual exclusion in Java

class SynchronizedCounter extends Counter {

  SynchronizedCounter(NumberCanvas n) 

     {super(n);}

   synchronized void increment() {

        super.increment();

   }

}

We correct COUNTER class by deriving a class from it and 

making the increment method synchronized:

Concurrent activations of a method in Java can be made 

mutually exclusive by prefixing the method with the keyword 

synchronized. 
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mutual exclusion - the ornamental garden

Java associates a lock with every object. The Java compiler inserts 

code to acquire the lock before executing the body of the 

synchronized method and code to release the lock before the 

method returns. Concurrent threads are blocked until the lock is 

released. 
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Java synchronized statement

Access to an object may also be made mutually exclusive by using the 

synchronized statement: 

 synchronized (object) { statements }

A less elegant way to correct the example would be to modify the 

Turnstile.run() method:

synchronized(counter) {counter.increment();}

Why is this “less elegant”?

To ensure mutually exclusive access to an object, 

all public object methods should be synchronized.
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To add locking to our model, define a LOCK, compose it with 
the shared VAR in the garden, and modify the alphabet set :

4.3  Modeling mutual exclusion

LOCK = (acquire->release->LOCK).

||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T], 

    acquire, release}}

TURNSTILE = (go    -> RUN),

RUN       = (arrive-> INCREMENT

            |end   -> TURNSTILE),

INCREMENT = (value.acquire

             -> value.read[x:T]->value.write[x+1]

             -> value.release->RUN

            )+VarAlpha.

Modify TURNSTILE to acquire and release the lock:
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Revised ornamental garden model - checking for errors

Use TEST and LTSA to perform an exhaustive check. 

     Is TEST satisfied?

go

 east.arrive

 east.value.acquire

 east.value.read.0

 east.value.write.1

 east.value.release

 west.arrive

 west.value.acquire

 west.value.read.1

 west.value.write.2

 west.value.release

 end

 display.value.read.2

 right

A sample animation 
execution trace
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TEST should contain only “domain” actions, not those of the 
mechanisms we use to enforce the property we want!

So, TEST should NOT contain acquire/release!

Note: How to write TEST
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COUNTER: Abstraction using action hiding

To model shared objects 
directly in terms of their 
synchronized methods, we 
can abstract the details by 
hiding. 

For SynchronizedCounter 
we hide read, write, 
acquire, release actions. 

const N = 4

range T = 0..N

VAR = VAR[0],

VAR[u:T] = ( read[u]->VAR[u] 

           | write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]

             -> (when (x<N) write[x+1]

                 ->release->increment->INCREMENT

                )

             )+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.
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COUNTER: Abstraction using action hiding

Minimized 
LTS:

We can give a more abstract, simpler description of a 
COUNTER which generates the same LTS:

This therefore exhibits “equivalent” behavior i.e. has the 
same observable behavior. 

COUNTER = COUNTER[0]

COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

increment increment increment increment

0 1 2 3 4
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Summary

◆Concepts

⚫ process interference

⚫ mutual exclusion 

◆Models

⚫ model checking for interference 

⚫ modeling mutual exclusion 

◆Practice

⚫ thread interference in shared Java objects

⚫  mutual exclusion in Java (synchronized objects/methods).
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Summary – II

◆Models

⚫ Structure to FSP – get it right!

⚫ Info exchange by act[data] || act[var:T]

⚫ Alphabet extension to avoid phantom impossible actions

◆Practice

⚫ ALL public methods should be synchronized !
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Chapter 5

Monitors & 

Condition Synchronization
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monitors & condition synchronization

Concepts: monitors: 
   encapsulated data + access procedures
   mutual exclusion + condition synchronization
          single access procedure active in the monitor
   nested monitors

Models: guarded actions

Practice:  private data and synchronized methods (exclusion).
   wait(), notify() and notifyAll() for condition synch.
   single thread active in the monitor at a time
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5.1  Condition synchronization

A controller is required for a carpark, which only permits 
cars to arrive when the carpark is not full and does not 
permit cars to depart when there are no cars in the carpark. 
Car arrival and departure are simulated by separate threads.
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OOAD & Concurrency

OOAD:
• Find the verb & the object (Object-Oriented…)
• Make a class for the object
• Give the class a method for the verb           (class interface)

Concurrency & Component-Based SE (CBSE):
• Find the verb & the object & the subject
• Make processes for the object & the subject
• Give these processes an action for the verb      (process alphabet)
• Model the process behaviour using ONLY these actions!

Here?
Verbs? arrive, depart
Objects? Carpark controller (receives these actions)
Subjects? Car arrivals & departures threads (enact these actions)
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carpark model

 Events or actions of interest?

  arrive and depart

 Identify processes.

  arrivals, departures and carpark control

 Define each process alphabet

 Define each process and interactions (structure).

ARRIVALS CARPARK

CONTROL
DEPARTURESarrive depart

CARPARK

||CARPARK = ( ARRIVALS || CARPARKCONTROL || DEPARTURES ).
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carpark model

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS   = (arrive->ARRIVALS).   // K.I.S.S.

DEPARTURES = (depart->DEPARTURES). // K.I.S.S.

||CARPARK = 

(ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actions are used to control arrive and depart. 
       LTS?
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carpark program

 Model - all entities are processes interacting by actions

 Program - need to identify threads and monitors

thread - active entity which initiates (output) actions        SUBJECTS

monitor - passive entity which responds to (input) actions OBJECTS

For the carpark?

ARRIVALS CARPARK

CONTROL
DEPARTURESarrive depart

CARPARK
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carpark program - class diagram

Applet
Runnable

ThreadPanel

CarParkControl

Arrivals

Departures

DisplayCarParkCarParkCanvas

CarPark

arrivals,
departures

arrive()

depart()

carDisplay

carpark

disp

We have omitted 
DisplayThread and 

GraphicCanvas 

threads managed by 
ThreadPanel.
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public void start() {

  CarParkControl c = 

     new DisplayCarPark(carDisplay,Places);

  arrivals.start(new Arrivals(c));

  departures.start(new Departures(c));

}

carpark program

Arrivals and Departures implement Runnable, 
CarParkControl provides the control (condition synchronization).

Instances of these are created by the start() method of CarPark:
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carpark program - Arrivals and Departures threads

class Arrivals implements Runnable {

  CarParkControl carpark;

  Arrivals(CarParkControl c) {carpark = c;}

  public void run() {

try {

while(true) {

        ThreadPanel.rotate(330);

carpark.arrive();

        ThreadPanel.rotate(30);

}

} catch (InterruptedException e){}

  }

}     // Arrivals = the Subject of the Verb “arrive”

How do we implement the control of  CarParkControl?

ARRIVALS   = (arrive->ARRIVALS).

Similarly Departures that calls 

carpark.depart().
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Carpark program - CarParkControl monitor

class CarParkControl {

  protected int spaces;

  protected int capacity;

  CarParkControl(int n) 

    {capacity = spaces = n;}

  synchronized void arrive() {

    …  --spaces; … 

 }

  synchronized void depart() {

 … ++spaces; … 

 }

}

condition 
synchronization? 

block if full? 
(spaces==0)

block if empty? 
(spaces==N)

mutual exclusion 
by synch methods 
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Carpark program - CarParkControl monitor

class CarParkControl {

  protected int spaces;

  protected int capacity;

  CarParkControl(int n) 

    {capacity = spaces = n;}

  synchronized void arrive() {

    …  --spaces; … 

 }

  synchronized void depart() {

  (spaces == capacity)… ++spaces; … 

 }

}

condition 
synchronization? 

block if full? 
(spaces==0)

block if empty? 
(spaces==N)

mutual exclusion 
by synch methods 
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condition synchronization in Java

Java provides a thread wait set per monitor (actually, per object) 

with the following methods:

public final void notifyAll()

 Wakes up all threads that are waiting on this object's set.

public final void notify()  NON-DETERMINISTIC!

 Wakes up a single thread that is waiting on this object's set. 

public final void wait()

    throws InterruptedException

 Waits to be notified by another thread.

The waiting thread releases the monitor synchronization lock.

When notified, the thread must reacquire the lock before

resuming execution & re-entering the monitor.
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condition synchronization in Java

We refer to a thread entering a monitor when it acquires the mutual 

exclusion lock associated with the monitor and exiting the monitor 

when it releases the lock. 

Wait() - causes the thread to exit the monitor, 

     permitting (lock release) other threads to enter the monitor.

Thread A Thread B

wait()

notify()

Monitor

data
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condition synchronization in Java

FSP:   when cond act -> NEWSTAT

Java:

public synchronized void act() 

throws InterruptedException  {

while (! cond) wait(); // wait can throw

    // modify monitor data // NO EXCEPTIONS!

notifyAll();

}

The while loop is necessary to retest the condition cond to ensure that 

cond is indeed satisfied when it re-enters the monitor.

notifyall() is necessary to awaken other thread(s) that may be 

waiting to enter the monitor now that the monitor data has been changed.
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CarParkControl - condition synchronization 

class CarParkControl {

  protected int spaces;

  protected int capacity;

  CarParkControl(int n) 

    {capacity = spaces = n;}

  synchronized void arrive() throws InterruptedException {

    while !(spaces>0) wait(); // spaces>0

    --spaces;

    notifyAll();

  }

  synchronized void depart() throws InterruptedException {

    while !(spaces<capacity) wait(); // spaces<capacity

    ++spaces;

    notifyAll();

  }

}

Why is it safe to use notify() 
here rather than notifyAll()?

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when (i>0) arrive->SPACES[i-1]
           |when (i<N) depart->SPACES[i+1]
           ) .
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models to monitors - summary

Each guarded action in the model of a monitor is 

implemented as a synchronized method, which 

uses a while loop and wait() to implement the 

guard. The while loop condition is the negation of the 

model guard condition.

Active entities (that initiate actions) are implemented as threads. 

Passive entities (that respond to actions) are implemented as monitors.

Changes in the state of the monitor are signaled to 

waiting threads using notify() or notifyAll().

Watch out for transactions!

(what happens if an exception occurs after your method?)
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Part II
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5.2  Semaphores

Semaphores are widely used for dealing with inter-process 
synchronization in operating systems. Semaphore s is an 
integer variable that can take only non-negative values. 

down(s): if s >0 then

 decrement s                //claim resource

else 

 block execution of  the calling process

up(s):    if procs blocked on s then//release resource

 awaken one of them 

              else 

 increment s

The only 
operations 
permitted on 
s are up(s) 
and down(s). 
Blocked 
processes are 
held in a 
FIFO queue.

s: Number of available resources.
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modeling semaphores

const Max = 3 const TRUE = 1

range Nat = 0..Max

SEMAPHORE(N=0) = SEMA[N],

SEMA[v:Nat]    = (when(TRUE) up->SEMA[v+1]

                 |when(v>0) down->SEMA[v-1]

     ),

SEMA[Max+1]    = ERROR.

To ensure analyzability,  we only model semaphores that 
take a finite range of values. If this range is exceeded 
then we regard this as an ERROR.  N is the initial value.

LTS?
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modeling semaphores

Action down is only accepted when value v of the 
semaphore is greater than 0. 

Action up is not guarded.

Trace to a violation:
 up → up → up → up

up up

down

up

down

up

down

-1 0 1 2 3
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semaphore demo - model

LOOP = (mutex.down->critical->mutex.up->LOOP).

||SEMADEMO = (p[1..3]:LOOP

             || {p[1..3]}::mutex:SEMAPHORE(1)).

“Mutex” = MUTual EXclusion _

Three processes p[1..3] use a shared semaphore mutex 
to ensure mutually exclusive access (action critical) to 
some resource.                 (critical aka “critical region”) 

For mutual exclusion, the semaphore initial value is 1. Why?

Is the ERROR state reachable for SEMADEMO? 

Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?
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semaphore demo - model

p.1.mutex.down

p.2.mutex.down

p.3.mutex.down p.3.critical

p.3.mutex.up

p.2.critical

p.2.mutex.up

p.1.critical

p.1.mutex.up

0 1 2 3 4 5 6
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semaphores in Java

Semaphores are 

passive objects, 

therefore 

implemented as 

monitors. 

(NOTE: In practice, 

semaphores are a 

low-level mechanism 

often used for 

implementing the 

higher-level monitor 

construct. 

Java SE5 provides 

general counting 

semaphores)

public class Semaphore {

private int value;//Invariant >=0

public Semaphore (int initial) 

{value = initial;}   // >=0 ???

synchronized public void up() {

//while (! true) wait();//????

     ++value;

notifyAll();

}

synchronized public void down() 

throws InterruptedException {

while (value == 0) wait();

--value;

    // notifyAll();//????

}

}
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SEMADEMO display

current 

semaphore 

value

thread 1 is 

executing 

critical 

actions.

thread 2 is 

blocked 

waiting.

thread 3 is 

executing 

non-critical 

actions.
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SEMADEMO

What if we adjust the time that each thread spends in its 

critical section ?

large resource requirement - more conflict?

 (eg. more than 67% of a rotation)?

 small resource requirement - no conflict?

 (eg. less than 33% of a rotation)?

Hence the time a thread spends in its critical 

section should be kept as short as possible.
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SEMADEMO program - revised ThreadPanel class 

public class ThreadPanel extends Panel {

  // construct display with title and rotating arc color c
  public ThreadPanel(String title, Color c) {…}

  // hasSlider == true creates panel with slider
  public ThreadPanel
  (String title, Color c, boolean hasSlider) {…}

  // rotate display of currently running thread 6 degrees 
  // return false when in initial color, return true when in second color
  public static boolean rotate() 
         throws InterruptedException {…}

  // rotate display of currently running thread by degrees
  public static void rotate(int degrees) 
         throws InterruptedException {…}

  // create a new thread with target r and start it running
  public void start(Runnable r) {…}

  // stop the thread using Thread.interrupt()
  public void stop() {…}
}
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SEMADEMO program - MutexLoop

class MutexLoop implements Runnable {

  Semaphore mutex;

  MutexLoop (Semaphore sema) {mutex=sema;}

  public void run() {

    try {

      while(true)  {

       while(!ThreadPanel.rotate()) /*empty*/;

          mutex.down();  // get mutual exclusion

                           //critical actions:             CHECK THE STUDY NOTES!!!

            while(ThreadPanel.rotate()) /*empty*/;

          mutex.up();    //release mutual exclusion

      }

    } catch(InterruptedException e){}

  }

}
ThreadPanel.rotate() returns 
false while executing non-critical 
actions (dark color) and true otherwise.

Threads and  
semaphore are 
created by the 
applet 
start() 
method.
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Part III
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5.3  Bounded Buffer

A bounded buffer consists of a fixed number of slots. 
Items are put into the buffer by a producer process and 
removed by a consumer process. It can be used to smooth 
out transfer rates between the producer and consumer. 

(see car park example)
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Some *System* Design Patterns

• Smooth out spikes:
• Buffers (trade space for time)

• Increase throughput:
• Parallelism:

• SIMD (e.g., GPUs)
• MIMD (e.g., Pipeline, threads)

• Play the odds:
• Pre-fetching (trade space for time)
• Caching (trade space for time)

• Make changes easier:
• Add indirection (pointers)

• Contain errors/facilitate analysis:
• Structure into independent components Concurrency: monitors & condition synchronization 32
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bounded buffer  -  a data-independent model

PRODUCER BUFFER CONSUMER
put get

BOUNDEDBUFFER

LTS:

The behaviour of BOUNDEDBUFFER is independent of 
the actual data values, and so can be modelled in a 
data-independent manner.

 ( Prove FIFO with just 3 values: blue* red blue* green blue* )

put put

get

put

get

put

get

put

get get

0 1 2 3 4 5
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bounded buffer  -  a data-independent model

BUFFER(N=5) = COUNT[0],

COUNT[i:0..N]

 = (when (i<N) put ->COUNT[i+1]

      |when (i>0) get ->COUNT[i-1]

      ).

PRODUCER = (put->PRODUCER).

CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = 

(PRODUCER||BUFFER(5)||CONSUMER).
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public interface Buffer {…}

class BufferImpl implements Buffer {
 …

 public synchronized void put(Object o) 
            throws InterruptedException {
    while (count==size) wait();//! (count<size)
    buf[in] = o; ++count; in=(in+1)%size;
    notify();            // notifyAll() ?
  }

  public synchronized Object get() 
            throws InterruptedException {
    while (count==0) wait();   //! (count>0)
    Object o =buf[out]; 
    buf[out]=null; --count; out=(out+1)%size;
    notify();           // notifyAll() ?
    return (o);  // can have actions after notify!
  }

}

bounded buffer program - buffer monitor We separate the 

interface to 

permit an 

alternative 

implementation 

later.
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bounded buffer program - producer process

class Producer implements Runnable {

  Buffer buf;

  String alphabet= "abcdefghijklmnopqrstuvwxyz";

  Producer(Buffer b) {buf = b;}

  public void run() {

    try {

      int ai = 0;

      while(true) {

        ThreadPanel.rotate(12);

        buf.put(new Character(alphabet.charAt(ai)));

        ai=(ai+1) % alphabet.length();

        ThreadPanel.rotate(348);

      }

    } catch (InterruptedException e){}

  }

}

Similarly, Consumer 

which calls buf.get().
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Part IV
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condition synchronization in Java (REMINDER)

Each Java object has a thread wait set and the following methods:

public final void notify/notifyAll()

 Wakes up a single/all thread that is waiting on this object's set. 

Notifying threads have no idea what the others are waiting for.

public final void wait()

    throws InterruptedException

 Waits to be notified by another thread.

The waiting thread releases the monitor synchronization lock.

When notified, the thread must reacquire the lock before

resuming execution & re-entering the monitor.

Can’t we tell notifying threads what the others are waiting for?
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Suppose that, in place of using the count variable and condition 

synchronization directly, we  instead use two semaphores full and 

empty to reflect the state of the buffer. 

5.4  Nested Monitors!

class SemaBuffer implements Buffer {

  …

  Semaphore full;  //counts number of slots with items

  Semaphore empty; //counts number of empty slots

  SemaBuffer(int size) {

    this.size = size; buf = new Object[size];

    full  = new Semaphore(0);     // no full slots

    empty = new Semaphore(size);// all slots empty

  }// Semaphore’s value = # available resources

…

}
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nested monitors -  bounded buffer program 

synchronized public void put(Object o) 
              throws InterruptedException {
    empty.down();
    buf[in] = o;
    ++count; in=(in+1)%size;

full.up();
  }

  synchronized public Object get() 
               throws InterruptedException{
    full.down();
    Object o =buf[out]; buf[out]=null;
    --count; out=(out+1)%size;

empty.up();
    return (o);
  }

empty is decremented during a put operation, which is blocked 

if empty is zero; full is decremented by a get operation, which 

is blocked if full is zero.

Does this behave 

as desired? 

We signal only those who 

care about our signal! 
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nested monitors -  bounded buffer model

const Max = 5

range Int = 0..Max

SEMAPHORE ...as before...

BUFFER =  (put -> empty.down ->full.up ->BUFFER

          |get -> full.down ->empty.up ->BUFFER

          ).

PRODUCER = (put -> PRODUCER).

CONSUMER = (get -> CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER

                  ||empty:SEMAPHORE(5) 

                  ||full:SEMAPHORE(0)

      )@{put,get}. Does this behave 

as desired?
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nested monitors -  bounded buffer model

LTSA analysis predicts a possible DEADLOCK:

Composing

 potential DEADLOCK

States Composed: 28 Transitions: 32 in 60ms

Trace to DEADLOCK:

 get

The Consumer tries to get a character, but the buffer is 
empty. It blocks and releases the lock on the semaphore 
full. The Producer tries to put a character into the 

buffer, but also blocks. Why?

This situation is known as the nested monitor problem. 
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nested monitors - revised bounded buffer program

The only way to avoid it in Java is by “careful design” ( ).

Here, the deadlock can be removed by ensuring that the monitor 

lock for the buffer is not acquired until after semaphores are 

decremented.
public void put(Object o) 

              throws InterruptedException {

    empty.down(); /* do I have the resources I

                     need to proceed? */

    synchronized(this){ // monitor starts here!

      buf[in] = o; ++count; in=(in+1)%size;

    }

    full.up();/* NOT inside the monitor; must keep
                     critical region as short as possible.*/

  }
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nested monitors – “careful design”

The idea is:

Rank resources from most specific (empty, full) to least specific 

(buffer).

Then try to get the most specific ones you need first, before the 

least specific ones.

In this way you don’t block everyone when you cannot get 

something that only you care about.

Problem: It’s an “idea” – you must model it to check it’ll work!
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nested monitors - revised bounded buffer model

The semaphore actions have been moved to the producer 
and consumer. This is exactly as in the implementation 
where the semaphore actions are outside the monitor.

Does this behave as desired?

Minimized LTS?

BUFFER =  (put -> BUFFER

          |get -> BUFFER

          ).

PRODUCER =(empty.down->put->full.up->PRODUCER).

CONSUMER =(full.down->get->empty.up->CONSUMER).
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Part V
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5.5  Monitor invariants

An invariant for a monitor is an assertion on its fields.

Invariants must hold (=non-variant) whenever no thread executes 

inside the monitor,  i.e., on thread entry to and exit from a monitor.

CarParkControl Invariant: 0  spaces  N

Semaphore Invariant: 0  value

Buffer Invariant:  0  count  size

  and 0  in < size 

  and 0  out< size

  and in = (out + count) modulo size

Invariants can be helpful in reasoning about correctness of monitors 

using a logical proof-based approach. Generally, we prefer to use a 

model-based approach, as it’s amenable to mechanical checking.
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Class Invariant Properties

Class constructor role:
Establish the class invariant property.

You don’t know the class invariant?
 Then you don’t know what the class is supposed to do.

Each method assumes that the invariant holds when it starts.

Each method must guarantee the invariant holds when it ends.

You don’t know the class invariant?
 Then you don’t know what the class is supposed to do.

Invariant hard to define?
 Maybe you’ve chosen the wrong fields…

 (or you don’t know what the class is supposed to do)
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Moral of the Story:

• Nested monitor:
Code that hasn’t been modelled & verified is worth …

nothing
(seriously)

• Usage of “patterns” to get code – Good but …
Must pay attention to exceptions!

Both:
• Within the monitor methods; &
• Between them

• Think about transactions! (needed because of exceptions)
• Transaction phases:

Get resources/data, compute, commit
• Rollback: Undo handlers for modified parts that cannot be 

committed
• Force through & Commit everything
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Summary

◆Concepts

⚫ monitors: encapsulated data + access procedures

       mutual exclusion + condition synchronization

⚫ nested monitors 

◆Model

⚫ guarded actions

◆Practice

⚫ private data and synchronized methods in Java

⚫  wait(), notify() and notifyAll() for condition synchronization

⚫ single thread active in the monitor at a time

+ Transactions!
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Chapter 6

Deadlock
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Deadlock

Concepts: system deadlock: no further progress
   four necessary & sufficient conditions
    

Models:  deadlock - no eligible actions

Practice:  blocked threads

Aim:  deadlock avoidance - to design 
systems where deadlock cannot occur.
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Deadlock: four necessary and sufficient conditions

 Serially reusable resources: 

processes share resources under mutual exclusion.

 Incremental acquisition: 

processes hold resources while waiting to acquire additional resources.

 No pre-emption: 

once acquired, resources cannot  be pre-empted (forcibly withdrawn) 
but are only released voluntarily.

 Wait-for cycle: 

a circular chain (or cycle) of processes exists such that each process 
holds a resource which its successor in the cycle is waiting to acquire.
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Wait-for cycle

A

B

CD

E

Has A awaits B

Has B awaits C

Has C awaits D
Has D awaits E

Has E awaits A
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6.1  Deadlock analysis - primitive processes

 deadlocked state is one with no outgoing transitions

 in FSP: STOP process

MOVE = (north->(south->MOVE|north->STOP)).

Trace to DEADLOCK:

north

north

 animation to produce a trace.

analysis using LTSA:

   (shortest trace to STOP)

MOVE
north north

south

0 1 2
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deadlock analysis - parallel composition

 in systems, deadlock may arise from the 
parallel composition of interacting processes.

RESOURCE = (get->put->RESOURCE).

P = (printer.get->scanner.get

 ->copy 

     ->printer.put->scanner.put

 ->P).

Q = (scanner.get->printer.get

 ->copy

     ->scanner.put->printer.put

 ->Q).

||SYS = (p:P||q:Q 

 ||{p,q}::printer:RESOURCE 

     ||{p,q}::scanner:RESOURCE

     ).

printer:

RESOURCE

get
put

SYS

scanner:

RESOURCE

get
put

p:P

printer

scanner

q:Q

printer

scanner

Deadlock Trace?

Avoidance?
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deadlock analysis - avoidance

 acquire resources in the same order?   (least 2 most specific!)

 Timeout:

P          = (printer.get-> GETSCANNER),

GETSCANNER = (scanner.get->copy->printer.put

->scanner.put->P

|timeout -> printer.put->P

).

Q          = (scanner.get-> GETPRINTER),

GETPRINTER = (printer.get->copy->printer.put

->scanner.put->Q

|timeout -> scanner.put->Q

).

Deadlock?    Progress? Choice of timeout duration? 
Concurrency: Deadlock 8
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6.2  Dining Philosophers

Five philosophers sit around a 
circular table. Each philosopher 
spends his life alternately 
thinking and eating. In the centre 
of the table is a large bowl of 
spaghetti. A philosopher needs 
two forks to eat a helping of 
spaghetti. 

0

1

23

4

0

1

2

3

4

One fork is placed between each 
pair of philosophers and they agree 
that each will only use the fork to his 
immediate right and left.
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Dining Philosophers - model structure diagram

phil[4]:
PHIL

phil[1]:
PHIL

phil[3]:
PHIL

phil[0]:
PHIL

phil[2]:
PHIL

FORK FORK

FORK

FORK FORK

lef tright

right

right

right

lef t

lef t

right

lef t

lef t

Each FORK is a 
shared resource 
with actions get 
and put.

When hungry, 
each PHIL must 
first get his 
right and left 
forks before he 
can start eating.
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Dining Philosophers - model

FORK = (get -> put -> FORK).

PHIL = (sitdown ->right.get->left.get

->eat ->right.put->left.put

->arise->PHIL).

||DINERS(N=5)= forall [i:0..N-1] 

(phil[i]:PHIL ||

{phil[i].left,phil[((i-1)+N)%N].right}::FORK

).

Table of philosophers:

Can this system deadlock? 
Concurrency: Deadlock 11
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Dining Philosophers - model analysis

Trace to DEADLOCK:

phil.0.sitdown

phil.0.right.get

phil.1.sitdown

phil.1.right.get

phil.2.sitdown

phil.2.right.get

phil.3.sitdown

phil.3.right.get

phil.4.sitdown

phil.4.right.get

This is the situation where 
all the philosophers become 
hungry at the same time, sit 
down at the table and each 
philosopher picks up the 
fork to his right. 

The system can make no 
further progress since each 
philosopher is waiting for a 
fork held by his neighbor i.e. 
a wait-for cycle exists!
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Dining Philosophers

Deadlock is easily 
detected in our 
model. 

How easy is it to 
detect a potential 
deadlock in an 
implementation?
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Dining Philosophers - implementation in Java

philosophers: 

active entities    

- implement as 

threads

forks: shared 

passive entities 

- implement as 

monitors

display

Applet

Diners

Thread

Philosopher
1 n

Fork

1

n

PhilCanvas

display

controller

view

display
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Dining Philosophers - Fork monitor

taken 

encodes the 

state of the 

fork

We need 

guarded 

actions for 

monitors!!!
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Dining Philosophers - Fork monitor

Concurrency: Deadlock 16

©Magee/Kramer

Dining Philosophers - Philosopher implementation

class Philosopher extends Thread {
... /* PHIL = (sitdown ->right.get->left.get -> eat

->right.put->left.put ->arise->PHIL). */

public void run() {

try {

while (true) { // thinking
view.setPhil(identity,view.THINKING);

sleep(controller.sleepTime()); // hungry
view.setPhil(identity,view.HUNGRY);

right.get(); // gotright chopstick
view.setPhil(identity,view.GOTRIGHT);

sleep(500);

left.get(); // eating
view.setPhil(identity,view.EATING);

sleep(controller.eatTime());

right.put();

left.put();

}

} catch (java.lang.InterruptedException e){}

}

}

Follows 

from the 

model 
(sitting 

down and 

leaving the 

table have 

been 

omitted). Concurrency: Deadlock 17
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Dining Philosophers - implementation in Java

for (int i =0; i<N; ++i)

fork[i] = new Fork(display,i);

for (int i =0; i<N; ++i){

phil[i] = 

new Philosopher

(this,i,fork[(i-1+N)%N],fork[i]);

phil[i].start();

}

Code to create the philosopher 

threads and fork monitors:
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Dining Philosophers

To ensure deadlock 
occurs eventually, 
the slider control 
may be moved to the 
left. This reduces 
the time each 
philosopher spends 
thinking and eating. 

This "speedup" 
increases the 
probability of 
deadlock occurring. 
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Deadlock-free Philosophers

Deadlock can be avoided by ensuring that a wait-for cycle 
cannot exist. How?

PHIL(I=0) 

= (when (I%2==0) sitdown

->left.get->right.get

->eat

->left.put->right.put

->arise->PHIL

|when (I%2==1) sitdown

->right.get->left.get

->eat

->left.put->right.put

->arise->PHIL

).

Introduce an 
asymmetry into our 
definition of 
philosophers.

Use the identity I of 
a philosopher to make 
even numbered 
philosophers get 
their left forks first, 
odd their right first.

Other strategies?
Concurrency: Deadlock 21
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Maze example - shortest path to “deadlock” 

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

We can exploit the shortest path trace produced by the 
deadlock detection mechanism of LTSA to find the 
shortest path out of a maze to the STOP process!

We must first 
model the MAZE. 

Each position can 
be modelled by the 
moves that it 
permits. The MAZE 
parameter gives the 
starting position.

eg. MAZE(Start=8) = P[Start],

 P[0] = (north->STOP|east->P[1]),...
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Maze example - shortest path to “deadlock”

||GETOUT = MAZE(7).

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

Shortest path 
escape trace  from 
position 7 ?

Trace to 

DEADLOCK:

east

 north

 north

 west

 west

 north
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Summary

◆Concepts

⚫ deadlock: no futher progress

⚫ four necessary and sufficient conditions:

◆ serially reusable resources

◆ incremental acquisition

◆ no preemption

◆ wait-for cycle

◆Models

⚫ no eligible actions (analysis gives shortest path trace)

◆Practice

⚫ blocked threads

Aim:  deadlock avoidance 
- to design systems where 
deadlock cannot occur.
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Chapter 7

Safety & Liveness 

Properties

Concurrency: safety & liveness properties 2
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safety & liveness properties

Concepts: properties: true for every possible execution

   safety: nothing bad happens

   liveness: something good eventually happens

    

Models:  safety:  no reachable ERROR/STOP state

   progress: an action is eventually executed 
     (fair choice and action priority)

Practice:  threads and monitors

Aim:  property satisfaction.
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 STOP or deadlocked state (no outgoing transitions)

 ERROR process (-1) to detect erroneous behaviour

7.1  Safety

ACTUATOR

   =(command->ACTION),

ACTION

   =(respond->ACTUATOR 

|command->ERROR).

Trace to ERROR:

 command

 command

 analysis using LTSA:
 (shortest trace)

A safety property asserts that nothing bad happens.

command

command

respond

-1 0 1
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Safety - property specification

ERROR conditions state what is not desired (cf. exceptions).

 in complex systems, it is usually better (easier) to specify 
safety properties  by stating directly what is desired. 

property SAFE_ACTUATOR 

 = (command

    -> respond

    -> SAFE_ACTUATOR

    ).

 analysis using LTSA as before. 

command

respond

command

respond

-1 0 1
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Safety properties

property POLITE 

  =

Property that it is polite to knock before entering a room.

Traces: knock→enter   enter

       knock→knock

(knock->enter->POLITE).

In all states, all the 
actions in the alphabet 
of a property are 
eligible choices. 

knock

enter

knock

enter

-1 0 1
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Safety properties

Safety property P defines a deterministic 
process, which asserts that any trace including 
actions in the alphabet of P, is accepted by P.

Thus, if P is composed with S, then traces of actions 
in the alphabet of S  alphabet of P must also be 
valid traces of P, otherwise ERROR is reachable. 

Transparency of safety properties:                           
Since all actions in the alphabet of a property are eligible 
choices, composing a property with a set of processes does not 
affect their correct behaviour. However, if a behaviour can occur 
which violates the safety property, then ERROR is reachable.

Properties must be deterministic to be transparent. 
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Safety properties

 How can we specify that some action, disaster, 
never occurs?

property CALM = STOP + {disaster}.

disaster

-1 0

A safety property must be specified so as to include all the 
acceptable, valid behaviors in its alphabet.
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Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit 

      -> mutex.up -> LOOP).

||SEMADEMO = (p[1..3]:LOOP 

         ||{p[1..3]}::mutex:SEMAPHORE(1)).

How do we 
check that this 
does indeed 
ensure mutual 
exclusion in the 
critical section?

property MUTEX =(p[i:1..3].enter

     -> p[i].exit

     -> MUTEX ).

||CHECK = (SEMADEMO || MUTEX).

Check safety using LTSA. 

What happens if semaphore is initialized to 2? 
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Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit 

      -> mutex.up -> LOOP).

||SEMADEMO = (p[1..3]:LOOP 

         ||{p[1..3]}::mutex:SEMAPHORE(1)).

Check that this 
does indeed 
ensure mutual 
exclusion in the 
critical section?

property MUTEX =(p[i:1..3].enter

     -> p[i].exit

     -> MUTEX ).

||CHECK = (SEMADEMO || MUTEX).

The property focuses on system actions ONLY !

Property doesn’t care about the mechanism used to achieve it 
(here mutex.down/up) !
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Part II – Single Lane Bridge
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7.2  Single Lane Bridge problem

A bridge over a river is only wide enough to permit a single lane of 
traffic. Consequently, cars can only move concurrently if they are 
moving in the same direction. A safety violation occurs if two cars 
moving in different directions enter the bridge at the same time.

Concurrency: safety & liveness properties 12
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Single Lane Bridge - model

 Events or actions of interest?

  enter and exit

 Identify processes.

  cars and bridge

 Identify properties.

oneway

Define each process 

 and interactions 

 (structure).

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property

ONEWAY
CARS

Single

Lane

Bridge
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Single Lane Bridge - CARS model

const N = 3    // number of each type of car

range T = 0..N // type of car count

range ID= 1..N // car identities

CAR = (enter->exit->CAR).

To model the fact that cars cannot pass each other 
on the bridge, we model a CONVOY of cars in the 
same direction. We will have a red and a blue convoy 
of up to N cars for each direction: 

||CARS = (red:CONVOY || blue:CONVOY).

Concurrency: safety & liveness properties 14
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Single Lane Bridge - CONVOY model

NOPASS1  = C[1],   //preserves entry order

  C[i:ID]  = ([i].enter-> C[i%N+1]).

NOPASS2  = C[1],   //preserves exit order

  C[i:ID]  = ([i].exit-> C[i%N+1]).

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permits 1.enter→ 2.enter→ 1.exit→ 2.exit

but not 1.enter→ 2.enter→ 2.exit→ 1.exit

       ie. no overtaking.

1.enter 2.enter

3.enter

0 1 2

1.exit 2.exit

3.exit

0 1 2
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Single Lane Bridge - BRIDGE (controller) model

BRIDGE = BRIDGE[0][0],  // initially empty

BRIDGE[nr:T][nb:T] =    //nr is the red count, nb the blue 

(when(nb==0) 

        red[ID].enter -> BRIDGE[nr+1][nb]  //nb==0

     |  red[ID].exit  -> BRIDGE[nr-1][nb]

     |when (nr==0) 

        blue[ID].enter-> BRIDGE[nr][nb+1]  //nr==0

     |  blue[ID].exit -> BRIDGE[nr][nb-1]

 ).

Cars can move concurrently on the bridge only if in the same direction. 
The bridge maintains counts of blue and red cars on the bridge. Red cars 
are only allowed to enter when the blue count is zero and vice-versa.

Even when 0, exit actions permit the 
car counts to be decremented. LTSA 
maps these undefined states to ERROR.

“Controller” VERY UNFORTUNATE!!!
(reduces concurrency)
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Single Lane Bridge - safety property ONEWAY

property ONEWAY =(red[ID].enter   -> RED[1]

                 |blue[ID].enter -> BLUE[1]

                 ),

RED[r:ID] = (red[ID].enter -> RED[r+1]

            |when(r==1)red[ID].exit  -> ONEWAY

            |when(r>1) red[ID].exit  -> RED[r-1]

            ),   //r is a count of red cars on the bridge 

BLUE[b:ID]= (blue[ID].enter-> BLUE[b+1]

            |when(b==1)blue[ID].exit -> ONEWAY

            |when(b>1) blue[ID].exit -> BLUE[b-1]

            ).   //b is a count of blue cars on the bridge

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for 
blue cars. When the bridge is empty, either a red or a blue car may enter.

Concurrency: safety & liveness properties 17
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Single Lane Bridge - model analysis

Is the safety 
property ONEWAY 
violated?

||SingleLaneBridge = (CARS|| BRIDGE||ONEWAY).

No deadlocks/errors

Trace to property violation in ONEWAY:

 red.1.enter

 blue.1.enter

Without the BRIDGE 
contraints, is the 
safety property 
ONEWAY violated?

||SingleLaneBridge = (CARS||ONEWAY).
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Single Lane Bridge - implementation in Java

Active entities (cars) are 
implemented as threads.

Passive entity (bridge) is 
implemented as a monitor.

BridgeCanvas enforces no 
overtaking.

Runnable

RedCar BlueCar

BridgeCanvas

controlcontrol

Bridge

Safe

Bridge

displaydisplay

ThreadApplet

Single

Lane

Bridge

blue,
red
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Single Lane Bridge - BridgeCanvas

An instance of BridgeCanvas class is created by SingleLaneBridge 
applet - ref is passed to each newly created RedCar and BlueCar object. 

class BridgeCanvas extends Canvas {

  public void init(int ncars) {…}   //set number of cars
           

  //move red car with the identity i a step
  //returns true for the period from just before,until just after car on bridge
  public boolean moveRed(int i)

         throws InterruptedException{…}
    

  //move blue car with the identity i a step
  //returns true for the period from just before,until just after car on bridge
  public boolean moveBlue(int i)

         throws InterruptedException{…}
   

  public synchronized void freeze(){…}// freeze display
  public synchronized void thaw(){…}  //unfreeze display 
}
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Single Lane Bridge - RedCar

class RedCar implements Runnable {

  BridgeCanvas display; Bridge control; int id;

  RedCar(Bridge b, BridgeCanvas d, int id) {

    display = d; this.id = id; control = b;

  }

  public void run() {

    try {

      while(true) {

        while (!display.moveRed(id));   // not on bridge
        control.redEnter();      // request access to bridge
        while (display.moveRed(id)); // move over bridge
        control.redExit();       // release access to bridge
      }

    } catch (InterruptedException e) {}

  }

}
Similarly for the BlueCar

CAR = (enter->exit->CAR).
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Single Lane Bridge - class Bridge

class Bridge {

 synchronized void redEnter() 

   throws InterruptedException {}

 synchronized void redExit()  {}

 synchronized void blueEnter()

   throws InterruptedException {}

 synchronized void blueExit() {}

}

Class Bridge provides a null implementation of the 
access methods i.e. no constraints on the access to the 
bridge. 

 Result………… ?
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Single Lane Bridge

To ensure safety, the “safe” check box must be chosen 
in order to select the SafeBridge implementation. 
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Single Lane Bridge - SafeBridge

class SafeBridge extends Bridge {

  private int nred  = 0; //number of red cars on bridge
  private int nblue = 0; //number of blue cars on bridge

  // Monitor Invariant:         nred0 and nblue0 and
  //              not (nred>0 and nblue>0)

 synchronized void redEnter()

      throws InterruptedException {

    while (nblue>0) wait(); 

    ++nred;

  }

 synchronized void redExit(){

     --nred; 

 if (nred==0)notifyAll();

  } This is a direct 
translation from 
the BRIDGE 
model.

BRIDGE = BR[0][0],

BR[nr:T][nb:T] =

 (when (nb==0) 

   red[ID].enter

   -> BR[nr+1][nb]

 |red[ID].exit

   -> BR[nr-1][nb]

 |when (nr==0) 

   blue[ID].enter

   -> BR[nr][nb+1]

 |blue[ID].exit

   -> BR[nr][nb-1]

 ).
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synchronized void blueEnter()

      throws InterruptedException {

    while (nred>0) wait();

    ++nblue;

  }

 synchronized void blueExit(){

    --nblue; 

    if (nblue==0)notifyAll();

  }

}

Single Lane Bridge - SafeBridge

To avoid unnecessary thread switches, we use conditional notification 
to wake up waiting threads only when the number of cars on the 
bridge is zero i.e. when the last car leaves the bridge.  

But does every car get an opportunity to cross 
the bridge eventually? This is a liveness property.
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Part III – Liveness and Progress
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7.3  Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good 
eventually happens.

Single Lane Bridge: Does every car eventually get an 
opportunity to cross the bridge?

I.e., make PROGRESS?

A progress property asserts that:
It is always the case that an action is eventually executed.
Progress is the opposite of starvation, the name given to a 
concurrent programming situation in which an action is 
never executed (after some point).
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Progress properties - fair choice

COIN =(toss->heads->COIN

   |toss->tails->COIN).

If a coin were tossed an 
infinite number of times, 
we would expect that 
heads would be chosen 

infinitely often and that 
tails would be chosen 
infinitely often. 

This requires Fair Choice ! 
Note: n ∗  ∞ =  ∞

so “fair” != “equal”

toss

toss

heads

tails

0 1 2

Fair Choice: If a choice over a set of transitions is 
executed infinitely often, then every transition in the 
set will be executed infinitely often.
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Progress properties

progress P = {a1,a2..aN} defines a progress 
property P, which asserts that in an infinite execution 
of a target system, AT LEAST ONE of the actions 

a1,a2..aN will be executed infinitely often.

COIN system: progress HEADS = {heads}  ?

   progress TAILS = {tails}  ?

LTSA check progress: No progress violations detected.
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pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Progress properties

Suppose that there were two possible coins that could be 
picked up:

TWOCOIN = (pick->COIN|pick->TRICK),

  TRICK = (toss->heads->TRICK),

  COIN  = (toss->heads->COIN|toss->tails->COIN).

TWOCOIN: progress HEADS = {heads}  ?

   progress TAILS = {tails}  ?

a trick coin 
and a regular 
coin……
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Progress properties

progress HEADSorTAILS = {heads,tails}  ?

progress HEADS = {heads}

progress TAILS = {tails}

LTSA check progress 
Progress violation: TAILS

Path to terminal set of states:

 pick

Actions in terminal set:

{toss, heads}

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5
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Progress analysis

A terminal set of states is one in which every state is reachable from 
every other state in the set via one or more transitions, and there is no 
transition from within the set to any state outside the set. 

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Terminal sets 
for TWOCOIN:

{1,2} and 
{3,4,5}

Given fair choice, each terminal set represents an execution in which 
each action used in a transition in the set is executed infinitely often. 

Since there is no transition out of a terminal set, any action that is not 
used in the set cannot occur infinitely often in all executions of the 
system - and hence represents a potential progress violation!

Concurrency: safety & liveness properties 32

©Magee/Kramer

Progress analysis

A progress property is violated if analysis finds a 
terminal set of states in which none of the progress 
set actions appear. 

progress TAILS = {tails}    in {1,2}

Default: given fair choice, for every action in the alphabet of the 
target system, that action will be executed infinitely often. This is 
equivalent to specifying a separate progress property for every action. 

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Default 
analysis for 
TWOCOIN?
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Progress analysis

Progress violation for actions: 

{pick}

Path to terminal set of states:

 pick

Actions in terminal set:

{toss, heads, tails}

Progress violation for actions: 

{pick, tails}

Path to terminal set of states:

 pick

Actions in terminal set:

{toss, heads}

Default analysis for 
TWOCOIN: separate 
progress property for 
every action. 

and

If the default holds, then every other progress property holds 
i.e. every action is executed infinitely often and system consists 
of a single terminal set of states.

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5
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Part IV – Checking Progress in the Single Lane Bridge
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Progress - single lane bridge

progress BLUECROSS = {blue[ID].enter}

progress REDCROSS =  {red[ID].enter}

No progress violations detected.

The Single Lane 
Bridge implementation 
can permit progress 
violations. 
However, if default 
progress analysis is 
applied to the model 
then no violations are 

detected! 
Why not?

Fair choice means that eventually every possible execution occurs, 
including those in which cars do not starve. To detect progress 
problems, we must impose some scheduling policy for actions that 
models the situation in which the bridge is congested. (unfair choice…) 

We need to stress-test it! Concurrency: safety & liveness properties 36
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Progress - action priority

Action priority expressions describe scheduling properties:

||C = (P||Q)<<{a1,…,an} specifies a composition 
in which the actions a1,..,an have higher priority 
than any other action in the alphabet of P||Q 

including the silent action tau.

In system choices that have one or more of actions 
a1,..,an labeling a transition, the transitions 

labeled with lower priority actions are discarded.

High 
Priority 
(“<<”)

||C = (P||Q)>>{a1,…,an} specifies a composition 
in which the actions a1,..,an have lower priority 
than any other action in the alphabet of P||Q 

including the silent action tau.

In system choices that have one or more transitions 
not labeled by a1,..,an, the transitions labeled by 

a1,..,an are discarded.

Low 
Priority 
(“>>”)
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Progress - action priority

NORMAL =(work->play->NORMAL

    |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW  =(NORMAL)>>{work}.

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by 
discarding lower priority actions from choices.
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7.4 Congested single lane bridge                (stress testing)

progress BLUECROSS = {blue[ID].enter}

progress REDCROSS =  {red[ID].enter}

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?

Could give red cars priority over blue (or vice versa) ?

In practice neither has priority over the other.

Instead, we merely encourage congestion by lowering the 
priority of the exit actions of both cars from the bridge. 

||CongestedBridge = (SingleLaneBridge)

    >> {red[ID].exit,blue[ID].exit}.

Progress Analysis ?  LTS? 
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congested single lane bridge model

Progress violation: BLUECROSS

Path to terminal set of states:

 red.1.enter

 red.2.enter

Actions in terminal set:

{red.1.enter, red.1.exit, red.2.enter, 

red.2.exit, red.3.enter, red.3.exit}

Progress violation: REDCROSS

Path to terminal set of states:

 blue.1.enter

 blue.2.enter

Actions in terminal set:

{blue.1.enter, blue.1.exit, blue.2.enter, 

blue.2.exit, blue.3.enter, blue.3.exit}

This corresponds 
with the 
observation that, 
with more than 
one car, it is 
possible that 
whichever color 
car enters the 
bridge first will 
continuously 
occupy the bridge 
preventing the 
other color from 
ever crossing.
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congested single lane bridge model

red.1.enter

blue.1.enterblue.2.enter blue.1.exit blue.1.enter

blue.2.exit

red.2.enter red.1.exit red.1.enter

red.2.exit

0 1 2 3 4 5 6 7 8

||CongestedBridge = (SingleLaneBridge)

    >> {red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving car entry 
to the bridge high priority?

Can congestion occur if there is only one car moving in each direction?
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Progress - revised single lane bridge model

The bridge needs to know whether or not cars are 
waiting to cross. 

Modify CAR:

CAR = (request->enter->exit->CAR).

Modify BRIDGE:

Red cars are only allowed to enter the bridge
if there are no blue cars on the bridge (safe) and there 
are no blue cars waiting to enter the bridge (progress). 

Blue cars are only allowed to enter the bridge
if there are no red cars on the bridge (safe) and there 
are no red cars waiting to enter the bridge (progress).
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Progress - revised single lane bridge model

/* nr– number of red cars on the bridge  wr  – number of red cars waiting to enter

  nb– number of blue cars on the bridge wb  – number of blue cars waiting to enter

*/

BRIDGE = BRIDGE[0][0][0][0],  

BRIDGE[nr:T][nb:T][wr:T][wb:T] = 

  (red[ID].request  -> BRIDGE[nr][nb][wr+1][wb]

  |when (nb==0 && wb==0) 

     red[ID].enter  -> BRIDGE[nr+1][nb][wr-1][wb]

  |red[ID].exit     -> BRIDGE[nr-1][nb][wr][wb]

  |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]

  |when (nr==0 && wr==0) 

     blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]

  |blue[ID].exit    -> BRIDGE[nr][nb-1][wr][wb]

  ).

OK now? 
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Progress - analysis of revised single lane bridge model

Trace to DEADLOCK:

 red.1.request

 red.2.request

 red.3.request

 blue.1.request

 blue.2.request

 blue.3.request

The trace is the scenario 
in which there are cars 
waiting at both ends, and 
consequently, the bridge 
does not allow either red 
or blue cars to enter.

Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable (bt) which breaks the 
deadlock by indicating whether it is the turn of blue cars or red 
cars to enter the bridge.

Arbitrarily set bt to true initially, giving blue initial precedence. 
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Progress - 2 nd revision of single lane bridge model

const True = 1

const False = 0

range B = False..True

/*   bt - true indicates blue turn,   false indicates red turn */

BRIDGE = BRIDGE[0][0][0][0][True],  

BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] = 

  (red[ID].request  -> BRIDGE[nr][nb][wr+1][wb][bt]

  |when (nb==0 && (wb==0||!bt)) // safe && progress

     red[ID].enter  -> BRIDGE[nr+1][nb][wr-1][wb][bt]

  |red[ID].exit     -> BRIDGE[nr-1][nb][wr][wb][True]

  |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]  

  |when (nr==0 && (wr==0||bt)) // safe && progress

     blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]

  |blue[ID].exit    -> BRIDGE[nr][nb-1][wr][wb][False]

  ).

Analysis ?
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Revised single lane bridge implementation - FairBridge

class FairBridge extends Bridge {

  private int nred  = 0; //count of red cars on the bridge
  private int nblue = 0; //count of blue cars on the bridge
  private int waitblue = 0;  //count of waiting blue cars
  private int waitred = 0;   //count of waiting red cars
  private boolean blueturn = true;

//  synchronized void redRequest() {++waitred;}//[*]

  synchronized void redEnter()

      throws InterruptedException {

    ++waitred;

    while (nblue>0||(waitblue>0 && blueturn)) wait();

    --waitred;

    ++nred;

  }

 synchronized void redExit(){

    --nred; 

    blueturn = true;

    if (nred==0)notifyAll();

  }

[*] This is a direct 
translation from 
the model.

THIS CODE IS WRONG...

WHY?

CAR = (request->enter->exit->CAR).
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Revised single lane bridge implementation - FairBridge

class FairBridge extends Bridge {

  private int nred  = 0; //count of red cars on the bridge
  private int nblue = 0; //count of blue cars on the bridge
  private int waitblue = 0;  //count of waiting blue cars
  private int waitred = 0;   //count of waiting red cars
  private boolean blueturn = true;

  synchronized void redEnter()

      throws InterruptedException {

  try {++waitred; // Transaction!!!

     while (nblue>0||(waitblue>0 && blueturn))wait();}

  catch (Exception e){--waitred; throw e;} // Tx undo!

   --waitred;

   ++nred;

  }

 synchronized void redExit(){

    --nred; 

    blueturn = true;

    if (nred==0) notifyAll();

  }

This is a direct 
translation from 
the model (+Tx !)

Is the conditional notifyAll

correct? 

Harder to tell now that both 

red & blue may wait…
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Revised single lane bridge implementation - FairBridge

synchronized void blueEnter(){

      throws InterruptedException {

    try { ++waitblue;

     while (nred>0||(waitred>0 && !blueturn)) wait();}

    finally { --waitblue; }//merged undo & next instr.

    ++nblue;

  }

 synchronized void blueExit(){

    --nblue; 

    blueturn = false;

    if (nblue==0) notifyAll();

  }

}

Note that we did not need to introduce a new request monitor method. 
The existing enter methods can be modified to increment a wait count 
before testing whether or not the caller can access the bridge. 

BEWARE OF TRANSACTIONS!!!

The “fair” check 
box must be 
chosen in order to 
select the 
FairBridge 
implementation.
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Revised single lane bridge implementation - FairBridge

“Note that we did not need to introduce a new request monitor method. 
The existing enter methods can be modified to increment a wait count 
before testing whether or not the caller can access the bridge.” 

BEWARE OF TRANSACTIONS!!!

“Did not need” – actually, it’s better we didn’t!

Controlling the transaction would have been harder if we had 
introduced a separate request method!

Caller may have added extra calls between request & enter.

Caller would have to control the transaction in that case – harder to 
ensure system correctness that way.



Concurrency: safety & liveness properties 49

©Magee/Kramer

Part V – Readers & Writers
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7.5  Readers and Writers

A shared database is accessed by two kinds of processes. Readers 
execute transactions that examine the database while Writers both 
examine and update the database. A Writer must have exclusive access 
to the database; any number of Readers may concurrently access it. 

Light 
blue 
indicates 
database 
access.
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readers/writers model

 Events or actions of interest?

 acquireRead, releaseRead, acquireWrite, releaseWrite

 Identify processes.

 Readers, Writers & the RW_Lock

 Identify properties.

 RW_Safe 

 RW_Progress

Define each process 

 and interactions 

 (structure).

writer[1..Nwrite]:

WRITER
reader[1..Nread]:

READER

READERS

_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite
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readers/writers model - READER & WRITER

set Actions = 

 {acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)

  + Actions

  \ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)

  + Actions

  \ {modify}.

Alphabet extension used to ensure that the other access actions cannot 
occur freely for any prefixed instance of the process (as before).

Action hiding is used, since actions examine and modify are irrelevant 
for access synchronisation.
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readers/writers model - RW_LOCK

const False = 0   const True  = 1

range Bool  = False..True

const Nread = 2           // Maximum readers

const Nwrite= 2           // Maximum writers

RW_LOCK = RW[0][False],

RW[readers:0..Nread][writing:Bool] =

 (when (!writing) 

  acquireRead  -> RW[readers+1][writing]

 |releaseRead      -> RW[readers-1][writing]

 |when (readers==0 && !writing)

      acquireWrite -> RW[readers][True]

 |releaseWrite     -> RW[readers][False]

 ).

The lock 
maintains a 
count of the 
number of 
readers, and 
a Boolean for 
the writers.
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readers/writers model - safety

property SAFE_RW

  = (acquireRead  -> READING[1]

    |acquireWrite -> WRITING

    ),

  READING[i:1..Nread] 

  = (acquireRead -> READING[i+1]

    |when (i >1) releaseRead -> READING[i-1]

    |when (i==1) releaseRead -> SAFE_RW

    ),

  WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property…… 

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ?  LTS?
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readers/writers model - safety

property SAFE_RW

  = (acquireRead  -> READING[1]

    |acquireWrite -> WRITING

    ),

 READING[0] = SAFE_RW, // base case def

 READING[i:1..Nread] 

  = (acquireRead -> READING[i+1]

    |releaseRead  -> READING[i-1]// no guards now

    ),

 WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property…… 

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ?  LTS?
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readers/writers model

An ERROR occurs if a reader 
or writer is badly behaved 
(release before acquire 
or more than two readers).

We can now compose the 
READWRITELOCK with 
READER and WRITER 
processes according to our 
structure… … 

||READERS_WRITERS 

   = (  reader[1..Nread] :READER 

     || writer[1..Nwrite]:WRITER 

     || {reader[1..Nread],

         writer[1..Nwrite]}::READWRITELOCK ).

Safety and 
Progress 
Analysis ?  

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3
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progress WRITE = {writer[1..Nwrite].acquireWrite}

progress READ  = {reader[1..Nread].acquireRead}

readers/writers - progress

WRITE - eventually one of the writers will acquireWrite

READ - eventually one of the readers will acquireRead

||RW_PROGRESS = READERS_WRITERS 

                >>{reader[1..Nread].releaseRead,

                   writer[1..Nread].releaseWrite}.

Progress Analysis ?  LTS?

Adverse conditions using action priority?

we lower the priority of the release actions for both readers 
and writers.                                              // release = exit lock
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readers/writers model - progress

Progress violation: WRITE

Path to terminal set of states:

 reader.1.acquireRead

Actions in terminal set:

{reader.1.acquireRead, reader.1.releaseRead,

 reader.2.acquireRead, reader.2.releaseRead}

Writer 
starvation: 
The number 
of readers 
never drops 
to zero. 

reader.1.acquireRead

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite

writer.2.releaseWrite

writer.1.releaseWrite

reader.1.acquireRead

reader.1.releaseRead

reader.2.releaseRead

reader.2.acquireRead

0 1 2 3 4 5

Try the 
Applet!
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readers/writers implementation - monitor interface

interface ReadWrite {

     public void acquireRead()

         throws InterruptedException;

     public void releaseRead();

     public void acquireWrite()

         throws InterruptedException;

     public void releaseWrite();

}

We define an interface that identifies the monitor 
methods that must be implemented, and develop a number 
of alternative implementations of this interface.  

 Firstly, the safe READWRITELOCK.

We concentrate on the monitor implementation:
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readers/writers implementation - ReadWriteSafe

class ReadWriteSafe implements ReadWrite {

  private int readers =0;

  private boolean writing = false;

  public synchronized void acquireRead()

             throws InterruptedException {

    while (writing) wait();

    ++readers;

  }

  public synchronized void releaseRead() {

    --readers;

    if (readers==0) notify(); // notifyAll() ?

  }

Unblock a single writer when no more readers.

(How do we know only writers are waiting?) 
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readers/writers implementation - ReadWriteSafe

public synchronized void acquireWrite()

              throws InterruptedException {

    while (readers>0 || writing) wait();

    writing = true;

  }

  public synchronized void releaseWrite() {

    writing = false;

    notifyAll();

  }

}

Unblock all readers and writers!!!

However, this monitor implementation suffers from the WRITE 
progress problem: possible writer starvation, if the number of 
readers never drops to zero. 

Solution?
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Part V – Readers & Writers – Priority
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readers/writers - writer priority

Strategy: 
Block readers 
if there is a 
writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,

               releaseWrite,requestWrite}

WRITER =(requestWrite->acquireWrite->modify

                 ->releaseWrite->WRITER

       )+Actions\{modify}.
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readers/writers model - writer priority

RW_LOCK = RW[0][False][0],

RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite] 

= (when (!writing && waitingW==0) 

     acquireRead -> RW[readers+1][writing][waitingW]

  |releaseRead -> RW[readers-1][writing][waitingW]

  |requestWrite-> RW[readers][writing][waitingW+1]

  |when (readers==0 && !writing) 

     acquireWrite-> RW[readers][True][waitingW-1]

  |releaseWrite-> RW[readers][False][waitingW] ).

Safety and Progress Analysis ? 
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readers/writers model - writer priority

Progress violation: READ

Path to terminal set of states:

 writer.1.requestWrite

 writer.2.requestWrite

Actions in terminal set:

{writer.1.requestWrite, writer.1.acquireWrite,

 writer.1.releaseWrite, writer.2.requestWrite, 

 writer.2.acquireWrite, writer.2.releaseWrite}

Reader 
starvation: 
if always a 
writer 
waiting. 

No deadlocks/errors

property RW_SAFE:

progress READ and WRITE:

In practice, this may be satisfactory as (1) there’ s usually less write access 
than read, and (2) readers generally want the most up to date information.
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readers/writers implementation - ReadWritePriority

class ReadWritePriority implements ReadWrite{

  private int readers =0;

  private boolean writing = false;

  private int waitingW = 0; // no of waiting Writers.

  public synchronized void acquireRead()

             throws InterruptedException {

    while (writing || waitingW>0) wait();

     ++readers;

  }

  public synchronized void releaseRead() {

    --readers;

    if (readers==0) notify(); // notifyAll();

  } // now readers may be waiting as well!

We had to review

(& change!) our

argument about

notify!

Don’t optimise

- Measure first!
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readers/writers implementation – ReadWritePriority v.1

synchronized public void acquireWrite()

             throws InterruptedException {

 ++waitingW;      // requestWrite()

 try // BAIL OUT: Tx strategy 1 // acquireWrite()

   { while (readers>0 || writing) wait(); }

 catch (InterruptedException e)

   {--waitingW; throw e;}//Tx undo of requestWrite

 --waitingW; // (part of acquireWrite)

 writing = true;

}

synchronized public void releaseWrite() {

 writing = false;

 notifyAll();

}

Both READ and WRITE progress properties can be satisfied by 
introducing a turn variable as in the Single Lane Bridge.
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readers/writers implementation - ReadWritePriority v.2

synchronized public void acquireWrite() {

    ++waitingW;

    while (readers>0 || writing)

      try{ wait();}//FORCE THROUGH:Tx strategy 2

      catch(InterruptedException e){/*ignore e*/}

  --waitingW; 

    writing = true;

}

synchronized public void releaseWrite() {

    writing = false;

    notifyAll();

}

Both READ and WRITE progress properties can be satisfied by 
introducing a turn variable as in the Single Lane Bridge.
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Summary

◆Concepts

⚫ properties: true for every possible execution

◆safety: nothing bad happens         (can be monitored)

◆liveness: something good eventually happens (can’t be monitored!)

◆Models

⚫ safety: no reachable ERROR/STOP state

  compose safety properties at appropriate stages

⚫ progress: an action is always eventually executed 

    assumes fair choice; stress-tested with action priority

    progress check on the final (safe) target system model

◆Practice

⚫ threads and monitors Aim:  property satisfaction
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Single Lane Bridge problem – NOT ALL PROBLEMS 

NEED A CENTRALISED CONTROLLER!!!

Here it’s implied (cars can’t communicate, we need a third party).

But not every problem has a centralised controller like the bridge.
We generally DON’T want one!

In distributed systems, centralised controllers cause contention
Centralised Controller: Bottleneck, single point of failure

So don’t start with a centralised controller…
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Chapter 8

Model-Based Design
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Model-based Design

Concepts:  design process:
requirements to models to implementations

Models: check properties of interest:
- safety on the appropriate (sub)system
- progress on the overall system

Practice: model interpretation - to infer actual system 
behavior

threads and monitors

Aim: rigorous design process.
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 goals of the system

 scenarios (Use Case models)

 properties of interest

8.1  from requirements to models

Requirements

Model

 identify the main events, actions, and interactions

 identify and define the main processes

 identify and define the properties of interest

 structure the processes into an architecture

 check traces of interest

 check properties of interest

Any 
appropriate 

design 
approach 

can be 
used. 
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a Cruise Control System - requirements

When the car 
ignition is switched 
on and the on
button is pressed, 
the current speed 
is recorded and the 
system is enabled: 
it maintains the 
speed of the car at 
the recorded 
setting. 

Pressing the brake, 
accelerator or off
button disables the 
system. Pressing 
resume or on re-
enables the system.

buttons
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a Cruise Control System - hardware

Wheel revolution sensor generates interrupts to enable the car 
speed to be calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It 
records the actions of the sensors: • buttons (on, off, resume)

• brake (pressed)

• accelerator (pressed)

• engine (on, off).

buttons

engine

accelerator

brake
PIA

polled

wheel interrupt

CPU

throttleD/A

Output: The cruise control system controls the car speed by setting 
the throttle via the digital-to-analogue converter.
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model - outline design

outline processes and interactions.

Input Speed monitors 
the speed when the 
engine is on, and 
provides the current 
speed readings to 
speed control.

Sensor Scan monitors 
the buttons, brake, 
accelerator and 
engine events.

Cruise Controller triggers 
clear speed and record 
speed, and enables or 
disables the speed control.

Speed Control clears and 
records the speed, and 
sets the throttle 
accordingly when enabled.

Throttle
sets the 
actual 
throttle. 

Sensors

PromptsEngine

speed
setThrottle
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model -design

 Main events, actions and interactions.

on, off, resume, brake, accelerator

engine on, engine off, 

speed, setThrottle

clearSpeed,recordSpeed,

enableControl,disableControl

 Identify main processes.

Sensor Scan, Input Speed, 

Cruise Controller, Speed Control and

Throttle

 Identify main properties.

safety - disabled when off, brake or accelerator pressed.

Define and structure each process.

Sensors

Prompts
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model  - structure, actions and interactions

set Sensors = {engineOn,engineOff,on,off,

resume,brake,accelerator} 

set Engine = {engineOn,engineOff} 

set Prompts = {clearSpeed,recordSpeed,

enableControl,disableControl}

SENSOR

SCAN
CRUISE

CONTROLLER

Sensors

INPUT

SPEED
SPEED

CONTROL

set
Throttle

speed

Engine Prompts

CONTROL CRUISE

CONTROL

SYSTEM

THROTTLE

The 
CONTROL 
system is 
structured 
as two 
processes.

The main 
actions and 
interactions
are as 
shown.
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model elaboration - process definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN). 

// monitor speed when engine on
INPUTSPEED = (engineOn -> CHECKSPEED),

CHECKSPEED = (speed -> CHECKSPEED

|engineOff -> INPUTSPEED 

).

// zoom when throttle set
THROTTLE =(setThrottle -> zoom -> THROTTLE).

// perform speed control when enabled
SPEEDCONTROL = DISABLED,

DISABLED =({speed,clearSpeed,recordSpeed}->DISABLED

| enableControl -> ENABLED 

), 

ENABLED = ( speed -> setThrottle -> ENABLED 

|{recordSpeed,enableControl} -> ENABLED

| disableControl -> DISABLED

).
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model elaboration - process definitions

// enable speed control when cruising, 
 // disable when off, brake or accelerator pressed
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE),

ACTIVE   =(engineOff -> INACTIVE

|on->recordSpeed->enableControl->CRUISING

),

CRUISING =(engineOff -> INACTIVE

|{ off,brake,accelerator} 

-> disableControl -> STANDBY

|on->recordSpeed->enableControl->CRUISING

),

STANDBY  =(engineOff -> INACTIVE

|resume -> enableControl -> CRUISING

|on->recordSpeed->enableControl->CRUISING

).
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model  - CONTROL subsystem

||CONTROL =(CRUISECONTROLLER

||SPEEDCONTROL

).

- Is control enabled 
after the engine is 
switched on and the on 
button is pressed?
- Is control disabled 
when the brake is 
then pressed?
- Is control re-
enabled when resume 
is then pressed?

Animate to check particular 
traces:

Safety: Is the 
control disabled 
when off, brake or 
accelerator is 
pressed?
Progress: Can every 
action eventually be 
selected? 

However, we need to 
analyse to exhaustively 
check:
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model  - Safety properties

Safety properties should be composed with the 
appropriate system or subsystem to which the 
property refers. In order that the property can check 
the actions in its alphabet, these actions must not be 
hidden in the system. 

Safety checks are compositional. If there is no violation 
at a subsystem level, then there cannot be a violation 
when the subsystem is composed with other subsystems. 

This is because, if the ERROR state of a particular safety 
property is unreachable in the LTS of the subsystem, it 
remains unreachable in any subsequent parallel 
composition which includes the subsystem.  Hence...
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model  - Safety properties

Is CRUISESAFETY
violated?

||CONTROL =(CRUISECONTROLLER

||SPEEDCONTROL

||CRUISESAFETY

).

property CRUISESAFETY = 

  ({off,accelerator,brake,disableControl} -> CRUISESAFETY

  |{on,resume} -> SAFETYCHECK

  ),

SAFETYCHECK =

  ({on,resume} -> SAFETYCHECK

  |{off,accelerator,brake} -> SAFETYACTION

  |disableControl -> CRUISESAFETY

  ), 

SAFETYACTION =(disableControl->CRUISESAFETY).
LTS?
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model analysis

||CONTROL =

   (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY

   )@ {Sensors,speed,setThrottle}.

||CRUISECONTROLSYSTEM = 

(CONTROL||SENSORSCAN||INPUTSPEED||THROTTLE).

We can now compose the whole system:

Deadlock?  
Safety?

No deadlocks/errors

Progress?

Concurrency: model-based design 15
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model  - Progress properties

Progress checks should be conducted on the complete 
target system after satisfactory completion of the 
safety checks.

Progress checks are not compositional. Even if there is no 
violation at a subsystem level, there may still be a 
violation when the subsystem is composed with other 
subsystems. 

This is because an action in the subsystem may satisfy 
progress yet be unreachable when the subsystem is 
composed with other subsystems which constrain its 
behavior. Hence...
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model  - Progress properties

Progress violation for actions: 

{engineOn, clearSpeed, engineOff, on, recordSpeed, 

enableControl, off, disableControl, brake, 

accelerator...........}

Path to terminal set of states:

 engineOn

 clearSpeed

 on

 recordSpeed

 enableControl

 engineOff

 engineOn

Actions in terminal set:

{speed, setThrottle, zoom}

Control is not disabled 
when the engine is 
switched off !

Check with no 
hidden actions

Concurrency: model-based design 17
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cruise control model - minimized LTS

engineOn

engineOff

on

speed

engineOff

on

off

brake

accelerator

speed

engineOff

on

resume

speed

engineOn

speed
0 1 2 3 4 5

||CRUISEMINIMIZED = (CRUISECONTROLSYSTEM) 

                    @ {Sensors,speed}.

Action hiding and minimization 
can help to reduce the size of 
the LTS diagram and make it 
easier to interpret. 
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model - revised cruise control system

Modify CRUISECONTROLLER so that control is disabled when the 
engine is switched off:  

… 

CRUISING =(engineOff -> disableControl -> INACTIVE

|{ off,brake,accelerator} -> disableControl -> STANDBY

|on->recordSpeed->enableControl->CRUISING

),

…
OK now?

Modify the safety property:

property IMPROVEDSAFETY = ({off,accelerator,brake,disableControl,

     engineOff} -> IMPROVEDSAFETY

        |{on,resume} -> SAFETYCHECK

        ),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK

     |{off,accelerator,brake,engineOff} -> SAFETYACTION

      |disableControl -> IMPROVEDSAFETY

      ),

SAFETYACTION =(disableControl -> IMPROVEDSAFETY).
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model - revised cruise control system

engineOn

engineOff

on

speed

engineOff

on

off

brake

accelerator

speed

engineOff

on

resume

speed
0 1 2 3

Minimized LTS:

What about under adverse conditions? 
Check for system sensitivities.

No deadlocks/errors

No progress 

violations detected.
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model - system sensitivities

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions: 

{engineOn, engineOff, on, off, brake, accelerator, 

resume, setThrottle, zoom}

Path to terminal set of states:

 engineOn

 tau

Actions in terminal set:

{speed} The system may be 
sensitive to the 
priority of the 
action speed.
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model interpretation

Models can be used to indicate system sensitivities.

If it is possible that erroneous situations detected in the 
model may occur in the implemented system, then the 
model should be revised to find a design which ensures 
that those violations are avoided. 

However, if it is considered that the real system will not
exhibit this behavior, then no further model revisions are 
necessary. 

Model interpretation and correspondence to the 
implementation are important in determining the relevance 
and adequacy of the model design and its analysis.
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The central role of design architecture

Design 
architecture 
describes the 
gross 
organization 
and global 
structure of 
the system in 
terms of its 
constituent 
components.

We consider that the models for analysis and 
the implementation should be considered as 
elaborated views of this basic design structure.
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8.2  from models to implementations

Model

Java

 identify the main active entities 

- to be implemented as threads

 identify the main (shared) passive entities

- to be implemented as monitors

 identify the interactive display environment

- to be implemented as associated classes

 structure the classes as a class diagram

Concurrency: model-based design 24

©Magee/Kramer

cruise control system - class diagram

SpeedControl

interacts with 
the car 
simulation via 
interface 
CarSpeed.

enableControl()
disableControl()

recordSpeed()
clearSpeed()

Applet

CruiseControl

Controller

brake()
accelerator()

engineOff()
engineOn()

on()

off()
resume()

SpeedControl

CarSimulator

CarSpeed

setThrottle()
getSpeed()

Runnable

CruiseDisplay

car

control

sc

disp

disp

cs

CRUISECONTROLLER SPEEDCONTROL
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cruise control system - class Controller

class Controller {
 final static int INACTIVE = 0; // cruise controller states
  final static int ACTIVE   = 1;
  final static int CRUISING = 2;
  final static int STANDBY  = 3;
  private int controlState  = INACTIVE; //initial state
  private SpeedControl sc;

  Controller(CarSpeed cs, CruiseDisplay disp)
    {sc=new SpeedControl(cs,disp);}

  synchronized void brake(){
    if (controlState==CRUISING )
      {sc.disableControl(); controlState=STANDBY; }
  }

  synchronized void accelerator(){
    if (controlState==CRUISING )
      {sc.disableControl(); controlState=STANDBY; }
  }
 synchronized void engineOff(){
    if(controlState!=INACTIVE) {
      if (controlState==CRUISING) sc.disableControl();
      controlState=INACTIVE;
    }
  }

Controller

is a passive 
entity - it 
reacts to 
events. 
Hence we 
implement it 
as a monitor
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cruise control system - class Controller

synchronized void engineOn(){
    if(controlState==INACTIVE)
      {sc.clearSpeed(); controlState=ACTIVE;}
  }

  synchronized void on(){
    if(controlState!=INACTIVE){
      sc.recordSpeed(); sc.enableControl();
      controlState=CRUISING;
    }
  }

  synchronized void off(){
    if(controlState==CRUISING )
      {sc.disableControl(); controlState=STANDBY;}
  }

  synchronized void resume(){
    if(controlState==STANDBY)
     {sc.enableControl(); controlState=CRUISING;}
  }
}

This is a 
direct 
translation 
from the 
model.
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cruise control system - class SpeedControl

class SpeedControl implements Runnable {
  final static int DISABLED = 0; //speed control states
  final static int ENABLED  = 1;
  private int state = DISABLED;  //initial state
  private int setSpeed = 0;      //target speed
  private Thread speedController;
  private CarSpeed cs;      //interface to control speed
  private CruiseDisplay disp;

  SpeedControl(CarSpeed cs, CruiseDisplay disp){
    this.cs=cs; this.disp=disp;
    disp.disable(); disp.record(0);
  }

  synchronized void recordSpeed(){
    setSpeed=cs.getSpeed(); disp.record(setSpeed);
  }

  synchronized void clearSpeed(){
    if (state==DISABLED) {setSpeed=0;disp.record(setSpeed);}
  }

  synchronized void enableControl(){
    if (state==DISABLED) {
      disp.enable(); speedController= new Thread(this); 
      speedController.start(); state=ENABLED;
    }
  }

SpeedControl

is an active 
entity - when 
enabled, a new
thread is 
created which 
periodically 
obtains car 
speed and sets 
the throttle.
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cruise control system - class SpeedControl

synchronized void disableControl(){
    if (state==ENABLED)  {disp.disable(); state=DISABLED;}
  }

  public void run() {     // the speed controller thread
    try {
      while (state==ENABLED) {
        Thread.sleep(500);
        if (state==ENABLED) synchronized(this) {
          double error = (float)(setSpeed-cs.getSpeed())/6.0;
          double steady = (double)setSpeed/12.0;
          cs.setThrottle(steady+error); //simplified feed back control
        }
      }
    } catch (InterruptedException e) {}
    speedController=null;
  }
}

SpeedControl is an example of a class that 
combines both synchronized access methods 
(to update local variables ) and a thread.
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Summary

◆Concepts

⚫ design process: 

from requirements to models to implementations

⚫ design architecture

◆Models
⚫ check properties of interest

safety: compose safety properties at appropriate (sub)system

progress: apply progress check on the final target system model

◆Practice
⚫ model interpretation - to infer actual system behavior

⚫ threads and monitors

Aim: rigorous design process.
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Course Outline

 Processes and Threads

 Concurrent Execution

 Shared Objects & Interference

 Monitors & Condition Synchronization

 Deadlock

 Safety and Liveness Properties

 Model-based Design

 Dynamic systems

 Message Passing

Concepts

Models

Practice

Concurrent Software Architectures

Timed Systems
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Chapter 10

Message Passing

Concurrency: message passing 2

©Magee/Kramer

Message Passing

Concepts:  synchronous message passing - channel
asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comms - entry

- call and accept ... reply

Models: channel : relabelling, choice & guards
port : message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors  (shared memory)
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 send(e,c) - send the 
value of the expression e
to channel c. The process 
calling the send operation 
is blocked until the 
message is received from 
the channel.

10.1 Synchronous Message Passing - channel

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

 v = receive(c) - receive 
a value into local variable v
from channel c. The 
process calling the receive 
operation is blocked
waiting until a message is 
sent to the channel. 

cf. distributed assignment  v = e

one-to-one
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synchronous message passing - applet

A sender 
communicates 
with a receiver 
using a single 
channel. 

The sender 
sends a 
sequence of 
integer values 
from 0 to 9 and 
then restarts at 
0 again.

Channel chan = new Channel();

  tx.start(new Sender(chan,senddisp));

  rx.start(new Receiver(chan,recvdisp));

Instances of SlotCanvasInstances of ThreadPanel
Concurrency: message passing 5
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Java implementation - channel

The 
implementation 
of Channel is a 
monitor that has 
synchronized 
access methods 
for send and 
receive.

class Channel extends Selectable {

Object chann = null;

public synchronized void send(Object v)

throws InterruptedException {

chann = v;

signal();

while (chann != null) wait();

}

public synchronized Object receive() 

throws InterruptedException {

block(); clearReady(); //part of Selectable

Object tmp = chann; chann = null;

notifyAll(); //could be notify()

return(tmp);

}

}

Selectable is 
described later. Concurrency: message passing 6
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Java implementation - sender

class Sender implements Runnable {

  private Channel chan;

  private SlotCanvas display;

  Sender(Channel c, SlotCanvas d)

    {chan=c; display=d;}

  public void run() {

    try { int ei = 0;

      while(true) {

        display.enter(String.valueOf(ei));

        ThreadPanel.rotate(12);

        chan.send(new Integer(ei));

        display.leave(String.valueOf(ei));

        ei=(ei+1)%10; ThreadPanel.rotate(348);

      }

    } catch (InterruptedException e){}

  }

}
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Java implementation - receiver

class Receiver implements Runnable {

  private Channel chan;

  private SlotCanvas display;

  Receiver(Channel c, SlotCanvas d) 

    {chan=c; display=d;}

  public void run() {

    try { Integer v=null;

      while(true) {

        ThreadPanel.rotate(180);

        if (v!=null) display.leave(v.toString());

        v = (Integer)chan.receive();

        display.enter(v.toString());

        ThreadPanel.rotate(180);

      }

    } catch (InterruptedException e){}

  }

}
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model

range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan

SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization
||SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send,receive}}.
LTS?

How can this be 
modelled directly 
without the need 
for relabeling?

message operation FSP model

send(e,chan) ?

v = receive(chan) ?
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selective receive

Channels
c1
c2
cn

How 
should we deal
with multiple 

channels?

Sender

send(e,c)Sender

send(e,c)Sender[n]
send(en,cn)

select

when G1 and v1=receive(chan1) => S1;

or

when G2 and v2=receive(chan2) => S2;

or

when Gn and vn=receive(chann) => Sn;

end

Select 
statement...

How would we 
model this in FSP?
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selective receive

ARRIVALS CARPARK

CONTROL
DEPARTURESarrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS   = (arrive->ARRIVALS).

DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)

||DEPARTURES).

Implementation 
using message 
passing? 
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Java implementation - selective receive

class MsgCarPark implements Runnable {

  private Channel arrive,depart;

  private int spaces,N;

  private StringCanvas disp;

  public MsgCarPark(Channel a, Channel l, 

                   StringCanvas d,int capacity) {

    depart=l; arrive=a; N=spaces=capacity; disp=d;

  }

  … 

  public void run() {…}

}

Implement 
CARPARKCONTROL as a 
thread MsgCarPark 
which receives signals 
from channels arrive
and depart.
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Java implementation - selective receive

public void run() {

    try {

      Select sel = new Select();

      sel.add(depart);

      sel.add(arrive);

      while(true) {

        ThreadPanel.rotate(12);

        arrive.guard(spaces>0);

        depart.guard(spaces<N);

        switch (sel.choose()) {

        case 1:depart.receive();display(++spaces);

               break;

        case 2:arrive.receive();display(--spaces);

               break;

        }

      }

    } catch InterrruptedException{}

  }

See 
Applet
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 send(e,p) - send the 
value of the expression e to 
port p. The process calling 
the send operation is not
blocked. The message is 
queued at the port if the 
receiver is not waiting.

10.2  Asynchronous Message Passing - port

Port p
Receiver

v=receive(p)

 v = receive(p) - receive 
a value into local variable v
from port p. The process 
calling the receive 
operation is blocked if 
there are no messages 
queued to the port.

Sender

send(e,c)
Sender

send(e,c)
Sender[n]

send(en,p)
many-to-one
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Port port = new Port();

tx1.start(new Asender(port,send1disp));

tx2.start(new Asender(port,send2disp));

rx.start(new Areceiver(port,recvdisp)); 

asynchronous message passing - applet

Two senders 
communicate 
with a receiver 
via an 
“unbounded” 
port. 

Each sender 
sends a 
sequence of 
integer values 
from 0 to 9 and 
then restarts at 
0 again.

Instances of SlotCanvasInstances of ThreadPanel
Concurrency: message passing 15
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Java implementation - port

The 
implementation 
of Port is a 
monitor that has 
synchronized 
access methods 
for send and 
receive.

class Port extends Selectable {

Vector queue = new Vector(); 

public synchronized void send(Object v){

queue.addElement(v);

signal();

}

public synchronized Object receive() 

throws InterruptedException {

block(); clearReady();

Object tmp = queue.elementAt(0);

queue.removeElementAt(0); 

return(tmp);

}

}
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port model

range M = 0..9 // messages with values up to 9

set S = {[M],[M][M]} // queue of up to three messages

PORT            //empty state, only send permitted

= (send[x:M]->PORT[x]),  

PORT[h:M]       //one message queued to port

= (send[x:M]->PORT[x][h] 

|receive[h]->PORT

),   

PORT[t:S][h:M]  //two or more  messages queued to port

= (send[x:M]->PORT[x][t][h]

|receive[h]->PORT[t]

).

// minimise to see result of abstracting from data values

||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS?
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model of applet

ASENDER = ASENDER[0],

ASENDER[e:M] = (port.send[e]->ASENDER[(e+1)%10]).

ARECEIVER = (port.receive[v:M]->ARECEIVER).

||AsyncMsg = (s[1..2]:ASENDER || ARECEIVER||port:PORT)

             /{s[1..2].port.send/port.send}.

Safety?

S[1..2]:

ASENDER
port:PORT ARECEIVER

AsynchMsg

port.receiveS[1..2].port.send

Concurrency: message passing 18
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10.3  Rendezvous - entry

Client Server

req=accept(entry)

res=call(entry,req) 

reply(entry,res)

Request
message

Reply
message

suspended
perform service

Rendezvous is a form of request-reply to support client
server communication. Many clients may request service, 
but only one is serviced at a time.
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Rendezvous

 res=call(e,req) - send the 

value req as a request 
message which is queued to 

the entry e. 

The calling process is 
blocked until a reply message 
is received into the local 

variable req.

 req=accept(e) - receive 
the value of the request 

message from the entry e

into local variable req. The 
calling process is blocked if 
there are no messages 
queued to the entry. 

 reply(e,res) - send the 

value res as a reply 

message to entry e. 
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Entry entry = new Entry();

clA.start(new Client(entry,clientAdisp,"A"));

clB.start(new Client(entry,clientBdisp,"B"));

sv.start(new Server(entry,serverdisp)); 

asynchronous message passing - applet

Two clients call a 
server which services a 
request at a time. 

Instances of SlotCanvasInstances of ThreadPanel
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Selectable

guard()

list
Select

add()

choose()

Channel

send()

receive()

Port

send()

receive()

Entry

call()

accept()
reply()

clientChan

Java implementation - entry

The call method creates a 
channel object on which to 
receive the reply message. 
It constructs and sends to 
the entry a message 
consisting of a reference 
to this channel and a 
reference to the req 
object. It then awaits the 
reply on the channel.

The accept method keeps a copy of 
the channel reference; the reply
method sends the reply message to 
this channel.

Entries are implemented as 
extensions of ports, 
thereby supporting queuing 
and selective receipt.
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public class Entry extends Port {

  private CallMsg cm;

  public Object call(Object req) throws InterruptedException {

    Channel clientChan = new Channel();

    send(new CallMsg(req,clientChan));

    return clientChan.receive();

  }

  public Object accept()throws InterruptedException {

    cm = (CallMsg) receive();

    return cm.request;

  }

  public void reply(Object res) throws InterruptedException {

    cm.replychan.send(res);

  }

  private class CallMsg {

Object  request; Channel replychan;

    CallMsg(Object m, Channel c)

      {request=m; replychan=c;}

  }

}

Java implementation - entry

Do call, accept and 
reply need to be 
synchronized methods? Concurrency: message passing 23
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model of entry and applet

set M = {replyA,replyB} // reply channels

||ENTRY = PORT/{call/send, accept/receive}.

CLIENT(CH='reply) = (entry.call[CH]->[CH]->CLIENT).

SERVER = (entry.accept[ch:M]->[ch]->SERVER).

||EntryDemo = (CLIENT('replyA)||CLIENT('replyB)

|| entry:ENTRY || SERVER  ).

CLIENT() entry:ENTRY SERVER

EntryDemo

entry.acceptentry.call[M]

We reuse the models for ports and channels …

Action labels 
used in 
expressions or 
as parameter 
values must be 
prefixed with 
a single quote.
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rendezvous Vs monitor method invocation

What is the difference?

… from the point of view of the client?

… from the point of view of the server?

… mutual exclusion?

Which implementation is more efficient? 

… in a local context (client and server in same computer)?

… in a distributed context (in different computers)?
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Summary

◆Concepts

⚫ synchronous message passing – channel

⚫ asynchronous message passing – port

- send and receive / selective receive

⚫ rendezvous bidirectional comms - entry
- call and accept ... reply

◆Models
⚫ channel : relabelling, choice & guards

⚫ port : message queue, choice & guards

⚫ entry : port & channel

◆Practice
⚫ distributed computing (disjoint memory)

⚫ threads and monitors  (shared memory)
Concurrency: message passing 26

©Magee/Kramer

Course Outline

 Processes and Threads

 Concurrent Execution

 Shared Objects & Interference

 Monitors & Condition Synchronization

 Deadlock

 Safety and Liveness Properties

 Model-based Design

 Dynamic systems

 Message Passing

Concepts

Models

Practice

Concurrent Software Architectures

Timed Systems
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Where the going gets tough 

& things are not what they l k like
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“Normal” coding

Get some requirements

“Agile” the $@#% out of it

Test the code
(if not entirely unprofessional)

▪Things more or less “work”

May need some debugging, till “good-enough”

Christos Kloukinas © 2024 3

Coding vs Programming

▪ You don’t “code” algorithms – you:

1. Prove them

2. Program them carefully

3. Test them exhaustively

4. Prove their implementation too, if possible

Christos Kloukinas © 2024 4

Algorithms – why stress about ’em?

▪ “OpenJDK’s java.utils.Collection.sort() is broken: The 

good, the bad and the worst case” de Gouw et al., 

Feb 2015 https://web.archive.org/web/20240304054839/http://envisage-

project.eu/wp-content/uploads/2015/02/sorting.pdf

▪Suggested solution was broken too 
https://bugs.openjdk.org/browse/JDK-8203864

▪ This (Tim)sort had been in distributions for something like 9 years till 

shown broken (TimSort used in Python & Java)

Issue: Broken INVARIANT
Christos Kloukinas © 2024 5

() INVARIANT

▪ You don’t know your class invariant?

▪ You don’t know what it’s supposed to be doing

(you just have a warm feeling)

Constructors have one goal – to make the invariant true.

Methods depend on the invariant being true when they start.

Methods should guarantee that the invariant is true when they exit.

You need to know your class invariant.
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“Normal” coding & programming

▪ Is SEQUENTIAL

▪Things happen one after the other

At least, when not using complex libraries

(DBs, Logging, Networking, GUIs, …)

That is, when writing “Hello World”… 
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Concurrency – “reasonable” doesn’t exist

“In this execution, the reads see writes that occur

later in the execution order.

This may seem counterintuitive, but is allowed

by happens-before consistency.

Allowing reads to see later writes can sometimes 

produce unacceptable behaviors.”
The Java® Language Specification - Java SE 23 Edition, Gosling et 

al., 2024-08-21, p. 774 (end of “17.4.5 Happens-before Order”) 
https://docs.oracle.com/javase/specs/jls/se23/jls23.pdf#%5B%7B%22num%22%3A9654%2C%22gen%22%3

A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C72%2C378%2Cnull%5D
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Programming the Devil’s Computer

public class SynchronizedBarriers { int x, y;// x=y=0

void actor() { synchronized(this) { x = 1; }  

synchronized(this) { y = 1; } }

void observer(IntResult2 r) {r.r1 = get_in_order(y);

r.r2 = get_in_order(x); } }
r1=y, r2=x Occurrences

0, 0 43,558,372

0, 1 22,512

1, 0 1,565

1, 1 1,372,341

“Close Encounters of The Java Memory 

Model Kind”, Aleksey Shipilёv  [visited 

2024-12-06] https://shipilev.net/blog/2016/close-

encounters-of-jmm-kind/ 
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Computers are highly distributed machines

▪ Lots of different components: cores, caches, memory,…

▪Hard to keep everything synchronised

▪ Some hardware considers acceptable what many 

wouldn’t – We have to program that…

▪ WRL Research Report 95/7 “Shared Memory 

Consistency Models: A Tutorial”, Sarita V. Adve, 

Kourosh Gharachorloo, Sep 1995, 

https://courses.grainger.illinois.edu/CS533/sp2023/reading_list/adve95shared.pdf 
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Concurrency – even experts fail (a lot!)

▪ “The Java memory model is fatally flawed” William 

Pugh, Aug 2000, Concurrency: Practice and 

Experience, vol. 12, No. 6, pp. 445-455 
http://www.cs.umd.edu/~pugh/java/broken.pdf 

 Without a proof, code means nothing – semi-

random words on a paper/in a file
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Proofs are hard

▪ Need abstractions – very hard to prove the real thing

(e.g., exceptions ignored)

▪ We still struggle – what, me prove theorems? 

▪ Model-checking helps A LOT!

(and then some…)

Christos Kloukinas © 2024 12

FSP/LTSA – automated model-checking

▪ Models: build/analyse prototypes fast

▪ Ignore implementation details that don’t matter

Get the protocols right

▪ Automated verification: no need to write proofs! 
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Patterns to guide the FSP2Java transform 

▪ Active    procs turned into Threads

▪Passive procs turned into Monitors:
// Proc[State] = when (guard) act -> Proc[State’]

public synchronized act()
   throws InterruptedException {
  while (!guard) wait();
  // impl State->State’
  notifyAll();
}
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Patterns to guide the FSP2Java transform 

▪ It’s just a guidance!

▪ Remember Alamo  Transactions!

▪Tx: (1) force through; OR (2) bail out!

▪ Bailing out needs undo handlers / try-with-resources 

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html 
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FSP ain’t hard – just Sequence Diagrams

▪ UML Sequence Diagrams are (dead) FSP models

▪ FSP shared action = obj calling another obj in UML

▪ UML Seq Diagrams: cannot simulate ’em! 

FSP: we can 

▪ UML Seq Diagrams: cannot verify ’em! 

FSP: we can 

▪ UML: we draw 

FSP: we code 
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FSP Quick Reference Guide 

(based on http://www.doc.ic.ac.uk/~jnm/book/ltsa/Appendix-A-2e.html ) 

Appendix A – FSP Quick Reference   

A.1   Processes 
A process is defined by a one or more local processes separated by commas. The definition is terminated 
by a full stop. STOP and ERROR are primitive local processes.  

Example 

     Process = (a -> Local), 
    Local = (b -> STOP). 

Action Prefix  -> If x is an action and P a process then (x->P) 
describes a process that initially engages in the 
action x and then behaves exactly as described by 
P.                      Similar to  x ; P in programming! 

Choice | If x and y are actions then (x->P|y->Q) 
describes a process which initially engages in 
either of the actions x or y.  After the first action 
has occurred, the subsequent behavior is described 
by P if the first action was x and Q if the first 
action was y.   

Guarded Action 
when 

The choice (when B x -> P | y -> Q) 
means that when the guard B is true then the 
actions x and y are both eligible to be chosen, 
otherwise if B is false then the action x cannot be 
chosen.  

Alphabet 
Extension  + 

The alphabet of a process is the set of actions in 
which it can engage. P + S extends the alphabet 
of the process P with the actions in the set S. 

Table A.1 – Process operators 

Indexed sub-processes/actions: 
COUNTDOWN(N=3) = (start->CD[N]), 
   CD[i:0..N]=(when (i>0) tick[i]->CD[i-1] 
              |when (i==0) beep -> STOP 
              |stop -> STOP). 
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A.2   Composite Processes 
A composite process is the parallel composition of one or more processes. The definition of a composite 
process is preceded by ||. 

Example 

     ||Composite = (P || Q). 

Parallel Composition || If P and Q are processes then (P||Q) represents the 
concurrent execution of P and Q.  

Replicator 
forall 

forall [i:1..N] P(i) is the parallel 
composition (P(1) || … || P(N)) 

Process Labeling :  a:P prefixes each label in the alphabet of P with a. 

Process Sharing :: {a1,..,ax}::P replaces every label n in the alphabet 
of P with the labels a1.n,…,ax.n. Further, every 
transition (n->Q) in the definition of P is replaced 
with the transitions ({a1.n,…,ax.n}->Q). 

Priority High << ||C =(P||Q)<<{a1,…,an} specifies a 
composition in which the actions a1,…,an have higher 
priority than any other action in the alphabet of P||Q 
including the silent action tau. In any choice in this 
system which has one or more of the actions a1,…,an 
labeling a transition, the transitions labeled with lower 
priority actions are discarded. 

Priority Low >> 

  

||C=(P||Q)>>{a1,…,an} specifies a composition 
in which the actions a1,…,an have lower priority than 
any other action in the alphabet of P||Q including the 
silent action tau. In any choice in this system which 
has one or more transitions not labeled by a1,…,an, 
the transitions labeled by a1,…,an are discarded. 

Table A.2 – Composite Process Operators 
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A.3   Common Operators 
The operators in Table A.3 may be used in the definition of both processes and composite processes. 

Conditional 
if then 
else 

The process if B then P else Q behaves as the 
process P if the condition B is true otherwise it 
behaves as Q. If the else Q is omitted and B is false, 
then the process behaves as STOP. 

Re-labeling 

 / 

Re-labeling is applied to a process to change the 
names of action labels. The general form of re-
labeling is: 
/ { newlabel_1/oldlabel_1,… 
    newlabel_n/oldlabel_n }. 

Hiding 
 
  \  

When applied to a process P, the hiding operator 
\{a1..ax} removes the action names a1..ax from 
the alphabet of P and makes these concealed actions 
"silent". These silent actions are labeled tau.  Silent 
actions in different processes are not shared. 

Interface 
 
   @ 

When applied to a process P, the interface operator 
@{a1..ax} hides all actions in the alphabet of P 
not labeled in the set a1..ax. 

Table A.3 – Common Process Operators 

deterministic P Transforms P into a deterministic process, 
removing all non-deterministic choices. 

minimal P Minimizes P trying to remove all tau transitions 
– produces a trace-equivalent LTS. 

Table X – Interesting command keywords 

A.4   Properties 

Safety 
property 

A safety property P defines a deterministic 
process that asserts that any trace including actions in 
the alphabet of P, is accepted by P. 

Progress 
progress 

progress P = {a1,a2..an} defines a 
progress property P which asserts that in an infinite 
execution of a target system, at least one of the 
actions a1,a2..an will be executed infinitely often. 

Table A.4 – Safety and Progress Properties 

Avoid “if 
then else” 
(passive 
processes need 
to have 
guarded actions 
to be translated 
into Java 
easily). 
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A.5   FLTL – Fluent Linear Temporal Logic 

Fluent 
fluent 

fluent FL = <{s1,…sn}, {e1..en}> 
initially B defines a  fluent FL that is 
initially true if the expression  B is true and initially 
false if the expression B is false. FL becomes true 
immediately any of the initiating actions 
{s1,…sn}occur and false immediately any of the 
terminating actions {e1..en} occur. If the term 
initially B is omitted then FL is initially 
false. 

Assertion 
assert 

assert PF = FLTL_Expression defines 
an FLTL property.  

&& conjunction    (and) 

|| disjunction     (or) 

! negation         (not) 

-> implication    ((A->B) (!A || B)) 

<-> equivalence   ((A<->B) (A->B)&&(B->A))  

next time X F iff F holds in the next instant. 

always []F iff F holds now and always in the future. 

eventually <>F iff F holds at some point in the future. 

until P U Q iff Q holds at some point in the future and P holds 
until then. 

weak until P W Q iff P holds indefinitely or P U Q 

forall forall [i:R] FL(i) conjunction of FL(i) 

exists exists [i:R] FL(i) disjunction of FL(i) 

Table A.5 – Fluent Linear Temporal Logic 


