
Concurrency: introduction 1

©Magee/Kramer

Concurrency

State Models and Java Programs

Jeff Magee and Jeff Kramer

Concurrency: introduction 2

©Magee/Kramer

What is a Concurrent Program?

A sequential program has a
single thread of control.

A concurrent program has
multiple threads of control
allowing it perform multiple
computations in parallel and to
control multiple external
activities which occur at the
same time.

Concurrency: introduction 3

©Magee/Kramer

Why Concurrent Programming?

◆Performance gain from multiprocessing hardware

⚫ parallelism.

◆Increased application throughput

⚫ an I/O call need only block one thread.

◆Increased application responsiveness

⚫ high priority thread for user requests.

◆More appropriate structure

⚫ for programs which interact with the environment, control

multiple activities and handle multiple events.

Concurrency: introduction 4

©Magee/Kramer

Do I need to know about concurrent programming?

 Therac - 25 computerised radiation therapy machine

Concurrent programming errors contributed to accidents
causing deaths and serious injuries.

 Mars Rover

Problems with interaction between concurrent tasks
caused periodic software resets reducing availability for
exploration.

Concurrency is widespread but error prone.

Concurrency: introduction 5

©Magee/Kramer

a Cruise Control System

 Is the system safe?

 Would testing be sufficient to discover all errors?

When the car ignition is
switched on and the on
button is pressed, the
current speed is recorded
and the system is enabled:
it maintains the speed of
the car at the recorded
setting.

Pressing the brake,
accelerator or off button
disables the system.
Pressing resume re-enables
the system.

buttons

Concurrency: introduction 6

©Magee/Kramer

models

A model is a simplified representation of the real world.

Engineers use models to gain confidence in the adequacy
and validity of a proposed design.

 focus on an aspect of interest - concurrency

 model animation to visualise a behaviour

 mechanical verification of properties (safety & progress)

Models are described using state machines, known as
Labelled Transition Systems LTS. These are described
textually as finite state processes (FSP) and displayed
and analysed by the LTSA analysis tool.

Concurrency: introduction 7

©Magee/Kramer

modeling the Cruise Control System

engineOn

speed

engineOff

0 1

Later chapters will explain how
to construct models such as this
so as to perform animation and
verification.

LTS of the process
that monitors speed.

LTSA Animator to step through
system actions and events.

Concurrency: introduction 8

©Magee/Kramer

programming practice in Java

Java is

 widely available, generally accepted and portable

 provides sound set of concurrency features

Hence Java is used for all the illustrative examples, the
demonstrations and the exercises. Later chapters will
explain how to construct Java programs such as the
Cruise Control System.

“Toy” problems are also used as they
crystallize particular aspects of
concurrent programming problems!

Concurrency: introduction 9

©Magee/Kramer

course objective

This course is intended to provide a sound
understanding of the concepts, models and practice
involved in designing concurrent software.

The emphasis on principles and concepts provides a
thorough understanding of both the problems and the
solution techniques. Modeling provides insight into
concurrent behavior and aids reasoning about particular
designs. Concurrent programming in Java provides the
programming practice and experience.

Concurrency: introduction 10

©Magee/Kramer

Learning outcomes…

After completing this course, you will know

◆how to model, analyze, and program concurrent object-

oriented systems.

◆ the most important concepts and techniques for

concurrent programming.

◆what are the problems which arise in concurrent

programming.

◆what techniques you can use to solve these problems.

Concurrency: introduction 11

©Magee/Kramer

Book

Concurrency:
State Models &
Java Programs,
 2nd Edition

Jeff Magee &
Jeff Kramer

WILEY

1st
edition

Concurrency: introduction 12

©Magee/Kramer

Course Outline

 Processes and Threads

 Concurrent Execution

 Shared Objects & Interference

 Monitors & Condition Synchronization

 Deadlock

 Safety and Liveness Properties

 Model-based Design

 Dynamic systems

 Message Passing

Concepts

Models

Practice

Concurrent Software Architectures

Timed Systems

Concurrency: introduction 13

©Magee/Kramer

Web based course material

◆ Java examples and demonstration programs

◆ State models for the examples

◆ Labelled Transition System Analyser (LTSA) for

modeling concurrency, model animation and model

property checking.

staff.city.ac.uk/c.kloukinas/concurrency

(www.doc.ic.ac.uk/~jnm/book/)

Concurrency: introduction 14

©Magee/Kramer

Summary

◆Concepts

⚫ we adopt a model-based approach for the design and

construction of concurrent programs

◆Models

⚫ we use finite state models to represent concurrent behavior.

◆Practice

⚫ we use Java for constructing concurrent programs.

 Examples are used to illustrate the concepts, models and

demonstration programs.

2015 Concurrency: processes & threads

1

©Magee/Kramer 2nd Edition

Chapter 2

Processes & Threads

2015 Concurrency: processes & threads

2

©Magee/Kramer 2nd Edition

concurrent processes

We structure complex systems as sets

of simpler activities, each represented

as a sequential process. Processes

can overlap or be concurrent, so as to

reflect the concurrency inherent in the

physical world, or to offload time-

consuming tasks, or to manage

communications or other devices.

Designing concurrent software can be

complex and error prone. A rigorous

engineering approach is essential.

Model processes as

finite state

machines.

Program processes

as threads in Java.

Concept of a

process as a

sequence of actions.

2015 Concurrency: processes & threads

3

©Magee/Kramer 2nd Edition

processes and threads

Concepts: processes - units of sequential execution.

Models: finite state processes (FSP)

 to model processes as sequences of actions.

 labelled transition systems (LTS)

 to analyse, display and animate behavior.

Practice: Java threads

2015 Concurrency: processes & threads

4

©Magee/Kramer 2nd Edition

2.1 Modelling Processes

Models are described using state machines, known

as Labelled Transition Systems LTS. These are

described textually as finite state processes (FSP)

and displayed and analysed by the LTSA analysis

tool.

 LTS - graphical form

 FSP - algebraic form

The FSP quick reference is available at

doc.ic.ac.uk/~jnm/book/ltsa/Appendix-A-2e.html

2015 Concurrency: processes & threads

5

©Magee/Kramer 2nd Edition

modelling processes

A process is the execution of a sequential program. It is

modelled as a finite state machine which transits from state

to state by executing a sequence of atomic actions.

a light switch

LTS

on→off→on→off→on→off→ ……….
a sequence of

actions or trace

on

off

0 1

Can finite state models produce infinite traces?

2015 Concurrency: processes & threads

6

©Magee/Kramer 2nd Edition

FSP - action prefix

If x is an action and P a process then (x-> P) describes a

process that initially engages in the action x and then

behaves exactly as described by P.

ONESHOT = (once -> STOP). ONESHOT state

machine

(terminating process)

Convention: actions begin with lowercase letters

 PROCESSES begin with uppercase letters

once

0 1

x -> P ~ x ; P

2015 Concurrency: processes & threads

7

©Magee/Kramer 2nd Edition

FSP - action prefix & recursion

SWITCH = OFF,

 OFF = (on -> ON),

 ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,

 OFF = (on ->(off->OFF)).

And again:

SWITCH = (on->off->SWITCH).

on

off

0 1

Scope:

OFF and ON are

local subprocess

definitions, local to

the SWITCH
definition.

cf. private methods.

OFF ON

2015 Concurrency: processes & threads

8

©Magee/Kramer 2nd Edition

animation using LTSA

Ticked actions are eligible for

selection.

In the LTS, the last action is

highlighted in red.

The LTSA animator can be

used to produce a trace.

on

off

0 1

2015 Concurrency: processes & threads

9

©Magee/Kramer 2nd Edition

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange

 -> TRAFFICLIGHT).

LTS generated using LTSA:

Trace:

FSP model of a traffic light :

red→orange→green→orange→red→orange→green …

red orange green

orange

0 1 2 3

2015 Concurrency: processes & threads

10

©Magee/Kramer 2nd Edition

FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a

process which initially engages in either of the actions x

or y. After the first action has occurred, the subsequent

behavior is described by P if the first action was x and Q

if the first action was y.

Who or what makes the choice?

Is there a difference between input and output

actions?

2015 Concurrency: processes & threads

11

©Magee/Kramer 2nd Edition

FSP - choice

DRINKS = (red->coffee->DRINKS

 |blue->tea->DRINKS

).

LTS generated using LTSA:

Possible traces?

FSP model of a drinks machine :

red

blue

coffee

tea

0 1 2

input?

output?

Coffee

probability?

2015 Concurrency: processes & threads

12

©Magee/Kramer 2nd Edition

Could we make this deterministic

and trace equivalent?

Would it really have equivalent behaviour?

Non-deterministic choice

Process (x-> P | x -> Q) describes a process which

engages in x and then behaves as either P or Q.

COIN = (toss->HEADS|toss->TAILS),

HEADS= (heads->COIN),

TAILS= (tails->COIN).

Tossing a

coin.
toss

toss

heads

tails

0 1 2

Heads probability?

Possible traces?

Action x doesn’t DETERMINE
the future behaviour!

2015 Concurrency: processes & threads

13

©Magee/Kramer 2nd Edition

Modelling failure

How do we model an unreliable communication channel

which accepts in actions and if a failure occurs produces no

output, otherwise performs an out action?

Use non-determinism...

CHAN = (in->CHAN

 |in->out->CHAN

).

in

in

out

0 1

Probability of message delivery?

Deterministic form?
2015 Concurrency: processes & threads

14

©Magee/Kramer 2nd Edition

Single slot buffer that inputs a value in the range 0 to 3 and

then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]->BUFF).

equivalent to

or using a process parameter with default value:

BUFF = (in[0]->out[0]->BUFF

 |in[1]->out[1]->BUFF

 |in[2]->out[2]->BUFF

 |in[3]->out[3]->BUFF

).

BUFF(N=3) = (in[i:0..N]->out[i]->BUFF).

indexed actions

generate labels of

the form:

action.index

Let’s draw it!

2015 Concurrency: processes & threads

15

©Magee/Kramer 2nd Edition

const N = 1

range T = 0..N

range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),

TOTAL[s:R] = (out[s]->SUM).

index expressions to

model calculation:

in.0.0

in.0.1

in.1.0

in.1.1

out.0

out.1

out.2

0 1 2 3

FSP - indexed processes and actions

Local indexed process

definitions are equivalent

to process definitions for

each index value

2015 Concurrency: processes & threads

16

©Magee/Kramer 2nd Edition

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when

the guard B is true then the actions x and y are both

eligible to be chosen, otherwise if B is false then the

action x cannot be chosen.

COUNT (N=3) = COUNT[0],

COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

 |when(i>0) dec->COUNT[i-1]

).

inc inc

dec

inc

dec dec

0 1 2 3

2015 Concurrency: processes & threads

17

©Magee/Kramer 2nd Edition

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),

COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]

 |when(i==0)beep->STOP

 |stop->STOP

).

A countdown timer which, once started, beeps after N ticks,

or can be stopped.

start

stop

tick

stop

tick

stop

tick beep

stop

0 1 2 3 4 5

2015 Concurrency: processes & threads

18

©Magee/Kramer 2nd Edition

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),

COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]

 |when(i==0)beep->STOP

 |stop->STOP

).

A countdown timer which, once started, beeps after N

ticks, or can be stopped.

start

stop

tick

stop

tick

stop

tick beep

stop

0 1 2 3 4 5

2015 Concurrency: processes & threads

19

©Magee/Kramer 2nd Edition

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0

BIZARRE = (when (False) doanything-> BIZARRE).

Answer:

STOP

2015 Concurrency: processes & threads

20

©Magee/Kramer 2nd Edition

FSP - process alphabets

The alphabet of a process is the set of actions in which it

can engage.

Process alphabets are

implicitly defined by the

actions in the process

definition.

The alphabet of a process

can be displayed using the

LTSA alphabet window.

Process:

 COUNTDOWN

Alphabet:

 { beep,

 start,

 stop,

 tick

 }

What’s the alphabet of BIZARRE?
2015 Concurrency: processes & threads

21

©Magee/Kramer 2nd Edition

FSP - process alphabet extension

Alphabet extension can be used to extend the implicit

alphabet of a process:

Alphabet of WRITER is the set {write[0..3]}

(we make use of alphabet extensions in later chapters to

control interaction between processes)

WRITER = (write[1]->write[3]->WRITER)

 +{write[0..3]}.

2015 Concurrency: processes & threads

22

©Magee/Kramer 2nd Edition

Revision & Wake-up Exercise

In FSP, model a process FILTER, that filters out values greater

than 2 :

ie. it inputs a value v between 0 and 5, but only outputs it if v <=

2, otherwise it discards it.

FILTER = (in[v:0..5] -> DECIDE[v]),

DECIDE[v:0..5] = (?).

2015 Concurrency: processes & threads

23

©Magee/Kramer 2nd Edition

2.2 Implementing processes

Modeling processes as

finite state machines

using FSP/LTS.

Implementing threads in

Java.

Note: to avoid confusion, we use the term process when referring to the

models, and thread when referring to the implementation in Java.

2015 Concurrency: processes & threads

24

©Magee/Kramer 2nd Edition

Implementing processes - the OS view

A (heavyweight) process in an operating system is represented by its code,

data and the state of the machine registers, given in a descriptor. In order to

support multiple (lightweight) threads of control, it has multiple stacks, one

for each thread.

D a ta C o de

O S P roc ess

D e sc rip to r

T hrea d 1 T hrea d 2 T hrea d n

S ta c k
S ta c k S ta c k

D e sc rip to r D e sc rip to r

D e sc rip to r

2015 Concurrency: processes & threads

25

©Magee/Kramer 2nd Edition

Psycho Killer Process Stack?!? Qu’est-ce-que c’est?

int foo(int a) { return a+2; }

int bar(int b) { return foo(b)*3; }

int main() {
 int i = foo(4);
 int j = bar(5);
 return i+j;
}

Who calls foo?

How does foo know where to return?

2015 Concurrency: processes & threads

26

©Magee/Kramer 2nd Edition

foo(5)

foo(4) bar(5) bar(5) bar(5)

main main main main main main

Psycho Killer Process Stack?!? Qu’est-ce-que c’est?

int foo(int a) { return a+2; }

int bar(int b) { return foo(b)*3; }

int main() {
 int i = foo(4);
 int j = bar(5);
 return i+j;
}

Who calls foo?

How does foo know where to return?

“Le Stack”

Program execution

2015 Concurrency: processes & threads

27

©Magee/Kramer 2nd Edition

threads in Java

A Thread class manages a single sequential thread of control.

Threads may be created and terminated dynamically.

Thread

run()

MyThread

run()

The Thread class executes instructions from its method

run(). The actual code executed depends on the

implementation provided for run() in a derived class.

class MyThread extends Thread {

 public void run() {

 //......

 }

}

Creating and starting a thread object:

 Thread a = new MyThread();

 a.start();

2015 Concurrency: processes & threads

28

©Magee/Kramer 2nd Edition

threads in Java

Since Java does not permit multiple inheritance, we often implement

the run() method in a class not derived from Thread but from the

interface Runnable. This is also more flexible and maintainable.

Runnable

run()

MyRun

run()

public interface Runnable {

public abstract void run();

}

class MyRun implements Runnable{

public void run() {

//.....

}

}

Thread
target

Creating and starting a thread object:

 Thread b = new Thread(new MyRun());

 b.start(); 2015 Concurrency: processes & threads

29

©Magee/Kramer 2nd Edition

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

run() returns

The predicate isAlive() can be

used to test if a thread has been started but

not terminated. Once terminated, it cannot

be restarted (cf. mortals).

start() causes the thread to call its

run() method.

2015 Concurrency: processes & threads

30

©Magee/Kramer 2nd Edition

thread alive states in Java

Once started, an alive thread has a number of substates :

Non-Runnable

yield()

timeslice

Running

dispatch

wait()

start()

run() returns

wait() makes a Thread Non-Runnable (Blocked),

notify()can, and notifyAll()does, make it

Runnable (described in later chapters).

sleep()

Alive
Runnable

interrupt() interrupts the

Thread and sets interrupt status if

Running/Runnable, otherwise

raises an exception (used later).

2015 Concurrency: processes & threads

31

©Magee/Kramer 2nd Edition

Java thread lifecycle - an FSP specification

THREAD = CREATED,

CREATED = (start ->RUNNABLE),

RUNNABLE = (dispatch ->RUNNING),

RUNNING = ({sleep,wait} ->NON_RUNNABLE

 |{yield,timeslice}->RUNNABLE

 |end ->TERMINATED

 |run ->RUNNING),

NON_RUNNABLE = ({timeout,notify}->RUNNABLE),

TERMINATED = STOP.

Dispatch,timeslice,end,run,and timeout are not methods

of class Thread, but model the thread execution and scheduler .

2015 Concurrency: processes & threads

32

©Magee/Kramer 2nd Edition

Java thread lifecycle - an LTS specification

States 0 to 4 correspond to CREATED, RUNNABLE, RUNNING,

TERMINATED and NON-RUNNABLE respectively.
2015 Concurrency: processes & threads

33

©Magee/Kramer 2nd Edition

CountDown timer example

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),

COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]

 |when(i==0)beep->STOP

 |stop->STOP

).

Implementation in Java?

2015 Concurrency: processes & threads

34

©Magee/Kramer 2nd Edition

CountDown timer - class diagram

The class CountDown derives from Applet and contains the

implementation of the run() method which is required by Thread.

Applet

init()

start()

stop()

run()

tick()

beep()

Runnable

CountDown

NumberCanvas

setvalue()

Threadcounter

display

target

The class NumberCanvas

provides the display canvas.

2015 Concurrency: processes & threads

35

©Magee/Kramer 2nd Edition

CountDown class

public class CountDown extends Applet

 implements Runnable {

 volatile Thread counter; int i;

 final static int N = 10;

 AudioClip beepSound, tickSound;

 NumberCanvas display;

 public void init() {...}

 public void start() {...}

 public void stop() {...}

 public void run() {...}

 private void tick() {...} // private

 private void beep() {...} // private

}

2015 Concurrency: processes & threads

36

©Magee/Kramer 2nd Edition

CountDown class - start(), stop() and run()

public void start(){//event handler

 counter = new Thread(this);

 i = N; counter.start();

 }

 public void stop(){//event handler

 counter = null;

 }

 public void run() {

 while(true) {

 if (counter == null) return;

 if (i>0) { tick(); --i; }

 if (i==0) { beep(); return; }

 }

 }

COUNTDOWN Model
start ->COUNTDOWN[N]

stop ->

COUNTDOWN[i] process

recursion as a while loop

 STOP

 when(i>0) tick -> CD[i-1]

 when(i==0)beep -> STOP

STOP when run() returns

Event handlers run concurrently with your thread(s),
so comm uses locks or volatile variables!

2015 Concurrency: processes & threads

37

©Magee/Kramer 2nd Edition

Summary

◆Concepts

⚫ process - unit of concurrency, execution of a program

◆Models

⚫ LTS to model processes as state machines - sequences of

atomic actions

⚫ FSP to specify processes using prefix “->”, choice ” | ” and

recursion.

◆Practice

⚫ Java threads* to implement processes.

⚫ Thread lifecycle - created, running, runnable, non-runnable,

terminated.
* see also java.util.concurrency

* cf. POSIX pthreads in C 2015 Concurrency: processes & threads

38

©Magee/Kramer 2nd Edition

Chapter 2 – Sequential processes – Summary

◆Modelling – Seq procs syntax summary

◆Design principles

◆Java threads

◆Reality…

2015 Concurrency: processes & threads

39

©Magee/Kramer 2nd Edition

FSP – Sequential Processes (syntax summary)

(x-> P) ~ x ; P

Define & re-use process’ name to go to its state

Recursion4iteration: SWITCH = (on->off->SWITCH).

Sub-processes define internal states: (other procs cannot use ‘em!)

 SWITCH = OFF, // comma: def continues

 OFF = (on -> ON),

 ON = (off-> OFF). // dot: def finished

(when (Grd1) x-> P | when (Grd2) y-> Q) x!=y DET else NONDET

Process parameters & action/sub-process indices:

 COUNTDOWN (N=3) = (start->COUNTDOWN[N]),

 COUNTDOWN[i:0..N] =(when (i>0) tick[i] ->COUNTDOWN[i-1]

 |when (i==0) beep -> STOP

 |stop -> STOP).

Alphabet ext: WR =(write[1]->write[3]->WR) + { write[0..3] }.

2015 Concurrency: processes & threads

40

©Magee/Kramer 2nd Edition

FSP – we don’t know/care!

◆Action speed (could fluctuate!)

◆ Input/output actions/who does an action

◆Choice probability/resolution mechanism

◆Next state after a non-deterministic choice

(choice action doesn’t determine the future behaviour)

2015 Concurrency: processes & threads

41

©Magee/Kramer 2nd Edition

Design – Modeling as in OOAD (verb/subject/object)

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),

 COUNTDOWN[i:0..N] =

 (when (i>0) tick -> COUNTDOWN[i-1]

 |when (i==0) beep -> STOP

 |stop -> STOP).

A countdown timer which, once started, beeps after N

ticks, or can be stopped.

start

stop

tick

stop

tick

stop

tick beep

stop

0 1 2 3 4 5

◆ Action on object?

Public method

◆ Action from object?

Private method

2015 Concurrency: processes & threads

42

©Magee/Kramer 2nd Edition

CountDown class - start(), stop() and run()

public void start() {

 counter = new Thread(this);

 i = N; counter.start();

 }

 public void stop() {

 counter = null;

 }

 public void run() {

 while(true) {

 if (counter == null) return;

 if (i>0) { tick(); --i; }

 if (i==0) { beep(); return; }

 }

 }

COUNTDOWN Model
start ->COUNTDOWN[N]

stop ->

COUNTDOWN[i] process

recursion as a while loop

 STOP

 when(i>0) tick -> CD[i-1]

 when(i==0)beep -> STOP

STOP when run() returns

2015 Concurrency: processes & threads

43

©Magee/Kramer 2nd Edition

Reality – your “sequence” is a SUGGESTION

◆ Java/C/C++/…:

a = ++i;

b = ++j;

◆ Compiler can re-order these statements!

(I mean, why not?)

◆ What about assembly/machine code?

◆ CPU can re-order these statements!

(if b & j are in cache but a | i aren’t…)

◆ Concurrency – NEVER ASSUME SEQUENTIAL ORDER
(unless you ENFORCE IT!)

(locks, memory barriers,…)

◆ Stay sane – program with FSP first!

Concurrency: concurrent execution 1

©Magee/Kramer

Chapter 3

Concurrent Execution

Concurrency: concurrent execution 2

©Magee/Kramer

Concurrent execution

Concepts: processes - concurrent execution
 and interleaving.
 process interaction.

Models: parallel composition of asynchronous processes
 - interleaving

 interaction - shared actions
 process labeling, and action relabeling and hiding
 structure diagrams

Practice: Multithreaded Java programs

Concurrency: concurrent execution 3

©Magee/Kramer

Definitions

◆Concurrency
⚫ Logically simultaneous processing.

Does not imply multiple processing

elements (PEs). Requires

interleaved execution on a single PE.

◆Parallelism
⚫ Physically simultaneous processing.

Involves multiple PEs and/or

independent device operations.

Both concurrency and parallelism require controlled access to
shared resources . We use the terms parallel and concurrent
interchangeably and generally do not distinguish between real and
pseudo-parallel execution.

A

Time

B

C

Concurrency: concurrent execution 4

©Magee/Kramer

3.1 Modeling Concurrency

◆ How should we model process execution speed?

⚫ arbitrary speed

 (we abstract away time. Arbitrary: can change!)

◆ How do we model concurrency?

⚫ arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

◆ What is the result?

⚫ provides a general model independent of scheduling

(asynchronous model of execution)

Concurrency: concurrent execution 5

©Magee/Kramer

Asynchronous model

◆A-synchronous = NOT Synchronous

◆There’s no global clock to signal everyone for next action
“My CPU runs at 2.6 GHz!”

◆Synchronous action duration ≤ clock period

⚫ ⇒ Clock period set by the slowest component

⚫ Max action duration is known!

◆ “Sequential” vs “Concurrent”

◆ “Concurrent”: “Synchronous” vs “Asynchronous”

◆Communication:

⚫ Synch: simple – read (previous) values of others

⚫ Asynch: not simple… must synchronize
Concurrency: concurrent execution 6

©Magee/Kramer

parallel composition - action interleaving

think→talk→scratch

think→scratch→talk

scratch→think→talk

Possible traces as a
result of action
interleaving.
talk→think

impossible

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is
the parallel composition operator.

ITCH = (scratch->STOP).

CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

Concurrency: concurrent execution 7

©Magee/Kramer

parallel composition - action interleaving

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH

2 states
3 states

2 x 3 states

ITCH

scratch

0 1
CONVERSE

think talk

0 1 2

CONVERSE_ITCH

scratch

think

scratch

talk scratch

talk think

0 1 2 3 4 5

Concurrency: concurrent execution 8

©Magee/Kramer

parallel composition - algebraic laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)
 = (P||Q||R).

Clock radio example:

CLOCK = (tick->CLOCK).

RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?
Concurrency: concurrent execution 9

©Magee/Kramer

modeling interaction - shared actions

MAKER = (make->ready->MAKER).

USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

MAKER
synchronizes
with USER
when ready.

If processes in a composition have actions in common,
these actions are said to be shared. Shared actions are
the way that process interaction is modeled. While
unshared actions may be arbitrarily interleaved, a
shared action must be executed at the same time by
all processes that participate in the shared action.

LTS? Traces? Number of states?
(UML seq. diagram?)

Concurrency: concurrent execution 10

©Magee/Kramer

MAKERv2 = (make->ready->used->MAKERv2).

USERv2 = (ready->use->used ->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

modeling interaction - handshake

A handshake is an action acknowledged by another:

Interaction
constrains
the overall
behaviour!

3 states

3 states

3 x 3
states?

4 states
make ready use

used

0 1 2 3

Concurrency: concurrent execution 11

©Magee/Kramer

modeling interaction - multiple processes

MAKE_A = (makeA->ready->used->MAKE_A).

MAKE_B = (makeB->ready->used->MAKE_B).

ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Multi-party synchronization:

makeA

makeB makeA ready assemble

used

makeB

0 1 2 3 4 5

Concurrency: concurrent execution 12

©Magee/Kramer

composite processes

A composite process is a parallel composition of primitive
processes. These composite processes can be used in the
definition of further compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

Substituting the definition for MAKERS in FACTORY and applying the
commutative and associative laws for parallel composition results in
the original definition for FACTORY in terms of primitive processes.

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Concurrency: concurrent execution 13

©Magee/Kramer

process labeling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).

||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

An array of instances of the switch process:

a:SWITCH

a.on

a.off

0 1

b:SWITCH

b.on

b.off

0 1

Concurrency: concurrent execution 14

©Magee/Kramer

process labeling by a set of prefix labels

{a1,..,ax}::P replaces every action label n in the
alphabet of P with the labels a1.n,…,ax.n. Further,
every transition (n->X) in the definition of P is
replaced with the transitions ({a1.n,…,ax.n} ->X).

Process prefixing is useful for modeling shared resources:

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER
 || {a,b}::RESOURCE).

Concurrency: concurrent execution 15

©Magee/Kramer

process prefix labels for shared resources

How does the model ensure
that the user that acquires
the resource is the one to
release it?

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE

a.acquire

b.acquire

a.release

b.release

0 1

RESOURCE_SHARE

a.acquire

b.acquire b.use

b.release

a.use

a.release

0 1 2 3 4

Concurrency: concurrent execution 16

©Magee/Kramer

action relabeling

Relabeling to ensure that composed
processes synchronize on particular actions.

Relabeling functions are applied to processes to change
the names of action labels. The general form of the
relabeling function is:
 /{newlabel_1/oldlabel_1,… newlabel_n/oldlabel_n}.

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

Concurrency: concurrent execution 17

©Magee/Kramer

action relabeling

||CLIENT_SERVER = (CLIENT || SERVER)

 /{call/request, reply/wait}.

CLIENT
call reply

continue

0 1 2

SERVER
call service

reply

0 1 2

CLIENT_SERVER
call service reply

continue

0 1 2 3

Concurrency: concurrent execution 18

©Magee/Kramer

action relabeling - prefix labels

SERVERv2 = (accept.request

 ->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request

 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)

 /{call/accept}.

An alternative formulation of the client server system is
described below using qualified or prefixed labels:

Concurrency: concurrent execution 19

©Magee/Kramer

action hiding - abstraction to reduce complexity

When applied to a process P, the hiding operator \{a1..ax}
removes the action names a1..ax from the alphabet of P
and makes these concealed actions "silent". These silent
actions are labeled tau. Silent actions in different
processes are not shared.

When applied to a process P, the interface
operator @{a1..ax} hides all actions in the
alphabet of P not labeled in the set a1..ax.

(like making these methods private)

Sometimes it is more convenient to specify the set of
labels to be exposed.... (like defining an interface)

Concurrency: concurrent execution 20

©Magee/Kramer

action hiding

USER = (acquire->use->release->USER)

 \{use}.

USER = (acquire->use->release->USER)

 @{acquire,release}.

The following definitions are equivalent:

acquire tau

release

0 1 2

Minimization (minimal)
removes hidden tau actions
to produce an LTS with
equivalent observable
(trace) behavior.

acquire

release

0 1

Concurrency: concurrent execution 21

©Magee/Kramer

structure diagrams

P a

b
Process P with
alphabet {a,b}.

P a b Q
m

Parallel Composition
(P||Q) / {m/a,m/b,c/d}

P Qa

c dc

x xx

S

yx

Composite process
||S = (P||Q) @ {x,y}

Concurrency: concurrent execution 22

©Magee/Kramer

structure diagrams

We use structure
diagrams to capture the
structure of a model
expressed by the static
combinators:
parallel composition,
relabeling and hiding.

range T = 0..3

BUFF = (in[i:T]->out[i]->BUFF).

||TWOBUF = ?

a:BUFF b:BUFF
a.out

TWOBUFF

outin

inoutin out

Concurrency: concurrent execution 24

©Magee/Kramer

structure diagrams

Structure diagram for CLIENT_SERVER ?

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2
call

servicecontinue

CLIENT call request SERVER
call

replywait
reply

servicecontinue

Concurrency: concurrent execution 25

©Magee/Kramer

structure diagrams - resource sharing

a:USER

printer

b:USER

printer

printer:

RESOURCE

acquire

release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use

->printer.release->USER).

||PRINTER_SHARE

= (a:USER||b:USER||{a,b}::printer:RESOURCE).

Concurrency: concurrent execution 26

©Magee/Kramer

3.2 Multi-threaded Programs in Java

Concurrency in Java occurs when more than one thread is alive.

ThreadDemo has two threads which rotate displays.

Concurrency: concurrent execution 27

©Magee/Kramer

ThreadDemo model

Interpret
run,
pause,

stop as
inputs,
rotate as
an output.

ROTATOR = PAUSED,

PAUSED = (run->RUN | pause->PAUSED

 |stop->STOP),

RUN = (pause->PAUSED |{run,rotate}->RUN

 |stop->STOP).

||THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

 /{stop/{a,b}.stop}.

b:ROTATOR

a.run

a.pause

a.rotate

b.run

b.pause

b.rotate

THREAD_DEMO

a:ROTATOR
stop

Concurrency: concurrent execution 28

©Magee/Kramer

ThreadDemo implementation in Java - class diagram

ThreadDemo creates two ThreadPanel displays when initialized.

ThreadPanel manages the display and control buttons, and delegates calls to

rotate() to DisplayThread. Rotator implements the runnable interface.

Applet

ThreadDemo ThreadPanel

rotate()

start()

stop()

A,B

init()

start()

stop()

Runnable

Rotator

run()

GraphicCanvas

Panel

Thread

DisplayThread

display

thread

target

rotate()

Concurrency: concurrent execution 29

©Magee/Kramer

Rotator class

class Rotator implements Runnable {

 public void run() {

 try {

 while(true) ThreadPanel.rotate();

 } catch(InterruptedException e) {}//exit

 }

}

Rotator implements the runnable interface, calling

ThreadPanel.rotate() to move the display.

 run()finishes if an exception is raised by Thread.interrupt()

Can re-assert your interrupt: Thread.currentThread.interrupt();

Concurrency: concurrent execution 30

©Magee/Kramer

ThreadPanel class

public class ThreadPanel extends Panel {

 // construct display with title and segment color c

 public ThreadPanel(String title, Color c) {…}

 // rotate display of currently running thread 6 degrees

 // return value not used in this example

 public static boolean rotate()

 throws InterruptedException {…}

 // create a new thread with target r and start it running

 public void start(Runnable r) {

thread = new DisplayThread(canvas,r,…);

thread.start();

 }

 // stop the thread using Thread.interrupt()

 public void stop() {thread.interrupt();}

}

ThreadPanel

manages the display

and control buttons for

a thread.

Calls to rotate()

are delegated to
DisplayThread.

Threads are created by
the start() method,

and terminated by the
stop() method.

Concurrency: concurrent execution 31

©Magee/Kramer

ThreadDemo class

public class ThreadDemo extends Applet {

 ThreadPanel A; ThreadPanel B;

 public void init() {

 A = new ThreadPanel("Thread A",Color.blue);

 B = new ThreadPanel("Thread B",Color.blue);

 add(A); add(B);

 }

 public void start() {

 A.start(new Rotator());

 B.start(new Rotator());

 }

 public void stop() {

 A.stop();

 B.stop();

 }

}

ThreadDemo creates two

ThreadPanel displays

when initialized and two

threads when started.

ThreadPanel is used

extensively in later

demonstration programs.

Concurrency: concurrent execution 32

©Magee/Kramer

Summary

◆Concepts

⚫ concurrent processes and process interaction

◆Models

⚫ Asynchronous (arbitrary speed) & so interleaving (arbitrary order).

⚫ Parallel composition as a finite state process with action

interleaving.

⚫ Process interaction by shared actions.

⚫ Process labeling and action relabeling and hiding.

⚫ Structure diagrams

◆Practice

⚫ Multiple threads in Java.
Concurrency: concurrent execution 33

©Magee/Kramer

Summary

◆ Concepts

⚫ concurrent processes and process interaction

⚫ Synchronous (clock signal) vs A-synchronous processes

◆ Models

⚫ Asynchronous (arbitrary speed) & so interleaving (arbitrary order).

⚫ Process interaction by shared actions.

⚫ Control interaction? Control action names!!!

{a,b}:P, {a,b}::Q, P / {new/old}, P \ { 𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍𝒌 }, P @ { 𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍𝒌 }

⚫ Structure diagrams  get the arch right before behaviour!

◆ Practice

⚫ Multiple threads in Java.

◆InterruptedException for termination!

◆Method forwards action to multiple threads for shared actions

Concurrency: shared objects & mutual exclusion 1

©Magee/Kramer

Chapter 4

Shared Objects &

Mutual Exclusion

Concurrency: shared objects & mutual exclusion 2

©Magee/Kramer

Shared Objects & Mutual Exclusion

Concepts: process interference.
 mutual exclusion.

Models: model checking for interference
 modeling mutual exclusion

Practice: thread interference in shared Java objects
 mutual exclusion in Java
 (synchronized objects/methods).

Concurrency: shared objects & mutual exclusion 3

©Magee/Kramer

4.1 Interference

Garden

West

Turnstile

East

Turnstile

people

People enter an ornamental garden through either of two
turnstiles. Management wish to know how many are in the
garden at any time.

The concurrent program consists of two concurrent
threads and a shared counter object.

Ornamental garden problem:

Concurrency: shared objects & mutual exclusion 4

©Magee/Kramer

ornamental garden Program - class diagram

The Turnstile thread simulates the periodic arrival of a visitor to

the garden every second by sleeping for a second and then invoking

the increment() method of the counter object.

setvalue()

NumberCanvas

Applet

init()

go()

Garden

Thread

Turnstile

run()

Counter

increment()

displaydisplay

east,west people

eastD,
westD,

counterD

Concurrency: shared objects & mutual exclusion 5

©Magee/Kramer

ornamental garden program

private void go() {

 counter = new Counter(counterD);

 west = new Turnstile(westD,counter);

 east = new Turnstile(eastD,counter);

 west.start();

 east.start();

}

The Counter object and Turnstile threads are created by the

go() method of the Garden applet:

Note that counterD, westD and eastD are objects of

NumberCanvas used in chapter 2.

Concurrency: shared objects & mutual exclusion 6

©Magee/Kramer

Turnstile class

class Turnstile extends Thread {

 NumberCanvas display;

 Counter people;

 Turnstile(NumberCanvas n,Counter c)

 { display = n; people = c; }

 public void run() {

 try{

 display.setvalue(0);

 for (int i=1;i<=Garden.MAX;i++){

 Thread.sleep(500); //0.5 second between arrivals

 display.setvalue(i);

 people.increment();

 }

 } catch (InterruptedException e) {}

 }

}

The run()

method exits

and the thread

terminates after
Garden.MAX

visitors have

entered.

Concurrency: shared objects & mutual exclusion 7

©Magee/Kramer

Counter class

class Counter {

 int value=0;

 NumberCanvas display;

 Counter(NumberCanvas n) {

 display=n;

 display.setvalue(value);

 }

 void increment() {

 int temp = value; //read value

 ++temp; //compute

 Simulate.HWinterrupt();

 value=temp; //write value

 display.setvalue(value);

 }

}

Hardware interrupts can occur at

arbitrary times.

The counter simulates a

hardware interrupt during an
increment(), between reading

and writing to the shared counter
value. Interrupt randomly calls

Thread.yield() to force a

thread switch.

data=ReadFromDB(query);

newData=Compute(data);

WriteToDB(newData);

Concurrency: shared objects & mutual exclusion 8

©Magee/Kramer

ornamental garden program - display

After the East and West turnstile threads have each
incremented its counter 20 times, the garden people
counter is not the sum of the counts displayed. Counter
increments have been lost. Why?

Concurrency: shared objects & mutual exclusion 9

©Magee/Kramer

concurrent method activation

Java method activations are not atomic - thread
objects east and west may be executing the code for
the increment method at the same time.

eastwest

increment:

 read value

 write value + 1

program
counter program

counter

PC PC
shared code

Concurrency: shared objects & mutual exclusion 10

©Magee/Kramer

ornamental garden Model – Structure Diagram

Process VAR models read and write access to the shared
counter value.

Increment is modeled inside TURNSTILE since Java method
activations are not atomic i.e. thread objects east and west

may interleave their read and write actions.

value:VAR
display

write

GARDEN

west:

TURNSTILE

value

end
go

arrive

east:

TURNSTILE

value

end
go

arrive

go

end

read

Concurrency: shared objects & mutual exclusion 11

©Magee/Kramer

ornamental garden Model – Structure in FSP

const N = 4 range T = 0..N // domain
 // structure diagram
set TurAlpha = { go, end, arrive, value.{read[T],write[T]} }
set VarAlpha = { read[T],write[T] }
Var = STOP + VarAlpha . // STOP = behaviour?
Turnstile = STOP + TurAlpha . // STOP = behaviour?
||Garden = ({ west, east }:Turnstile
 || { west, east, display }::value:Var)
 / { go/{west,east}.go, end/{west,east}.end } .

value:VAR
display

write

GARDEN

west:

TURNSTILE

value

end
go

arrive

east:

TURNSTILE

value

end
go

arrive

go

end

read

Concurrency: shared objects & mutual exclusion 12

©Magee/Kramer

ornamental garden model

const N = 4

range T = 0..N

set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],

VAR[curV:T] = (read[curV] ->VAR[curV] // output

 |write[newV:T]->VAR[newV]).// input

TURNSTILE = (go -> RUN),

RUN = (arrive-> INCREMENT

 |end -> TURNSTILE),

INCREMENT = (value.read[x:T] // input

 -> value.write[x+1]->RUN // output

)+VarAlpha.

||GARDEN = (east:TURNSTILE || west:TURNSTILE

 || { east,west,display} ::value:VAR)

 /{ go /{ east,west} .go,

 end/{ east,west} .end} .

The alphabet of
process VAR is

declared explicitly
as a set constant,

VarAlpha.

The alphabet of
TURNSTILE is

extended with
VarAlpha to ensure

no unintended free
actions in VAR ie. all

actions in VAR must

be controlled by a
TURNSTILE.

Concurrency: shared objects & mutual exclusion 13

©Magee/Kramer

checking for errors - animation

Scenario checking
- use animation to
produce a trace.

Is this trace
correct?

Does it mean our
program is
correct?

Concurrency: shared objects & mutual exclusion 14

©Magee/Kramer

checking for errors - exhaustive analysis

TEST = TEST[0], // the “display”

TEST[v:T] =

 (when (v<N){east.arrive,west.arrive}->TEST[v+1]

 |end->CHECK[v]

),

CHECK[v:T] =

 (display.value.read[u:T] ->

 (when (u==v) right -> TEST[v]

 |when (u!=v) wrong -> ERROR

)

)+{display.VarAlpha}.

Exhaustive checking - compose the model with a TEST
process which sums the arrivals and checks against the
display value:

Like STOP, ERROR is
a predefined FSP
local process (state),
numbered -1 in the
equivalent LTS.

Concurrency: shared objects & mutual exclusion 15

©Magee/Kramer

ornamental garden model - checking for errors

||TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR.

Trace to property violation in TEST:

 go

 east.arrive

 east.value.read.0

 west.arrive

 west.value.read.0

 east.value.write.1

 west.value.write.1

 end

 display.value.read.1

 wrong

LTSA produces
(one of)
the shortest
path to reach
ERROR.

Concurrency: shared objects & mutual exclusion 16

©Magee/Kramer

Interference and Mutual Exclusion

Destructive update, caused by the arbitrary
interleaving of read and write actions, is termed
interference. (aka a “data race”)

Interference bugs are extremely difficult to locate.
The general solution is to give methods mutually exclusive
access to shared objects.

Mutual exclusion can be modeled as atomic actions.

(functional programming: no updates ⟶ no interference)
Concurrency: shared objects & mutual exclusion 17

©Magee/Kramer

The Java Tutorials: Concurrency

Immutable Objects

“An object is considered immutable if its state cannot change
after it is constructed. Maximum reliance on immutable
objects is widely accepted as a sound strategy for creating
simple, reliable code.

Immutable objects are particularly useful in concurrent
applications. Since they cannot change state, they cannot be
corrupted by thread interference or observed in an
inconsistent state.”

docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

(The fewer moving things when juggling, the better – code “more
functional”)

Concurrency: shared objects & mutual exclusion 18

©Magee/Kramer

4.2 Mutual exclusion in Java

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n)

 {super(n);}

 synchronized void increment() {

 super.increment();

 }

}

We correct COUNTER class by deriving a class from it and

making the increment method synchronized:

Concurrent activations of a method in Java can be made

mutually exclusive by prefixing the method with the keyword

synchronized.

Concurrency: shared objects & mutual exclusion 19

©Magee/Kramer

mutual exclusion - the ornamental garden

Java associates a lock with every object. The Java compiler inserts

code to acquire the lock before executing the body of the

synchronized method and code to release the lock before the

method returns. Concurrent threads are blocked until the lock is

released.
Concurrency: shared objects & mutual exclusion 20

©Magee/Kramer

Java synchronized statement

Access to an object may also be made mutually exclusive by using the

synchronized statement:

 synchronized (object) { statements }

A less elegant way to correct the example would be to modify the

Turnstile.run() method:

synchronized(counter) {counter.increment();}

Why is this “less elegant”?

To ensure mutually exclusive access to an object,

all public object methods should be synchronized.

Concurrency: shared objects & mutual exclusion 21

©Magee/Kramer

To add locking to our model, define a LOCK, compose it with
the shared VAR in the garden, and modify the alphabet set :

4.3 Modeling mutual exclusion

LOCK = (acquire->release->LOCK).

||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],

 acquire, release}}

TURNSTILE = (go -> RUN),

RUN = (arrive-> INCREMENT

 |end -> TURNSTILE),

INCREMENT = (value.acquire

 -> value.read[x:T]->value.write[x+1]

 -> value.release->RUN

)+VarAlpha.

Modify TURNSTILE to acquire and release the lock:

Concurrency: shared objects & mutual exclusion 22

©Magee/Kramer

Revised ornamental garden model - checking for errors

Use TEST and LTSA to perform an exhaustive check.

 Is TEST satisfied?

go

 east.arrive

 east.value.acquire

 east.value.read.0

 east.value.write.1

 east.value.release

 west.arrive

 west.value.acquire

 west.value.read.1

 west.value.write.2

 west.value.release

 end

 display.value.read.2

 right

A sample animation
execution trace

Concurrency: shared objects & mutual exclusion 23

©Magee/Kramer

TEST should contain only “domain” actions, not those of the
mechanisms we use to enforce the property we want!

So, TEST should NOT contain acquire/release!

Note: How to write TEST

Concurrency: shared objects & mutual exclusion 24

©Magee/Kramer

COUNTER: Abstraction using action hiding

To model shared objects
directly in terms of their
synchronized methods, we
can abstract the details by
hiding.

For SynchronizedCounter
we hide read, write,
acquire, release actions.

const N = 4

range T = 0..N

VAR = VAR[0],

VAR[u:T] = (read[u]->VAR[u]

 | write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]

 -> (when (x<N) write[x+1]

 ->release->increment->INCREMENT

)

)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.

Concurrency: shared objects & mutual exclusion 25

©Magee/Kramer

COUNTER: Abstraction using action hiding

Minimized
LTS:

We can give a more abstract, simpler description of a
COUNTER which generates the same LTS:

This therefore exhibits “equivalent” behavior i.e. has the
same observable behavior.

COUNTER = COUNTER[0]

COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

increment increment increment increment

0 1 2 3 4

Concurrency: shared objects & mutual exclusion 26

©Magee/Kramer

Summary

◆Concepts

⚫ process interference

⚫ mutual exclusion

◆Models

⚫ model checking for interference

⚫ modeling mutual exclusion

◆Practice

⚫ thread interference in shared Java objects

⚫ mutual exclusion in Java (synchronized objects/methods).

Concurrency: shared objects & mutual exclusion 27

©Magee/Kramer

Summary – II

◆Models

⚫ Structure to FSP – get it right!

⚫ Info exchange by act[data] || act[var:T]

⚫ Alphabet extension to avoid phantom impossible actions

◆Practice

⚫ ALL public methods should be synchronized !

Concurrency: monitors & condition synchronization 1

©Magee/Kramer

Chapter 5

Monitors &

Condition Synchronization

Concurrency: monitors & condition synchronization 2

©Magee/Kramer

monitors & condition synchronization

Concepts: monitors:
 encapsulated data + access procedures
 mutual exclusion + condition synchronization
 single access procedure active in the monitor
 nested monitors

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
 wait(), notify() and notifyAll() for condition synch.
 single thread active in the monitor at a time

Concurrency: monitors & condition synchronization 3

©Magee/Kramer

5.1 Condition synchronization

A controller is required for a carpark, which only permits
cars to arrive when the carpark is not full and does not
permit cars to depart when there are no cars in the carpark.
Car arrival and departure are simulated by separate threads.

Concurrency: monitors & condition synchronization 4

©Magee/Kramer

OOAD & Concurrency

OOAD:
• Find the verb & the object (Object-Oriented…)
• Make a class for the object
• Give the class a method for the verb (class interface)

Concurrency & Component-Based SE (CBSE):
• Find the verb & the object & the subject
• Make processes for the object & the subject
• Give these processes an action for the verb (process alphabet)
• Model the process behaviour using ONLY these actions!

Here?
Verbs? arrive, depart
Objects? Carpark controller (receives these actions)
Subjects? Car arrivals & departures threads (enact these actions)

Concurrency: monitors & condition synchronization 5

©Magee/Kramer

carpark model

 Events or actions of interest?

 arrive and depart

 Identify processes.

 arrivals, departures and carpark control

 Define each process alphabet

 Define each process and interactions (structure).

ARRIVALS CARPARK

CONTROL
DEPARTURESarrive depart

CARPARK

||CARPARK = (ARRIVALS || CARPARKCONTROL || DEPARTURES).
Concurrency: monitors & condition synchronization 6

©Magee/Kramer

carpark model

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS = (arrive->ARRIVALS). // K.I.S.S.

DEPARTURES = (depart->DEPARTURES). // K.I.S.S.

||CARPARK =

(ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actions are used to control arrive and depart.
 LTS?

Concurrency: monitors & condition synchronization 7

©Magee/Kramer

carpark program

 Model - all entities are processes interacting by actions

 Program - need to identify threads and monitors

thread - active entity which initiates (output) actions SUBJECTS

monitor - passive entity which responds to (input) actions OBJECTS

For the carpark?

ARRIVALS CARPARK

CONTROL
DEPARTURESarrive depart

CARPARK

Concurrency: monitors & condition synchronization 8

©Magee/Kramer

carpark program - class diagram

Applet
Runnable

ThreadPanel

CarParkControl

Arrivals

Departures

DisplayCarParkCarParkCanvas

CarPark

arrivals,
departures

arrive()

depart()

carDisplay

carpark

disp

We have omitted
DisplayThread and

GraphicCanvas

threads managed by
ThreadPanel.

Concurrency: monitors & condition synchronization 9

©Magee/Kramer

public void start() {

 CarParkControl c =

 new DisplayCarPark(carDisplay,Places);

 arrivals.start(new Arrivals(c));

 departures.start(new Departures(c));

}

carpark program

Arrivals and Departures implement Runnable,
CarParkControl provides the control (condition synchronization).

Instances of these are created by the start() method of CarPark:

Concurrency: monitors & condition synchronization 10

©Magee/Kramer

carpark program - Arrivals and Departures threads

class Arrivals implements Runnable {

 CarParkControl carpark;

 Arrivals(CarParkControl c) {carpark = c;}

 public void run() {

try {

while(true) {

 ThreadPanel.rotate(330);

carpark.arrive();

 ThreadPanel.rotate(30);

}

} catch (InterruptedException e){}

 }

} // Arrivals = the Subject of the Verb “arrive”

How do we implement the control of CarParkControl?

ARRIVALS = (arrive->ARRIVALS).

Similarly Departures that calls

carpark.depart().

Concurrency: monitors & condition synchronization 11

©Magee/Kramer

Carpark program - CarParkControl monitor

class CarParkControl {

 protected int spaces;

 protected int capacity;

 CarParkControl(int n)

 {capacity = spaces = n;}

 synchronized void arrive() {

 … --spaces; …

 }

 synchronized void depart() {

 … ++spaces; …

 }

}

condition
synchronization?

block if full?
(spaces==0)

block if empty?
(spaces==N)

mutual exclusion
by synch methods

Concurrency: monitors & condition synchronization 12

©Magee/Kramer

Carpark program - CarParkControl monitor

class CarParkControl {

 protected int spaces;

 protected int capacity;

 CarParkControl(int n)

 {capacity = spaces = n;}

 synchronized void arrive() {

 … --spaces; …

 }

 synchronized void depart() {

 (spaces == capacity)… ++spaces; …

 }

}

condition
synchronization?

block if full?
(spaces==0)

block if empty?
(spaces==N)

mutual exclusion
by synch methods

Concurrency: monitors & condition synchronization 13

©Magee/Kramer

condition synchronization in Java

Java provides a thread wait set per monitor (actually, per object)

with the following methods:

public final void notifyAll()

 Wakes up all threads that are waiting on this object's set.

public final void notify() NON-DETERMINISTIC!

 Wakes up a single thread that is waiting on this object's set.

public final void wait()

 throws InterruptedException

 Waits to be notified by another thread.

The waiting thread releases the monitor synchronization lock.

When notified, the thread must reacquire the lock before

resuming execution & re-entering the monitor.

Concurrency: monitors & condition synchronization 14

©Magee/Kramer

condition synchronization in Java

We refer to a thread entering a monitor when it acquires the mutual

exclusion lock associated with the monitor and exiting the monitor

when it releases the lock.

Wait() - causes the thread to exit the monitor,

 permitting (lock release) other threads to enter the monitor.

Thread A Thread B

wait()

notify()

Monitor

data

Concurrency: monitors & condition synchronization 15

©Magee/Kramer

condition synchronization in Java

FSP: when cond act -> NEWSTAT

Java:

public synchronized void act()

throws InterruptedException {

while (! cond) wait(); // wait can throw

 // modify monitor data // NO EXCEPTIONS!

notifyAll();

}

The while loop is necessary to retest the condition cond to ensure that

cond is indeed satisfied when it re-enters the monitor.

notifyall() is necessary to awaken other thread(s) that may be

waiting to enter the monitor now that the monitor data has been changed.

Concurrency: monitors & condition synchronization 16

©Magee/Kramer

CarParkControl - condition synchronization

class CarParkControl {

 protected int spaces;

 protected int capacity;

 CarParkControl(int n)

 {capacity = spaces = n;}

 synchronized void arrive() throws InterruptedException {

 while !(spaces>0) wait(); // spaces>0

 --spaces;

 notifyAll();

 }

 synchronized void depart() throws InterruptedException {

 while !(spaces<capacity) wait(); // spaces<capacity

 ++spaces;

 notifyAll();

 }

}

Why is it safe to use notify()
here rather than notifyAll()?

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when (i>0) arrive->SPACES[i-1]
 |when (i<N) depart->SPACES[i+1]
) .

Concurrency: monitors & condition synchronization 17

©Magee/Kramer

models to monitors - summary

Each guarded action in the model of a monitor is

implemented as a synchronized method, which

uses a while loop and wait() to implement the

guard. The while loop condition is the negation of the

model guard condition.

Active entities (that initiate actions) are implemented as threads.

Passive entities (that respond to actions) are implemented as monitors.

Changes in the state of the monitor are signaled to

waiting threads using notify() or notifyAll().

Watch out for transactions!

(what happens if an exception occurs after your method?)

Concurrency: monitors & condition synchronization 18

©Magee/Kramer

Part II

Concurrency: monitors & condition synchronization 19

©Magee/Kramer

5.2 Semaphores

Semaphores are widely used for dealing with inter-process
synchronization in operating systems. Semaphore s is an
integer variable that can take only non-negative values.

down(s): if s >0 then

 decrement s //claim resource

else

 block execution of the calling process

up(s): if procs blocked on s then//release resource

 awaken one of them

 else

 increment s

The only
operations
permitted on
s are up(s)
and down(s).
Blocked
processes are
held in a
FIFO queue.

s: Number of available resources.
Concurrency: monitors & condition synchronization 20

©Magee/Kramer

modeling semaphores

const Max = 3 const TRUE = 1

range Nat = 0..Max

SEMAPHORE(N=0) = SEMA[N],

SEMA[v:Nat] = (when(TRUE) up->SEMA[v+1]

 |when(v>0) down->SEMA[v-1]

),

SEMA[Max+1] = ERROR.

To ensure analyzability, we only model semaphores that
take a finite range of values. If this range is exceeded
then we regard this as an ERROR. N is the initial value.

LTS?
Concurrency: monitors & condition synchronization 21

©Magee/Kramer

modeling semaphores

Action down is only accepted when value v of the
semaphore is greater than 0.

Action up is not guarded.

Trace to a violation:
 up → up → up → up

up up

down

up

down

up

down

-1 0 1 2 3

Concurrency: monitors & condition synchronization 22

©Magee/Kramer

semaphore demo - model

LOOP = (mutex.down->critical->mutex.up->LOOP).

||SEMADEMO = (p[1..3]:LOOP

 || {p[1..3]}::mutex:SEMAPHORE(1)).

“Mutex” = MUTual EXclusion _

Three processes p[1..3] use a shared semaphore mutex
to ensure mutually exclusive access (action critical) to
some resource. (critical aka “critical region”)

For mutual exclusion, the semaphore initial value is 1. Why?

Is the ERROR state reachable for SEMADEMO?

Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?
Concurrency: monitors & condition synchronization 23

©Magee/Kramer

semaphore demo - model

p.1.mutex.down

p.2.mutex.down

p.3.mutex.down p.3.critical

p.3.mutex.up

p.2.critical

p.2.mutex.up

p.1.critical

p.1.mutex.up

0 1 2 3 4 5 6

Concurrency: monitors & condition synchronization 24

©Magee/Kramer

semaphores in Java

Semaphores are

passive objects,

therefore

implemented as

monitors.

(NOTE: In practice,

semaphores are a

low-level mechanism

often used for

implementing the

higher-level monitor

construct.

Java SE5 provides

general counting

semaphores)

public class Semaphore {

private int value;//Invariant >=0

public Semaphore (int initial)

{value = initial;} // >=0 ???

synchronized public void up() {

//while (! true) wait();//????

 ++value;

notifyAll();

}

synchronized public void down()

throws InterruptedException {

while (value == 0) wait();

--value;

 // notifyAll();//????

}

}

Concurrency: monitors & condition synchronization 25

©Magee/Kramer

SEMADEMO display

current

semaphore

value

thread 1 is

executing

critical

actions.

thread 2 is

blocked

waiting.

thread 3 is

executing

non-critical

actions.
Concurrency: monitors & condition synchronization 26

©Magee/Kramer

SEMADEMO

What if we adjust the time that each thread spends in its

critical section ?

large resource requirement - more conflict?

 (eg. more than 67% of a rotation)?

 small resource requirement - no conflict?

 (eg. less than 33% of a rotation)?

Hence the time a thread spends in its critical

section should be kept as short as possible.

Concurrency: monitors & condition synchronization 27

©Magee/Kramer

SEMADEMO program - revised ThreadPanel class

public class ThreadPanel extends Panel {

 // construct display with title and rotating arc color c
 public ThreadPanel(String title, Color c) {…}

 // hasSlider == true creates panel with slider
 public ThreadPanel
 (String title, Color c, boolean hasSlider) {…}

 // rotate display of currently running thread 6 degrees
 // return false when in initial color, return true when in second color
 public static boolean rotate()
 throws InterruptedException {…}

 // rotate display of currently running thread by degrees
 public static void rotate(int degrees)
 throws InterruptedException {…}

 // create a new thread with target r and start it running
 public void start(Runnable r) {…}

 // stop the thread using Thread.interrupt()
 public void stop() {…}
}

Concurrency: monitors & condition synchronization 28

©Magee/Kramer

SEMADEMO program - MutexLoop

class MutexLoop implements Runnable {

 Semaphore mutex;

 MutexLoop (Semaphore sema) {mutex=sema;}

 public void run() {

 try {

 while(true) {

 while(!ThreadPanel.rotate()) /*empty*/;

 mutex.down(); // get mutual exclusion

 //critical actions: CHECK THE STUDY NOTES!!!

 while(ThreadPanel.rotate()) /*empty*/;

 mutex.up(); //release mutual exclusion

 }

 } catch(InterruptedException e){}

 }

}
ThreadPanel.rotate() returns
false while executing non-critical
actions (dark color) and true otherwise.

Threads and
semaphore are
created by the
applet
start()
method.

Concurrency: monitors & condition synchronization 29

©Magee/Kramer

Part III

Concurrency: monitors & condition synchronization 30

©Magee/Kramer

5.3 Bounded Buffer

A bounded buffer consists of a fixed number of slots.
Items are put into the buffer by a producer process and
removed by a consumer process. It can be used to smooth
out transfer rates between the producer and consumer.

(see car park example)

Concurrency: monitors & condition synchronization 31

©Magee/Kramer

Some *System* Design Patterns

• Smooth out spikes:
• Buffers (trade space for time)

• Increase throughput:
• Parallelism:

• SIMD (e.g., GPUs)
• MIMD (e.g., Pipeline, threads)

• Play the odds:
• Pre-fetching (trade space for time)
• Caching (trade space for time)

• Make changes easier:
• Add indirection (pointers)

• Contain errors/facilitate analysis:
• Structure into independent components Concurrency: monitors & condition synchronization 32

©Magee/Kramer

bounded buffer - a data-independent model

PRODUCER BUFFER CONSUMER
put get

BOUNDEDBUFFER

LTS:

The behaviour of BOUNDEDBUFFER is independent of
the actual data values, and so can be modelled in a
data-independent manner.

 (Prove FIFO with just 3 values: blue* red blue* green blue*)

put put

get

put

get

put

get

put

get get

0 1 2 3 4 5

Concurrency: monitors & condition synchronization 33

©Magee/Kramer

bounded buffer - a data-independent model

BUFFER(N=5) = COUNT[0],

COUNT[i:0..N]

 = (when (i<N) put ->COUNT[i+1]

 |when (i>0) get ->COUNT[i-1]

).

PRODUCER = (put->PRODUCER).

CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER =

(PRODUCER||BUFFER(5)||CONSUMER).

Concurrency: monitors & condition synchronization 34

©Magee/Kramer

public interface Buffer {…}

class BufferImpl implements Buffer {
 …

 public synchronized void put(Object o)
 throws InterruptedException {
 while (count==size) wait();//! (count<size)
 buf[in] = o; ++count; in=(in+1)%size;
 notify(); // notifyAll() ?
 }

 public synchronized Object get()
 throws InterruptedException {
 while (count==0) wait(); //! (count>0)
 Object o =buf[out];
 buf[out]=null; --count; out=(out+1)%size;
 notify(); // notifyAll() ?
 return (o); // can have actions after notify!
 }

}

bounded buffer program - buffer monitor We separate the

interface to

permit an

alternative

implementation

later.

Concurrency: monitors & condition synchronization 35

©Magee/Kramer

bounded buffer program - producer process

class Producer implements Runnable {

 Buffer buf;

 String alphabet= "abcdefghijklmnopqrstuvwxyz";

 Producer(Buffer b) {buf = b;}

 public void run() {

 try {

 int ai = 0;

 while(true) {

 ThreadPanel.rotate(12);

 buf.put(new Character(alphabet.charAt(ai)));

 ai=(ai+1) % alphabet.length();

 ThreadPanel.rotate(348);

 }

 } catch (InterruptedException e){}

 }

}

Similarly, Consumer

which calls buf.get().

Concurrency: monitors & condition synchronization 36

©Magee/Kramer

Part IV

Concurrency: monitors & condition synchronization 37

©Magee/Kramer

condition synchronization in Java (REMINDER)

Each Java object has a thread wait set and the following methods:

public final void notify/notifyAll()

 Wakes up a single/all thread that is waiting on this object's set.

Notifying threads have no idea what the others are waiting for.

public final void wait()

 throws InterruptedException

 Waits to be notified by another thread.

The waiting thread releases the monitor synchronization lock.

When notified, the thread must reacquire the lock before

resuming execution & re-entering the monitor.

Can’t we tell notifying threads what the others are waiting for?

Concurrency: monitors & condition synchronization 38

©Magee/Kramer

Suppose that, in place of using the count variable and condition

synchronization directly, we instead use two semaphores full and

empty to reflect the state of the buffer.

5.4 Nested Monitors!

class SemaBuffer implements Buffer {

 …

 Semaphore full; //counts number of slots with items

 Semaphore empty; //counts number of empty slots

 SemaBuffer(int size) {

 this.size = size; buf = new Object[size];

 full = new Semaphore(0); // no full slots

 empty = new Semaphore(size);// all slots empty

 }// Semaphore’s value = # available resources

…

}

Concurrency: monitors & condition synchronization 39

©Magee/Kramer

nested monitors - bounded buffer program

synchronized public void put(Object o)
 throws InterruptedException {
 empty.down();
 buf[in] = o;
 ++count; in=(in+1)%size;

full.up();
 }

 synchronized public Object get()
 throws InterruptedException{
 full.down();
 Object o =buf[out]; buf[out]=null;
 --count; out=(out+1)%size;

empty.up();
 return (o);
 }

empty is decremented during a put operation, which is blocked

if empty is zero; full is decremented by a get operation, which

is blocked if full is zero.

Does this behave

as desired?

We signal only those who

care about our signal!

Concurrency: monitors & condition synchronization 40

©Magee/Kramer

nested monitors - bounded buffer model

const Max = 5

range Int = 0..Max

SEMAPHORE ...as before...

BUFFER = (put -> empty.down ->full.up ->BUFFER

 |get -> full.down ->empty.up ->BUFFER

).

PRODUCER = (put -> PRODUCER).

CONSUMER = (get -> CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER

 ||empty:SEMAPHORE(5)

 ||full:SEMAPHORE(0)

)@{put,get}. Does this behave

as desired?

Concurrency: monitors & condition synchronization 41

©Magee/Kramer

nested monitors - bounded buffer model

LTSA analysis predicts a possible DEADLOCK:

Composing

 potential DEADLOCK

States Composed: 28 Transitions: 32 in 60ms

Trace to DEADLOCK:

 get

The Consumer tries to get a character, but the buffer is
empty. It blocks and releases the lock on the semaphore
full. The Producer tries to put a character into the

buffer, but also blocks. Why?

This situation is known as the nested monitor problem.
Concurrency: monitors & condition synchronization 42

©Magee/Kramer

nested monitors - revised bounded buffer program

The only way to avoid it in Java is by “careful design” ().

Here, the deadlock can be removed by ensuring that the monitor

lock for the buffer is not acquired until after semaphores are

decremented.
public void put(Object o)

 throws InterruptedException {

 empty.down(); /* do I have the resources I

 need to proceed? */

 synchronized(this){ // monitor starts here!

 buf[in] = o; ++count; in=(in+1)%size;

 }

 full.up();/* NOT inside the monitor; must keep
 critical region as short as possible.*/

 }

Concurrency: monitors & condition synchronization 43

©Magee/Kramer

nested monitors – “careful design”

The idea is:

Rank resources from most specific (empty, full) to least specific

(buffer).

Then try to get the most specific ones you need first, before the

least specific ones.

In this way you don’t block everyone when you cannot get

something that only you care about.

Problem: It’s an “idea” – you must model it to check it’ll work!

Concurrency: monitors & condition synchronization 44

©Magee/Kramer

nested monitors - revised bounded buffer model

The semaphore actions have been moved to the producer
and consumer. This is exactly as in the implementation
where the semaphore actions are outside the monitor.

Does this behave as desired?

Minimized LTS?

BUFFER = (put -> BUFFER

 |get -> BUFFER

).

PRODUCER =(empty.down->put->full.up->PRODUCER).

CONSUMER =(full.down->get->empty.up->CONSUMER).

Concurrency: monitors & condition synchronization 45

©Magee/Kramer

Part V

Concurrency: monitors & condition synchronization 46

©Magee/Kramer

5.5 Monitor invariants

An invariant for a monitor is an assertion on its fields.

Invariants must hold (=non-variant) whenever no thread executes

inside the monitor, i.e., on thread entry to and exit from a monitor.

CarParkControl Invariant: 0  spaces  N

Semaphore Invariant: 0  value

Buffer Invariant: 0  count  size

 and 0  in < size

 and 0  out< size

 and in = (out + count) modulo size

Invariants can be helpful in reasoning about correctness of monitors

using a logical proof-based approach. Generally, we prefer to use a

model-based approach, as it’s amenable to mechanical checking.
Concurrency: monitors & condition synchronization 47

©Magee/Kramer

Class Invariant Properties

Class constructor role:
Establish the class invariant property.

You don’t know the class invariant?
 Then you don’t know what the class is supposed to do.

Each method assumes that the invariant holds when it starts.

Each method must guarantee the invariant holds when it ends.

You don’t know the class invariant?
 Then you don’t know what the class is supposed to do.

Invariant hard to define?
 Maybe you’ve chosen the wrong fields…

 (or you don’t know what the class is supposed to do)
Concurrency: monitors & condition synchronization 48

©Magee/Kramer

Moral of the Story:

• Nested monitor:
Code that hasn’t been modelled & verified is worth …

nothing
(seriously)

• Usage of “patterns” to get code – Good but …
Must pay attention to exceptions!

Both:
• Within the monitor methods; &
• Between them

• Think about transactions! (needed because of exceptions)
• Transaction phases:

Get resources/data, compute, commit
• Rollback: Undo handlers for modified parts that cannot be

committed
• Force through & Commit everything

Concurrency: monitors & condition synchronization 49

©Magee/Kramer

Summary

◆Concepts

⚫ monitors: encapsulated data + access procedures

 mutual exclusion + condition synchronization

⚫ nested monitors

◆Model

⚫ guarded actions

◆Practice

⚫ private data and synchronized methods in Java

⚫ wait(), notify() and notifyAll() for condition synchronization

⚫ single thread active in the monitor at a time

+ Transactions!

Concurrency: Deadlock 1

©Magee/Kramer

Chapter 6

Deadlock

Concurrency: Deadlock 2

©Magee/Kramer

Deadlock

Concepts: system deadlock: no further progress
 four necessary & sufficient conditions

Models: deadlock - no eligible actions

Practice: blocked threads

Aim: deadlock avoidance - to design
systems where deadlock cannot occur.

Concurrency: Deadlock 3

©Magee/Kramer

Deadlock: four necessary and sufficient conditions

 Serially reusable resources:

processes share resources under mutual exclusion.

 Incremental acquisition:

processes hold resources while waiting to acquire additional resources.

 No pre-emption:

once acquired, resources cannot be pre-empted (forcibly withdrawn)
but are only released voluntarily.

 Wait-for cycle:

a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

Concurrency: Deadlock 4

©Magee/Kramer

Wait-for cycle

A

B

CD

E

Has A awaits B

Has B awaits C

Has C awaits D
Has D awaits E

Has E awaits A

Concurrency: Deadlock 5

©Magee/Kramer

6.1 Deadlock analysis - primitive processes

 deadlocked state is one with no outgoing transitions

 in FSP: STOP process

MOVE = (north->(south->MOVE|north->STOP)).

Trace to DEADLOCK:

north

north

 animation to produce a trace.

analysis using LTSA:

 (shortest trace to STOP)

MOVE
north north

south

0 1 2

Concurrency: Deadlock 6

©Magee/Kramer

deadlock analysis - parallel composition

 in systems, deadlock may arise from the
parallel composition of interacting processes.

RESOURCE = (get->put->RESOURCE).

P = (printer.get->scanner.get

 ->copy

 ->printer.put->scanner.put

 ->P).

Q = (scanner.get->printer.get

 ->copy

 ->scanner.put->printer.put

 ->Q).

||SYS = (p:P||q:Q

 ||{p,q}::printer:RESOURCE

 ||{p,q}::scanner:RESOURCE

).

printer:

RESOURCE

get
put

SYS

scanner:

RESOURCE

get
put

p:P

printer

scanner

q:Q

printer

scanner

Deadlock Trace?

Avoidance?

Concurrency: Deadlock 7

©Magee/Kramer

deadlock analysis - avoidance

 acquire resources in the same order? (least 2 most specific!)

 Timeout:

P = (printer.get-> GETSCANNER),

GETSCANNER = (scanner.get->copy->printer.put

->scanner.put->P

|timeout -> printer.put->P

).

Q = (scanner.get-> GETPRINTER),

GETPRINTER = (printer.get->copy->printer.put

->scanner.put->Q

|timeout -> scanner.put->Q

).

Deadlock? Progress? Choice of timeout duration?
Concurrency: Deadlock 8

©Magee/Kramer

6.2 Dining Philosophers

Five philosophers sit around a
circular table. Each philosopher
spends his life alternately
thinking and eating. In the centre
of the table is a large bowl of
spaghetti. A philosopher needs
two forks to eat a helping of
spaghetti.

0

1

23

4

0

1

2

3

4

One fork is placed between each
pair of philosophers and they agree
that each will only use the fork to his
immediate right and left.

Concurrency: Deadlock 9

©Magee/Kramer

Dining Philosophers - model structure diagram

phil[4]:
PHIL

phil[1]:
PHIL

phil[3]:
PHIL

phil[0]:
PHIL

phil[2]:
PHIL

FORK FORK

FORK

FORK FORK

lef tright

right

right

right

lef t

lef t

right

lef t

lef t

Each FORK is a
shared resource
with actions get
and put.

When hungry,
each PHIL must
first get his
right and left
forks before he
can start eating.

Concurrency: Deadlock 10

©Magee/Kramer

Dining Philosophers - model

FORK = (get -> put -> FORK).

PHIL = (sitdown ->right.get->left.get

->eat ->right.put->left.put

->arise->PHIL).

||DINERS(N=5)= forall [i:0..N-1]

(phil[i]:PHIL ||

{phil[i].left,phil[((i-1)+N)%N].right}::FORK

).

Table of philosophers:

Can this system deadlock?
Concurrency: Deadlock 11

©Magee/Kramer

Dining Philosophers - model analysis

Trace to DEADLOCK:

phil.0.sitdown

phil.0.right.get

phil.1.sitdown

phil.1.right.get

phil.2.sitdown

phil.2.right.get

phil.3.sitdown

phil.3.right.get

phil.4.sitdown

phil.4.right.get

This is the situation where
all the philosophers become
hungry at the same time, sit
down at the table and each
philosopher picks up the
fork to his right.

The system can make no
further progress since each
philosopher is waiting for a
fork held by his neighbor i.e.
a wait-for cycle exists!

Concurrency: Deadlock 12

©Magee/Kramer

Dining Philosophers

Deadlock is easily
detected in our
model.

How easy is it to
detect a potential
deadlock in an
implementation?

Concurrency: Deadlock 13

©Magee/Kramer

Dining Philosophers - implementation in Java

philosophers:

active entities

- implement as

threads

forks: shared

passive entities

- implement as

monitors

display

Applet

Diners

Thread

Philosopher
1 n

Fork

1

n

PhilCanvas

display

controller

view

display

Concurrency: Deadlock 14

©Magee/Kramer

Dining Philosophers - Fork monitor

taken

encodes the

state of the

fork

We need

guarded

actions for

monitors!!!

Concurrency: Deadlock 15

©Magee/Kramer

Dining Philosophers - Fork monitor

Concurrency: Deadlock 16

©Magee/Kramer

Dining Philosophers - Philosopher implementation

class Philosopher extends Thread {
... /* PHIL = (sitdown ->right.get->left.get -> eat

->right.put->left.put ->arise->PHIL). */

public void run() {

try {

while (true) { // thinking
view.setPhil(identity,view.THINKING);

sleep(controller.sleepTime()); // hungry
view.setPhil(identity,view.HUNGRY);

right.get(); // gotright chopstick
view.setPhil(identity,view.GOTRIGHT);

sleep(500);

left.get(); // eating
view.setPhil(identity,view.EATING);

sleep(controller.eatTime());

right.put();

left.put();

}

} catch (java.lang.InterruptedException e){}

}

}

Follows

from the

model
(sitting

down and

leaving the

table have

been

omitted). Concurrency: Deadlock 17

©Magee/Kramer

Dining Philosophers - implementation in Java

for (int i =0; i<N; ++i)

fork[i] = new Fork(display,i);

for (int i =0; i<N; ++i){

phil[i] =

new Philosopher

(this,i,fork[(i-1+N)%N],fork[i]);

phil[i].start();

}

Code to create the philosopher

threads and fork monitors:

Concurrency: Deadlock 18

©Magee/Kramer

Dining Philosophers

To ensure deadlock
occurs eventually,
the slider control
may be moved to the
left. This reduces
the time each
philosopher spends
thinking and eating.

This "speedup"
increases the
probability of
deadlock occurring.

Concurrency: Deadlock 19

©Magee/Kramer

Deadlock-free Philosophers

Deadlock can be avoided by ensuring that a wait-for cycle
cannot exist. How?

PHIL(I=0)

= (when (I%2==0) sitdown

->left.get->right.get

->eat

->left.put->right.put

->arise->PHIL

|when (I%2==1) sitdown

->right.get->left.get

->eat

->left.put->right.put

->arise->PHIL

).

Introduce an
asymmetry into our
definition of
philosophers.

Use the identity I of
a philosopher to make
even numbered
philosophers get
their left forks first,
odd their right first.

Other strategies?
Concurrency: Deadlock 21

©Magee/Kramer

Maze example - shortest path to “deadlock”

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

We can exploit the shortest path trace produced by the
deadlock detection mechanism of LTSA to find the
shortest path out of a maze to the STOP process!

We must first
model the MAZE.

Each position can
be modelled by the
moves that it
permits. The MAZE
parameter gives the
starting position.

eg. MAZE(Start=8) = P[Start],

 P[0] = (north->STOP|east->P[1]),...
Concurrency: Deadlock 22

©Magee/Kramer

Maze example - shortest path to “deadlock”

||GETOUT = MAZE(7).

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

Shortest path
escape trace from
position 7 ?

Trace to

DEADLOCK:

east

 north

 north

 west

 west

 north

Concurrency: Deadlock 23

©Magee/Kramer

Summary

◆Concepts

⚫ deadlock: no futher progress

⚫ four necessary and sufficient conditions:

◆ serially reusable resources

◆ incremental acquisition

◆ no preemption

◆ wait-for cycle

◆Models

⚫ no eligible actions (analysis gives shortest path trace)

◆Practice

⚫ blocked threads

Aim: deadlock avoidance
- to design systems where
deadlock cannot occur.

Concurrency: safety & liveness properties 1

©Magee/Kramer

Chapter 7

Safety & Liveness

Properties

Concurrency: safety & liveness properties 2

©Magee/Kramer

safety & liveness properties

Concepts: properties: true for every possible execution

 safety: nothing bad happens

 liveness: something good eventually happens

Models: safety: no reachable ERROR/STOP state

 progress: an action is eventually executed
 (fair choice and action priority)

Practice: threads and monitors

Aim: property satisfaction.

Concurrency: safety & liveness properties 3

©Magee/Kramer

 STOP or deadlocked state (no outgoing transitions)

 ERROR process (-1) to detect erroneous behaviour

7.1 Safety

ACTUATOR

 =(command->ACTION),

ACTION

 =(respond->ACTUATOR

|command->ERROR).

Trace to ERROR:

 command

 command

 analysis using LTSA:
 (shortest trace)

A safety property asserts that nothing bad happens.

command

command

respond

-1 0 1

Concurrency: safety & liveness properties 4

©Magee/Kramer

Safety - property specification

ERROR conditions state what is not desired (cf. exceptions).

 in complex systems, it is usually better (easier) to specify
safety properties by stating directly what is desired.

property SAFE_ACTUATOR

 = (command

 -> respond

 -> SAFE_ACTUATOR

).

 analysis using LTSA as before.

command

respond

command

respond

-1 0 1

Concurrency: safety & liveness properties 5

©Magee/Kramer

Safety properties

property POLITE

 =

Property that it is polite to knock before entering a room.

Traces: knock→enter enter

 knock→knock

(knock->enter->POLITE).

In all states, all the
actions in the alphabet
of a property are
eligible choices.

knock

enter

knock

enter

-1 0 1

Concurrency: safety & liveness properties 6

©Magee/Kramer

Safety properties

Safety property P defines a deterministic
process, which asserts that any trace including
actions in the alphabet of P, is accepted by P.

Thus, if P is composed with S, then traces of actions
in the alphabet of S  alphabet of P must also be
valid traces of P, otherwise ERROR is reachable.

Transparency of safety properties:
Since all actions in the alphabet of a property are eligible
choices, composing a property with a set of processes does not
affect their correct behaviour. However, if a behaviour can occur
which violates the safety property, then ERROR is reachable.

Properties must be deterministic to be transparent.

Concurrency: safety & liveness properties 7

©Magee/Kramer

Safety properties

 How can we specify that some action, disaster,
never occurs?

property CALM = STOP + {disaster}.

disaster

-1 0

A safety property must be specified so as to include all the
acceptable, valid behaviors in its alphabet.

Concurrency: safety & liveness properties 8

©Magee/Kramer

Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit

 -> mutex.up -> LOOP).

||SEMADEMO = (p[1..3]:LOOP

 ||{p[1..3]}::mutex:SEMAPHORE(1)).

How do we
check that this
does indeed
ensure mutual
exclusion in the
critical section?

property MUTEX =(p[i:1..3].enter

 -> p[i].exit

 -> MUTEX).

||CHECK = (SEMADEMO || MUTEX).

Check safety using LTSA.

What happens if semaphore is initialized to 2?

Concurrency: safety & liveness properties 9

©Magee/Kramer

Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit

 -> mutex.up -> LOOP).

||SEMADEMO = (p[1..3]:LOOP

 ||{p[1..3]}::mutex:SEMAPHORE(1)).

Check that this
does indeed
ensure mutual
exclusion in the
critical section?

property MUTEX =(p[i:1..3].enter

 -> p[i].exit

 -> MUTEX).

||CHECK = (SEMADEMO || MUTEX).

The property focuses on system actions ONLY !

Property doesn’t care about the mechanism used to achieve it
(here mutex.down/up) !

Concurrency: safety & liveness properties 10

©Magee/Kramer

Part II – Single Lane Bridge

Concurrency: safety & liveness properties 11

©Magee/Kramer

7.2 Single Lane Bridge problem

A bridge over a river is only wide enough to permit a single lane of
traffic. Consequently, cars can only move concurrently if they are
moving in the same direction. A safety violation occurs if two cars
moving in different directions enter the bridge at the same time.

Concurrency: safety & liveness properties 12

©Magee/Kramer

Single Lane Bridge - model

 Events or actions of interest?

 enter and exit

 Identify processes.

 cars and bridge

 Identify properties.

oneway

Define each process

 and interactions

 (structure).

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property

ONEWAY
CARS

Single

Lane

Bridge

Concurrency: safety & liveness properties 13

©Magee/Kramer

Single Lane Bridge - CARS model

const N = 3 // number of each type of car

range T = 0..N // type of car count

range ID= 1..N // car identities

CAR = (enter->exit->CAR).

To model the fact that cars cannot pass each other
on the bridge, we model a CONVOY of cars in the
same direction. We will have a red and a blue convoy
of up to N cars for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

Concurrency: safety & liveness properties 14

©Magee/Kramer

Single Lane Bridge - CONVOY model

NOPASS1 = C[1], //preserves entry order

 C[i:ID] = ([i].enter-> C[i%N+1]).

NOPASS2 = C[1], //preserves exit order

 C[i:ID] = ([i].exit-> C[i%N+1]).

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permits 1.enter→ 2.enter→ 1.exit→ 2.exit

but not 1.enter→ 2.enter→ 2.exit→ 1.exit

 ie. no overtaking.

1.enter 2.enter

3.enter

0 1 2

1.exit 2.exit

3.exit

0 1 2

Concurrency: safety & liveness properties 15

©Magee/Kramer

Single Lane Bridge - BRIDGE (controller) model

BRIDGE = BRIDGE[0][0], // initially empty

BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue

(when(nb==0)

 red[ID].enter -> BRIDGE[nr+1][nb] //nb==0

 | red[ID].exit -> BRIDGE[nr-1][nb]

 |when (nr==0)

 blue[ID].enter-> BRIDGE[nr][nb+1] //nr==0

 | blue[ID].exit -> BRIDGE[nr][nb-1]

).

Cars can move concurrently on the bridge only if in the same direction.
The bridge maintains counts of blue and red cars on the bridge. Red cars
are only allowed to enter when the blue count is zero and vice-versa.

Even when 0, exit actions permit the
car counts to be decremented. LTSA
maps these undefined states to ERROR.

“Controller” VERY UNFORTUNATE!!!
(reduces concurrency)

Concurrency: safety & liveness properties 16

©Magee/Kramer

Single Lane Bridge - safety property ONEWAY

property ONEWAY =(red[ID].enter -> RED[1]

 |blue[ID].enter -> BLUE[1]

),

RED[r:ID] = (red[ID].enter -> RED[r+1]

 |when(r==1)red[ID].exit -> ONEWAY

 |when(r>1) red[ID].exit -> RED[r-1]

), //r is a count of red cars on the bridge

BLUE[b:ID]= (blue[ID].enter-> BLUE[b+1]

 |when(b==1)blue[ID].exit -> ONEWAY

 |when(b>1) blue[ID].exit -> BLUE[b-1]

). //b is a count of blue cars on the bridge

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for
blue cars. When the bridge is empty, either a red or a blue car may enter.

Concurrency: safety & liveness properties 17

©Magee/Kramer

Single Lane Bridge - model analysis

Is the safety
property ONEWAY
violated?

||SingleLaneBridge = (CARS|| BRIDGE||ONEWAY).

No deadlocks/errors

Trace to property violation in ONEWAY:

 red.1.enter

 blue.1.enter

Without the BRIDGE
contraints, is the
safety property
ONEWAY violated?

||SingleLaneBridge = (CARS||ONEWAY).

Concurrency: safety & liveness properties 18

©Magee/Kramer

Single Lane Bridge - implementation in Java

Active entities (cars) are
implemented as threads.

Passive entity (bridge) is
implemented as a monitor.

BridgeCanvas enforces no
overtaking.

Runnable

RedCar BlueCar

BridgeCanvas

controlcontrol

Bridge

Safe

Bridge

displaydisplay

ThreadApplet

Single

Lane

Bridge

blue,
red

Concurrency: safety & liveness properties 19

©Magee/Kramer

Single Lane Bridge - BridgeCanvas

An instance of BridgeCanvas class is created by SingleLaneBridge
applet - ref is passed to each newly created RedCar and BlueCar object.

class BridgeCanvas extends Canvas {

 public void init(int ncars) {…} //set number of cars

 //move red car with the identity i a step
 //returns true for the period from just before,until just after car on bridge
 public boolean moveRed(int i)

 throws InterruptedException{…}

 //move blue car with the identity i a step
 //returns true for the period from just before,until just after car on bridge
 public boolean moveBlue(int i)

 throws InterruptedException{…}

 public synchronized void freeze(){…}// freeze display
 public synchronized void thaw(){…} //unfreeze display
}

Concurrency: safety & liveness properties 20

©Magee/Kramer

Single Lane Bridge - RedCar

class RedCar implements Runnable {

 BridgeCanvas display; Bridge control; int id;

 RedCar(Bridge b, BridgeCanvas d, int id) {

 display = d; this.id = id; control = b;

 }

 public void run() {

 try {

 while(true) {

 while (!display.moveRed(id)); // not on bridge
 control.redEnter(); // request access to bridge
 while (display.moveRed(id)); // move over bridge
 control.redExit(); // release access to bridge
 }

 } catch (InterruptedException e) {}

 }

}
Similarly for the BlueCar

CAR = (enter->exit->CAR).

Concurrency: safety & liveness properties 21

©Magee/Kramer

Single Lane Bridge - class Bridge

class Bridge {

 synchronized void redEnter()

 throws InterruptedException {}

 synchronized void redExit() {}

 synchronized void blueEnter()

 throws InterruptedException {}

 synchronized void blueExit() {}

}

Class Bridge provides a null implementation of the
access methods i.e. no constraints on the access to the
bridge.

 Result………… ?

Concurrency: safety & liveness properties 22

©Magee/Kramer

Single Lane Bridge

To ensure safety, the “safe” check box must be chosen
in order to select the SafeBridge implementation.

Concurrency: safety & liveness properties 23

©Magee/Kramer

Single Lane Bridge - SafeBridge

class SafeBridge extends Bridge {

 private int nred = 0; //number of red cars on bridge
 private int nblue = 0; //number of blue cars on bridge

 // Monitor Invariant: nred0 and nblue0 and
 // not (nred>0 and nblue>0)

 synchronized void redEnter()

 throws InterruptedException {

 while (nblue>0) wait();

 ++nred;

 }

 synchronized void redExit(){

 --nred;

 if (nred==0)notifyAll();

 } This is a direct
translation from
the BRIDGE
model.

BRIDGE = BR[0][0],

BR[nr:T][nb:T] =

 (when (nb==0)

 red[ID].enter

 -> BR[nr+1][nb]

 |red[ID].exit

 -> BR[nr-1][nb]

 |when (nr==0)

 blue[ID].enter

 -> BR[nr][nb+1]

 |blue[ID].exit

 -> BR[nr][nb-1]

).

Concurrency: safety & liveness properties 24

©Magee/Kramer

synchronized void blueEnter()

 throws InterruptedException {

 while (nred>0) wait();

 ++nblue;

 }

 synchronized void blueExit(){

 --nblue;

 if (nblue==0)notifyAll();

 }

}

Single Lane Bridge - SafeBridge

To avoid unnecessary thread switches, we use conditional notification
to wake up waiting threads only when the number of cars on the
bridge is zero i.e. when the last car leaves the bridge.

But does every car get an opportunity to cross
the bridge eventually? This is a liveness property.

Concurrency: safety & liveness properties 25

©Magee/Kramer

Part III – Liveness and Progress

Concurrency: safety & liveness properties 26

©Magee/Kramer

7.3 Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good
eventually happens.

Single Lane Bridge: Does every car eventually get an
opportunity to cross the bridge?

I.e., make PROGRESS?

A progress property asserts that:
It is always the case that an action is eventually executed.
Progress is the opposite of starvation, the name given to a
concurrent programming situation in which an action is
never executed (after some point).

Concurrency: safety & liveness properties 27

©Magee/Kramer

Progress properties - fair choice

COIN =(toss->heads->COIN

 |toss->tails->COIN).

If a coin were tossed an
infinite number of times,
we would expect that
heads would be chosen

infinitely often and that
tails would be chosen
infinitely often.

This requires Fair Choice !
Note: n ∗ ∞ = ∞

so “fair” != “equal”

toss

toss

heads

tails

0 1 2

Fair Choice: If a choice over a set of transitions is
executed infinitely often, then every transition in the
set will be executed infinitely often.

Concurrency: safety & liveness properties 28

©Magee/Kramer

Progress properties

progress P = {a1,a2..aN} defines a progress
property P, which asserts that in an infinite execution
of a target system, AT LEAST ONE of the actions

a1,a2..aN will be executed infinitely often.

COIN system: progress HEADS = {heads} ?

 progress TAILS = {tails} ?

LTSA check progress: No progress violations detected.

Concurrency: safety & liveness properties 29

©Magee/Kramer

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Progress properties

Suppose that there were two possible coins that could be
picked up:

TWOCOIN = (pick->COIN|pick->TRICK),

 TRICK = (toss->heads->TRICK),

 COIN = (toss->heads->COIN|toss->tails->COIN).

TWOCOIN: progress HEADS = {heads} ?

 progress TAILS = {tails} ?

a trick coin
and a regular
coin……

Concurrency: safety & liveness properties 30

©Magee/Kramer

Progress properties

progress HEADSorTAILS = {heads,tails} ?

progress HEADS = {heads}

progress TAILS = {tails}

LTSA check progress
Progress violation: TAILS

Path to terminal set of states:

 pick

Actions in terminal set:

{toss, heads}

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Concurrency: safety & liveness properties 31

©Magee/Kramer

Progress analysis

A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions, and there is no
transition from within the set to any state outside the set.

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Terminal sets
for TWOCOIN:

{1,2} and
{3,4,5}

Given fair choice, each terminal set represents an execution in which
each action used in a transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not
used in the set cannot occur infinitely often in all executions of the
system - and hence represents a potential progress violation!

Concurrency: safety & liveness properties 32

©Magee/Kramer

Progress analysis

A progress property is violated if analysis finds a
terminal set of states in which none of the progress
set actions appear.

progress TAILS = {tails} in {1,2}

Default: given fair choice, for every action in the alphabet of the
target system, that action will be executed infinitely often. This is
equivalent to specifying a separate progress property for every action.

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Default
analysis for
TWOCOIN?

Concurrency: safety & liveness properties 33

©Magee/Kramer

Progress analysis

Progress violation for actions:

{pick}

Path to terminal set of states:

 pick

Actions in terminal set:

{toss, heads, tails}

Progress violation for actions:

{pick, tails}

Path to terminal set of states:

 pick

Actions in terminal set:

{toss, heads}

Default analysis for
TWOCOIN: separate
progress property for
every action.

and

If the default holds, then every other progress property holds
i.e. every action is executed infinitely often and system consists
of a single terminal set of states.

pick

pick toss

heads

toss

toss

tails

heads

0 1 2 3 4 5

Concurrency: safety & liveness properties 34

©Magee/Kramer

Part IV – Checking Progress in the Single Lane Bridge

Concurrency: safety & liveness properties 35

©Magee/Kramer

Progress - single lane bridge

progress BLUECROSS = {blue[ID].enter}

progress REDCROSS = {red[ID].enter}

No progress violations detected.

The Single Lane
Bridge implementation
can permit progress
violations.
However, if default
progress analysis is
applied to the model
then no violations are

detected!
Why not?

Fair choice means that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems, we must impose some scheduling policy for actions that
models the situation in which the bridge is congested. (unfair choice…)

We need to stress-test it! Concurrency: safety & liveness properties 36

©Magee/Kramer

Progress - action priority

Action priority expressions describe scheduling properties:

||C = (P||Q)<<{a1,…,an} specifies a composition
in which the actions a1,..,an have higher priority
than any other action in the alphabet of P||Q

including the silent action tau.

In system choices that have one or more of actions
a1,..,an labeling a transition, the transitions

labeled with lower priority actions are discarded.

High
Priority
(“<<”)

||C = (P||Q)>>{a1,…,an} specifies a composition
in which the actions a1,..,an have lower priority
than any other action in the alphabet of P||Q

including the silent action tau.

In system choices that have one or more transitions
not labeled by a1,..,an, the transitions labeled by

a1,..,an are discarded.

Low
Priority
(“>>”)

Concurrency: safety & liveness properties 37

©Magee/Kramer

Progress - action priority

NORMAL =(work->play->NORMAL

 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

Concurrency: safety & liveness properties 38

©Magee/Kramer

7.4 Congested single lane bridge (stress testing)

progress BLUECROSS = {blue[ID].enter}

progress REDCROSS = {red[ID].enter}

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?

Could give red cars priority over blue (or vice versa) ?

In practice neither has priority over the other.

Instead, we merely encourage congestion by lowering the
priority of the exit actions of both cars from the bridge.

||CongestedBridge = (SingleLaneBridge)

 >> {red[ID].exit,blue[ID].exit}.

Progress Analysis ? LTS?

Concurrency: safety & liveness properties 39

©Magee/Kramer

congested single lane bridge model

Progress violation: BLUECROSS

Path to terminal set of states:

 red.1.enter

 red.2.enter

Actions in terminal set:

{red.1.enter, red.1.exit, red.2.enter,

red.2.exit, red.3.enter, red.3.exit}

Progress violation: REDCROSS

Path to terminal set of states:

 blue.1.enter

 blue.2.enter

Actions in terminal set:

{blue.1.enter, blue.1.exit, blue.2.enter,

blue.2.exit, blue.3.enter, blue.3.exit}

This corresponds
with the
observation that,
with more than
one car, it is
possible that
whichever color
car enters the
bridge first will
continuously
occupy the bridge
preventing the
other color from
ever crossing.

Concurrency: safety & liveness properties 40

©Magee/Kramer

congested single lane bridge model

red.1.enter

blue.1.enterblue.2.enter blue.1.exit blue.1.enter

blue.2.exit

red.2.enter red.1.exit red.1.enter

red.2.exit

0 1 2 3 4 5 6 7 8

||CongestedBridge = (SingleLaneBridge)

 >> {red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving car entry
to the bridge high priority?

Can congestion occur if there is only one car moving in each direction?

Concurrency: safety & liveness properties 41

©Magee/Kramer

Progress - revised single lane bridge model

The bridge needs to know whether or not cars are
waiting to cross.

Modify CAR:

CAR = (request->enter->exit->CAR).

Modify BRIDGE:

Red cars are only allowed to enter the bridge
if there are no blue cars on the bridge (safe) and there
are no blue cars waiting to enter the bridge (progress).

Blue cars are only allowed to enter the bridge
if there are no red cars on the bridge (safe) and there
are no red cars waiting to enter the bridge (progress).

Concurrency: safety & liveness properties 42

©Magee/Kramer

Progress - revised single lane bridge model

/* nr– number of red cars on the bridge wr – number of red cars waiting to enter

 nb– number of blue cars on the bridge wb – number of blue cars waiting to enter

*/

BRIDGE = BRIDGE[0][0][0][0],

BRIDGE[nr:T][nb:T][wr:T][wb:T] =

 (red[ID].request -> BRIDGE[nr][nb][wr+1][wb]

 |when (nb==0 && wb==0)

 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]

 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]

 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]

 |when (nr==0 && wr==0)

 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]

 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb]

).

OK now?

Concurrency: safety & liveness properties 43

©Magee/Kramer

Progress - analysis of revised single lane bridge model

Trace to DEADLOCK:

 red.1.request

 red.2.request

 red.3.request

 blue.1.request

 blue.2.request

 blue.3.request

The trace is the scenario
in which there are cars
waiting at both ends, and
consequently, the bridge
does not allow either red
or blue cars to enter.

Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable (bt) which breaks the
deadlock by indicating whether it is the turn of blue cars or red
cars to enter the bridge.

Arbitrarily set bt to true initially, giving blue initial precedence.

Concurrency: safety & liveness properties 44

©Magee/Kramer

Progress - 2 nd revision of single lane bridge model

const True = 1

const False = 0

range B = False..True

/* bt - true indicates blue turn, false indicates red turn */

BRIDGE = BRIDGE[0][0][0][0][True],

BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] =

 (red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]

 |when (nb==0 && (wb==0||!bt)) // safe && progress

 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]

 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]

 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]

 |when (nr==0 && (wr==0||bt)) // safe && progress

 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]

 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False]

).

Analysis ?

Concurrency: safety & liveness properties 45

©Magee/Kramer

Revised single lane bridge implementation - FairBridge

class FairBridge extends Bridge {

 private int nred = 0; //count of red cars on the bridge
 private int nblue = 0; //count of blue cars on the bridge
 private int waitblue = 0; //count of waiting blue cars
 private int waitred = 0; //count of waiting red cars
 private boolean blueturn = true;

// synchronized void redRequest() {++waitred;}//[*]

 synchronized void redEnter()

 throws InterruptedException {

 ++waitred;

 while (nblue>0||(waitblue>0 && blueturn)) wait();

 --waitred;

 ++nred;

 }

 synchronized void redExit(){

 --nred;

 blueturn = true;

 if (nred==0)notifyAll();

 }

[*] This is a direct
translation from
the model.

THIS CODE IS WRONG...

WHY?

CAR = (request->enter->exit->CAR).

Concurrency: safety & liveness properties 46

©Magee/Kramer

Revised single lane bridge implementation - FairBridge

class FairBridge extends Bridge {

 private int nred = 0; //count of red cars on the bridge
 private int nblue = 0; //count of blue cars on the bridge
 private int waitblue = 0; //count of waiting blue cars
 private int waitred = 0; //count of waiting red cars
 private boolean blueturn = true;

 synchronized void redEnter()

 throws InterruptedException {

 try {++waitred; // Transaction!!!

 while (nblue>0||(waitblue>0 && blueturn))wait();}

 catch (Exception e){--waitred; throw e;} // Tx undo!

 --waitred;

 ++nred;

 }

 synchronized void redExit(){

 --nred;

 blueturn = true;

 if (nred==0) notifyAll();

 }

This is a direct
translation from
the model (+Tx !)

Is the conditional notifyAll

correct?

Harder to tell now that both

red & blue may wait…
Concurrency: safety & liveness properties 47

©Magee/Kramer

Revised single lane bridge implementation - FairBridge

synchronized void blueEnter(){

 throws InterruptedException {

 try { ++waitblue;

 while (nred>0||(waitred>0 && !blueturn)) wait();}

 finally { --waitblue; }//merged undo & next instr.

 ++nblue;

 }

 synchronized void blueExit(){

 --nblue;

 blueturn = false;

 if (nblue==0) notifyAll();

 }

}

Note that we did not need to introduce a new request monitor method.
The existing enter methods can be modified to increment a wait count
before testing whether or not the caller can access the bridge.

BEWARE OF TRANSACTIONS!!!

The “fair” check
box must be
chosen in order to
select the
FairBridge
implementation.

Concurrency: safety & liveness properties 48

©Magee/Kramer

Revised single lane bridge implementation - FairBridge

“Note that we did not need to introduce a new request monitor method.
The existing enter methods can be modified to increment a wait count
before testing whether or not the caller can access the bridge.”

BEWARE OF TRANSACTIONS!!!

“Did not need” – actually, it’s better we didn’t!

Controlling the transaction would have been harder if we had
introduced a separate request method!

Caller may have added extra calls between request & enter.

Caller would have to control the transaction in that case – harder to
ensure system correctness that way.

Concurrency: safety & liveness properties 49

©Magee/Kramer

Part V – Readers & Writers

Concurrency: safety & liveness properties 50

©Magee/Kramer

7.5 Readers and Writers

A shared database is accessed by two kinds of processes. Readers
execute transactions that examine the database while Writers both
examine and update the database. A Writer must have exclusive access
to the database; any number of Readers may concurrently access it.

Light
blue
indicates
database
access.

Concurrency: safety & liveness properties 51

©Magee/Kramer

readers/writers model

 Events or actions of interest?

 acquireRead, releaseRead, acquireWrite, releaseWrite

 Identify processes.

 Readers, Writers & the RW_Lock

 Identify properties.

 RW_Safe

 RW_Progress

Define each process

 and interactions

 (structure).

writer[1..Nwrite]:

WRITER
reader[1..Nread]:

READER

READERS

_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite

Concurrency: safety & liveness properties 52

©Magee/Kramer

readers/writers model - READER & WRITER

set Actions =

 {acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)

 + Actions

 \ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)

 + Actions

 \ {modify}.

Alphabet extension used to ensure that the other access actions cannot
occur freely for any prefixed instance of the process (as before).

Action hiding is used, since actions examine and modify are irrelevant
for access synchronisation.

Concurrency: safety & liveness properties 53

©Magee/Kramer

readers/writers model - RW_LOCK

const False = 0 const True = 1

range Bool = False..True

const Nread = 2 // Maximum readers

const Nwrite= 2 // Maximum writers

RW_LOCK = RW[0][False],

RW[readers:0..Nread][writing:Bool] =

 (when (!writing)

 acquireRead -> RW[readers+1][writing]

 |releaseRead -> RW[readers-1][writing]

 |when (readers==0 && !writing)

 acquireWrite -> RW[readers][True]

 |releaseWrite -> RW[readers][False]

).

The lock
maintains a
count of the
number of
readers, and
a Boolean for
the writers.

Concurrency: safety & liveness properties 54

©Magee/Kramer

readers/writers model - safety

property SAFE_RW

 = (acquireRead -> READING[1]

 |acquireWrite -> WRITING

),

 READING[i:1..Nread]

 = (acquireRead -> READING[i+1]

 |when (i >1) releaseRead -> READING[i-1]

 |when (i==1) releaseRead -> SAFE_RW

),

 WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property……

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?

Concurrency: safety & liveness properties 55

©Magee/Kramer

readers/writers model - safety

property SAFE_RW

 = (acquireRead -> READING[1]

 |acquireWrite -> WRITING

),

 READING[0] = SAFE_RW, // base case def

 READING[i:1..Nread]

 = (acquireRead -> READING[i+1]

 |releaseRead -> READING[i-1]// no guards now

),

 WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property……

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?
Concurrency: safety & liveness properties 56

©Magee/Kramer

readers/writers model

An ERROR occurs if a reader
or writer is badly behaved
(release before acquire
or more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure… …

||READERS_WRITERS

 = (reader[1..Nread] :READER

 || writer[1..Nwrite]:WRITER

 || {reader[1..Nread],

 writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3

Concurrency: safety & liveness properties 57

©Magee/Kramer

progress WRITE = {writer[1..Nwrite].acquireWrite}

progress READ = {reader[1..Nread].acquireRead}

readers/writers - progress

WRITE - eventually one of the writers will acquireWrite

READ - eventually one of the readers will acquireRead

||RW_PROGRESS = READERS_WRITERS

 >>{reader[1..Nread].releaseRead,

 writer[1..Nread].releaseWrite}.

Progress Analysis ? LTS?

Adverse conditions using action priority?

we lower the priority of the release actions for both readers
and writers. // release = exit lock

Concurrency: safety & liveness properties 58

©Magee/Kramer

readers/writers model - progress

Progress violation: WRITE

Path to terminal set of states:

 reader.1.acquireRead

Actions in terminal set:

{reader.1.acquireRead, reader.1.releaseRead,

 reader.2.acquireRead, reader.2.releaseRead}

Writer
starvation:
The number
of readers
never drops
to zero.

reader.1.acquireRead

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite

writer.2.releaseWrite

writer.1.releaseWrite

reader.1.acquireRead

reader.1.releaseRead

reader.2.releaseRead

reader.2.acquireRead

0 1 2 3 4 5

Try the
Applet!

Concurrency: safety & liveness properties 59

©Magee/Kramer

readers/writers implementation - monitor interface

interface ReadWrite {

 public void acquireRead()

 throws InterruptedException;

 public void releaseRead();

 public void acquireWrite()

 throws InterruptedException;

 public void releaseWrite();

}

We define an interface that identifies the monitor
methods that must be implemented, and develop a number
of alternative implementations of this interface.

 Firstly, the safe READWRITELOCK.

We concentrate on the monitor implementation:

Concurrency: safety & liveness properties 60

©Magee/Kramer

readers/writers implementation - ReadWriteSafe

class ReadWriteSafe implements ReadWrite {

 private int readers =0;

 private boolean writing = false;

 public synchronized void acquireRead()

 throws InterruptedException {

 while (writing) wait();

 ++readers;

 }

 public synchronized void releaseRead() {

 --readers;

 if (readers==0) notify(); // notifyAll() ?

 }

Unblock a single writer when no more readers.

(How do we know only writers are waiting?)

Concurrency: safety & liveness properties 61

©Magee/Kramer

readers/writers implementation - ReadWriteSafe

public synchronized void acquireWrite()

 throws InterruptedException {

 while (readers>0 || writing) wait();

 writing = true;

 }

 public synchronized void releaseWrite() {

 writing = false;

 notifyAll();

 }

}

Unblock all readers and writers!!!

However, this monitor implementation suffers from the WRITE
progress problem: possible writer starvation, if the number of
readers never drops to zero.

Solution?
Concurrency: safety & liveness properties 62

©Magee/Kramer

Part V – Readers & Writers – Priority

Concurrency: safety & liveness properties 63

©Magee/Kramer

readers/writers - writer priority

Strategy:
Block readers
if there is a
writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,

 releaseWrite,requestWrite}

WRITER =(requestWrite->acquireWrite->modify

 ->releaseWrite->WRITER

)+Actions\{modify}.

Concurrency: safety & liveness properties 64

©Magee/Kramer

readers/writers model - writer priority

RW_LOCK = RW[0][False][0],

RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite]

= (when (!writing && waitingW==0)

 acquireRead -> RW[readers+1][writing][waitingW]

 |releaseRead -> RW[readers-1][writing][waitingW]

 |requestWrite-> RW[readers][writing][waitingW+1]

 |when (readers==0 && !writing)

 acquireWrite-> RW[readers][True][waitingW-1]

 |releaseWrite-> RW[readers][False][waitingW]).

Safety and Progress Analysis ?

Concurrency: safety & liveness properties 65

©Magee/Kramer

readers/writers model - writer priority

Progress violation: READ

Path to terminal set of states:

 writer.1.requestWrite

 writer.2.requestWrite

Actions in terminal set:

{writer.1.requestWrite, writer.1.acquireWrite,

 writer.1.releaseWrite, writer.2.requestWrite,

 writer.2.acquireWrite, writer.2.releaseWrite}

Reader
starvation:
if always a
writer
waiting.

No deadlocks/errors

property RW_SAFE:

progress READ and WRITE:

In practice, this may be satisfactory as (1) there’ s usually less write access
than read, and (2) readers generally want the most up to date information.

Concurrency: safety & liveness properties 66

©Magee/Kramer

readers/writers implementation - ReadWritePriority

class ReadWritePriority implements ReadWrite{

 private int readers =0;

 private boolean writing = false;

 private int waitingW = 0; // no of waiting Writers.

 public synchronized void acquireRead()

 throws InterruptedException {

 while (writing || waitingW>0) wait();

 ++readers;

 }

 public synchronized void releaseRead() {

 --readers;

 if (readers==0) notify(); // notifyAll();

 } // now readers may be waiting as well!

We had to review

(& change!) our

argument about

notify!

Don’t optimise

- Measure first!

Concurrency: safety & liveness properties 67

©Magee/Kramer

readers/writers implementation – ReadWritePriority v.1

synchronized public void acquireWrite()

 throws InterruptedException {

 ++waitingW; // requestWrite()

 try // BAIL OUT: Tx strategy 1 // acquireWrite()

 { while (readers>0 || writing) wait(); }

 catch (InterruptedException e)

 {--waitingW; throw e;}//Tx undo of requestWrite

 --waitingW; // (part of acquireWrite)

 writing = true;

}

synchronized public void releaseWrite() {

 writing = false;

 notifyAll();

}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

Concurrency: safety & liveness properties 68

©Magee/Kramer

readers/writers implementation - ReadWritePriority v.2

synchronized public void acquireWrite() {

 ++waitingW;

 while (readers>0 || writing)

 try{ wait();}//FORCE THROUGH:Tx strategy 2

 catch(InterruptedException e){/*ignore e*/}

 --waitingW;

 writing = true;

}

synchronized public void releaseWrite() {

 writing = false;

 notifyAll();

}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

Concurrency: safety & liveness properties 69

©Magee/Kramer

Summary

◆Concepts

⚫ properties: true for every possible execution

◆safety: nothing bad happens (can be monitored)

◆liveness: something good eventually happens (can’t be monitored!)

◆Models

⚫ safety: no reachable ERROR/STOP state

 compose safety properties at appropriate stages

⚫ progress: an action is always eventually executed

 assumes fair choice; stress-tested with action priority

 progress check on the final (safe) target system model

◆Practice

⚫ threads and monitors Aim: property satisfaction

Concurrency: safety & liveness properties 70

©Magee/Kramer

Single Lane Bridge problem – NOT ALL PROBLEMS

NEED A CENTRALISED CONTROLLER!!!

Here it’s implied (cars can’t communicate, we need a third party).

But not every problem has a centralised controller like the bridge.
We generally DON’T want one!

In distributed systems, centralised controllers cause contention
Centralised Controller: Bottleneck, single point of failure

So don’t start with a centralised controller…

Concurrency: model-based design 1

©Magee/Kramer

Chapter 8

Model-Based Design

Concurrency: model-based design 2

©Magee/Kramer

Model-based Design

Concepts: design process:
requirements to models to implementations

Models: check properties of interest:
- safety on the appropriate (sub)system
- progress on the overall system

Practice: model interpretation - to infer actual system
behavior

threads and monitors

Aim: rigorous design process.

Concurrency: model-based design 3

©Magee/Kramer

 goals of the system

 scenarios (Use Case models)

 properties of interest

8.1 from requirements to models

Requirements

Model

 identify the main events, actions, and interactions

 identify and define the main processes

 identify and define the properties of interest

 structure the processes into an architecture

 check traces of interest

 check properties of interest

Any
appropriate

design
approach

can be
used.

Concurrency: model-based design 4

©Magee/Kramer

a Cruise Control System - requirements

When the car
ignition is switched
on and the on
button is pressed,
the current speed
is recorded and the
system is enabled:
it maintains the
speed of the car at
the recorded
setting.

Pressing the brake,
accelerator or off
button disables the
system. Pressing
resume or on re-
enables the system.

buttons

Concurrency: model-based design 5

©Magee/Kramer

a Cruise Control System - hardware

Wheel revolution sensor generates interrupts to enable the car
speed to be calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It
records the actions of the sensors: • buttons (on, off, resume)

• brake (pressed)

• accelerator (pressed)

• engine (on, off).

buttons

engine

accelerator

brake
PIA

polled

wheel interrupt

CPU

throttleD/A

Output: The cruise control system controls the car speed by setting
the throttle via the digital-to-analogue converter.

Concurrency: model-based design 6

©Magee/Kramer

model - outline design

outline processes and interactions.

Input Speed monitors
the speed when the
engine is on, and
provides the current
speed readings to
speed control.

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events.

Cruise Controller triggers
clear speed and record
speed, and enables or
disables the speed control.

Speed Control clears and
records the speed, and
sets the throttle
accordingly when enabled.

Throttle
sets the
actual
throttle.

Sensors

PromptsEngine

speed
setThrottle

Concurrency: model-based design 7

©Magee/Kramer

model -design

 Main events, actions and interactions.

on, off, resume, brake, accelerator

engine on, engine off,

speed, setThrottle

clearSpeed,recordSpeed,

enableControl,disableControl

 Identify main processes.

Sensor Scan, Input Speed,

Cruise Controller, Speed Control and

Throttle

 Identify main properties.

safety - disabled when off, brake or accelerator pressed.

Define and structure each process.

Sensors

Prompts

Concurrency: model-based design 8

©Magee/Kramer

model - structure, actions and interactions

set Sensors = {engineOn,engineOff,on,off,

resume,brake,accelerator}

set Engine = {engineOn,engineOff}

set Prompts = {clearSpeed,recordSpeed,

enableControl,disableControl}

SENSOR

SCAN
CRUISE

CONTROLLER

Sensors

INPUT

SPEED
SPEED

CONTROL

set
Throttle

speed

Engine Prompts

CONTROL CRUISE

CONTROL

SYSTEM

THROTTLE

The
CONTROL
system is
structured
as two
processes.

The main
actions and
interactions
are as
shown.

Concurrency: model-based design 9

©Magee/Kramer

model elaboration - process definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).

// monitor speed when engine on
INPUTSPEED = (engineOn -> CHECKSPEED),

CHECKSPEED = (speed -> CHECKSPEED

|engineOff -> INPUTSPEED

).

// zoom when throttle set
THROTTLE =(setThrottle -> zoom -> THROTTLE).

// perform speed control when enabled
SPEEDCONTROL = DISABLED,

DISABLED =({speed,clearSpeed,recordSpeed}->DISABLED

| enableControl -> ENABLED

),

ENABLED = (speed -> setThrottle -> ENABLED

|{recordSpeed,enableControl} -> ENABLED

| disableControl -> DISABLED

).

Concurrency: model-based design 10

©Magee/Kramer

model elaboration - process definitions

// enable speed control when cruising,
 // disable when off, brake or accelerator pressed
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE),

ACTIVE =(engineOff -> INACTIVE

|on->recordSpeed->enableControl->CRUISING

),

CRUISING =(engineOff -> INACTIVE

|{ off,brake,accelerator}

-> disableControl -> STANDBY

|on->recordSpeed->enableControl->CRUISING

),

STANDBY =(engineOff -> INACTIVE

|resume -> enableControl -> CRUISING

|on->recordSpeed->enableControl->CRUISING

).

Concurrency: model-based design 11

©Magee/Kramer

model - CONTROL subsystem

||CONTROL =(CRUISECONTROLLER

||SPEEDCONTROL

).

- Is control enabled
after the engine is
switched on and the on
button is pressed?
- Is control disabled
when the brake is
then pressed?
- Is control re-
enabled when resume
is then pressed?

Animate to check particular
traces:

Safety: Is the
control disabled
when off, brake or
accelerator is
pressed?
Progress: Can every
action eventually be
selected?

However, we need to
analyse to exhaustively
check:

Concurrency: model-based design 12

©Magee/Kramer

model - Safety properties

Safety properties should be composed with the
appropriate system or subsystem to which the
property refers. In order that the property can check
the actions in its alphabet, these actions must not be
hidden in the system.

Safety checks are compositional. If there is no violation
at a subsystem level, then there cannot be a violation
when the subsystem is composed with other subsystems.

This is because, if the ERROR state of a particular safety
property is unreachable in the LTS of the subsystem, it
remains unreachable in any subsequent parallel
composition which includes the subsystem. Hence...

Concurrency: model-based design 13

©Magee/Kramer

model - Safety properties

Is CRUISESAFETY
violated?

||CONTROL =(CRUISECONTROLLER

||SPEEDCONTROL

||CRUISESAFETY

).

property CRUISESAFETY =

 ({off,accelerator,brake,disableControl} -> CRUISESAFETY

 |{on,resume} -> SAFETYCHECK

),

SAFETYCHECK =

 ({on,resume} -> SAFETYCHECK

 |{off,accelerator,brake} -> SAFETYACTION

 |disableControl -> CRUISESAFETY

),

SAFETYACTION =(disableControl->CRUISESAFETY).
LTS?

Concurrency: model-based design 14

©Magee/Kramer

model analysis

||CONTROL =

 (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY

)@ {Sensors,speed,setThrottle}.

||CRUISECONTROLSYSTEM =

(CONTROL||SENSORSCAN||INPUTSPEED||THROTTLE).

We can now compose the whole system:

Deadlock?
Safety?

No deadlocks/errors

Progress?

Concurrency: model-based design 15

©Magee/Kramer

model - Progress properties

Progress checks should be conducted on the complete
target system after satisfactory completion of the
safety checks.

Progress checks are not compositional. Even if there is no
violation at a subsystem level, there may still be a
violation when the subsystem is composed with other
subsystems.

This is because an action in the subsystem may satisfy
progress yet be unreachable when the subsystem is
composed with other subsystems which constrain its
behavior. Hence...

Concurrency: model-based design 16

©Magee/Kramer

model - Progress properties

Progress violation for actions:

{engineOn, clearSpeed, engineOff, on, recordSpeed,

enableControl, off, disableControl, brake,

accelerator...........}

Path to terminal set of states:

 engineOn

 clearSpeed

 on

 recordSpeed

 enableControl

 engineOff

 engineOn

Actions in terminal set:

{speed, setThrottle, zoom}

Control is not disabled
when the engine is
switched off !

Check with no
hidden actions

Concurrency: model-based design 17

©Magee/Kramer

cruise control model - minimized LTS

engineOn

engineOff

on

speed

engineOff

on

off

brake

accelerator

speed

engineOff

on

resume

speed

engineOn

speed
0 1 2 3 4 5

||CRUISEMINIMIZED = (CRUISECONTROLSYSTEM)

 @ {Sensors,speed}.

Action hiding and minimization
can help to reduce the size of
the LTS diagram and make it
easier to interpret.

Concurrency: model-based design 18

©Magee/Kramer

model - revised cruise control system

Modify CRUISECONTROLLER so that control is disabled when the
engine is switched off:

…

CRUISING =(engineOff -> disableControl -> INACTIVE

|{ off,brake,accelerator} -> disableControl -> STANDBY

|on->recordSpeed->enableControl->CRUISING

),

…
OK now?

Modify the safety property:

property IMPROVEDSAFETY = ({off,accelerator,brake,disableControl,

 engineOff} -> IMPROVEDSAFETY

 |{on,resume} -> SAFETYCHECK

),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK

 |{off,accelerator,brake,engineOff} -> SAFETYACTION

 |disableControl -> IMPROVEDSAFETY

),

SAFETYACTION =(disableControl -> IMPROVEDSAFETY).

Concurrency: model-based design 19

©Magee/Kramer

model - revised cruise control system

engineOn

engineOff

on

speed

engineOff

on

off

brake

accelerator

speed

engineOff

on

resume

speed
0 1 2 3

Minimized LTS:

What about under adverse conditions?
Check for system sensitivities.

No deadlocks/errors

No progress

violations detected.

Concurrency: model-based design 20

©Magee/Kramer

model - system sensitivities

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions:

{engineOn, engineOff, on, off, brake, accelerator,

resume, setThrottle, zoom}

Path to terminal set of states:

 engineOn

 tau

Actions in terminal set:

{speed} The system may be
sensitive to the
priority of the
action speed.

Concurrency: model-based design 21

©Magee/Kramer

model interpretation

Models can be used to indicate system sensitivities.

If it is possible that erroneous situations detected in the
model may occur in the implemented system, then the
model should be revised to find a design which ensures
that those violations are avoided.

However, if it is considered that the real system will not
exhibit this behavior, then no further model revisions are
necessary.

Model interpretation and correspondence to the
implementation are important in determining the relevance
and adequacy of the model design and its analysis.

Concurrency: model-based design 22

©Magee/Kramer

The central role of design architecture

Design
architecture
describes the
gross
organization
and global
structure of
the system in
terms of its
constituent
components.

We consider that the models for analysis and
the implementation should be considered as
elaborated views of this basic design structure.

Concurrency: model-based design 23

©Magee/Kramer

8.2 from models to implementations

Model

Java

 identify the main active entities

- to be implemented as threads

 identify the main (shared) passive entities

- to be implemented as monitors

 identify the interactive display environment

- to be implemented as associated classes

 structure the classes as a class diagram

Concurrency: model-based design 24

©Magee/Kramer

cruise control system - class diagram

SpeedControl

interacts with
the car
simulation via
interface
CarSpeed.

enableControl()
disableControl()

recordSpeed()
clearSpeed()

Applet

CruiseControl

Controller

brake()
accelerator()

engineOff()
engineOn()

on()

off()
resume()

SpeedControl

CarSimulator

CarSpeed

setThrottle()
getSpeed()

Runnable

CruiseDisplay

car

control

sc

disp

disp

cs

CRUISECONTROLLER SPEEDCONTROL

Concurrency: model-based design 25

©Magee/Kramer

cruise control system - class Controller

class Controller {
 final static int INACTIVE = 0; // cruise controller states
 final static int ACTIVE = 1;
 final static int CRUISING = 2;
 final static int STANDBY = 3;
 private int controlState = INACTIVE; //initial state
 private SpeedControl sc;

 Controller(CarSpeed cs, CruiseDisplay disp)
 {sc=new SpeedControl(cs,disp);}

 synchronized void brake(){
 if (controlState==CRUISING)
 {sc.disableControl(); controlState=STANDBY; }
 }

 synchronized void accelerator(){
 if (controlState==CRUISING)
 {sc.disableControl(); controlState=STANDBY; }
 }
 synchronized void engineOff(){
 if(controlState!=INACTIVE) {
 if (controlState==CRUISING) sc.disableControl();
 controlState=INACTIVE;
 }
 }

Controller

is a passive
entity - it
reacts to
events.
Hence we
implement it
as a monitor

Concurrency: model-based design 26

©Magee/Kramer

cruise control system - class Controller

synchronized void engineOn(){
 if(controlState==INACTIVE)
 {sc.clearSpeed(); controlState=ACTIVE;}
 }

 synchronized void on(){
 if(controlState!=INACTIVE){
 sc.recordSpeed(); sc.enableControl();
 controlState=CRUISING;
 }
 }

 synchronized void off(){
 if(controlState==CRUISING)
 {sc.disableControl(); controlState=STANDBY;}
 }

 synchronized void resume(){
 if(controlState==STANDBY)
 {sc.enableControl(); controlState=CRUISING;}
 }
}

This is a
direct
translation
from the
model.

Concurrency: model-based design 27

©Magee/Kramer

cruise control system - class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; //speed control states
 final static int ENABLED = 1;
 private int state = DISABLED; //initial state
 private int setSpeed = 0; //target speed
 private Thread speedController;
 private CarSpeed cs; //interface to control speed
 private CruiseDisplay disp;

 SpeedControl(CarSpeed cs, CruiseDisplay disp){
 this.cs=cs; this.disp=disp;
 disp.disable(); disp.record(0);
 }

 synchronized void recordSpeed(){
 setSpeed=cs.getSpeed(); disp.record(setSpeed);
 }

 synchronized void clearSpeed(){
 if (state==DISABLED) {setSpeed=0;disp.record(setSpeed);}
 }

 synchronized void enableControl(){
 if (state==DISABLED) {
 disp.enable(); speedController= new Thread(this);
 speedController.start(); state=ENABLED;
 }
 }

SpeedControl

is an active
entity - when
enabled, a new
thread is
created which
periodically
obtains car
speed and sets
the throttle.

Concurrency: model-based design 28

©Magee/Kramer

cruise control system - class SpeedControl

synchronized void disableControl(){
 if (state==ENABLED) {disp.disable(); state=DISABLED;}
 }

 public void run() { // the speed controller thread
 try {
 while (state==ENABLED) {
 Thread.sleep(500);
 if (state==ENABLED) synchronized(this) {
 double error = (float)(setSpeed-cs.getSpeed())/6.0;
 double steady = (double)setSpeed/12.0;
 cs.setThrottle(steady+error); //simplified feed back control
 }
 }
 } catch (InterruptedException e) {}
 speedController=null;
 }
}

SpeedControl is an example of a class that
combines both synchronized access methods
(to update local variables) and a thread.

Concurrency: model-based design 29

©Magee/Kramer

Summary

◆Concepts

⚫ design process:

from requirements to models to implementations

⚫ design architecture

◆Models
⚫ check properties of interest

safety: compose safety properties at appropriate (sub)system

progress: apply progress check on the final target system model

◆Practice
⚫ model interpretation - to infer actual system behavior

⚫ threads and monitors

Aim: rigorous design process.
Concurrency: model-based design 30

©Magee/Kramer

Course Outline

 Processes and Threads

 Concurrent Execution

 Shared Objects & Interference

 Monitors & Condition Synchronization

 Deadlock

 Safety and Liveness Properties

 Model-based Design

 Dynamic systems

 Message Passing

Concepts

Models

Practice

Concurrent Software Architectures

Timed Systems

Concurrency: message passing 1

©Magee/Kramer

Chapter 10

Message Passing

Concurrency: message passing 2

©Magee/Kramer

Message Passing

Concepts: synchronous message passing - channel
asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comms - entry

- call and accept ... reply

Models: channel : relabelling, choice & guards
port : message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

Concurrency: message passing 3

©Magee/Kramer

 send(e,c) - send the
value of the expression e
to channel c. The process
calling the send operation
is blocked until the
message is received from
the channel.

10.1 Synchronous Message Passing - channel

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

 v = receive(c) - receive
a value into local variable v
from channel c. The
process calling the receive
operation is blocked
waiting until a message is
sent to the channel.

cf. distributed assignment v = e

one-to-one

Concurrency: message passing 4

©Magee/Kramer

synchronous message passing - applet

A sender
communicates
with a receiver
using a single
channel.

The sender
sends a
sequence of
integer values
from 0 to 9 and
then restarts at
0 again.

Channel chan = new Channel();

 tx.start(new Sender(chan,senddisp));

 rx.start(new Receiver(chan,recvdisp));

Instances of SlotCanvasInstances of ThreadPanel
Concurrency: message passing 5

©Magee/Kramer

Java implementation - channel

The
implementation
of Channel is a
monitor that has
synchronized
access methods
for send and
receive.

class Channel extends Selectable {

Object chann = null;

public synchronized void send(Object v)

throws InterruptedException {

chann = v;

signal();

while (chann != null) wait();

}

public synchronized Object receive()

throws InterruptedException {

block(); clearReady(); //part of Selectable

Object tmp = chann; chann = null;

notifyAll(); //could be notify()

return(tmp);

}

}

Selectable is
described later. Concurrency: message passing 6

©Magee/Kramer

Java implementation - sender

class Sender implements Runnable {

 private Channel chan;

 private SlotCanvas display;

 Sender(Channel c, SlotCanvas d)

 {chan=c; display=d;}

 public void run() {

 try { int ei = 0;

 while(true) {

 display.enter(String.valueOf(ei));

 ThreadPanel.rotate(12);

 chan.send(new Integer(ei));

 display.leave(String.valueOf(ei));

 ei=(ei+1)%10; ThreadPanel.rotate(348);

 }

 } catch (InterruptedException e){}

 }

}

Concurrency: message passing 7

©Magee/Kramer

Java implementation - receiver

class Receiver implements Runnable {

 private Channel chan;

 private SlotCanvas display;

 Receiver(Channel c, SlotCanvas d)

 {chan=c; display=d;}

 public void run() {

 try { Integer v=null;

 while(true) {

 ThreadPanel.rotate(180);

 if (v!=null) display.leave(v.toString());

 v = (Integer)chan.receive();

 display.enter(v.toString());

 ThreadPanel.rotate(180);

 }

 } catch (InterruptedException e){}

 }

}
Concurrency: message passing 8

©Magee/Kramer

model

range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan

SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization
||SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send,receive}}.
LTS?

How can this be
modelled directly
without the need
for relabeling?

message operation FSP model

send(e,chan) ?

v = receive(chan) ?

Concurrency: message passing 9

©Magee/Kramer

selective receive

Channels
c1
c2
cn

How
should we deal
with multiple

channels?

Sender

send(e,c)Sender

send(e,c)Sender[n]
send(en,cn)

select

when G1 and v1=receive(chan1) => S1;

or

when G2 and v2=receive(chan2) => S2;

or

when Gn and vn=receive(chann) => Sn;

end

Select
statement...

How would we
model this in FSP?

Concurrency: message passing 10

©Magee/Kramer

selective receive

ARRIVALS CARPARK

CONTROL
DEPARTURESarrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS = (arrive->ARRIVALS).

DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)

||DEPARTURES).

Implementation
using message
passing?

Concurrency: message passing 11

©Magee/Kramer

Java implementation - selective receive

class MsgCarPark implements Runnable {

 private Channel arrive,depart;

 private int spaces,N;

 private StringCanvas disp;

 public MsgCarPark(Channel a, Channel l,

 StringCanvas d,int capacity) {

 depart=l; arrive=a; N=spaces=capacity; disp=d;

 }

 …

 public void run() {…}

}

Implement
CARPARKCONTROL as a
thread MsgCarPark
which receives signals
from channels arrive
and depart.

Concurrency: message passing 12

©Magee/Kramer

Java implementation - selective receive

public void run() {

 try {

 Select sel = new Select();

 sel.add(depart);

 sel.add(arrive);

 while(true) {

 ThreadPanel.rotate(12);

 arrive.guard(spaces>0);

 depart.guard(spaces<N);

 switch (sel.choose()) {

 case 1:depart.receive();display(++spaces);

 break;

 case 2:arrive.receive();display(--spaces);

 break;

 }

 }

 } catch InterrruptedException{}

 }

See
Applet

Concurrency: message passing 13

©Magee/Kramer

 send(e,p) - send the
value of the expression e to
port p. The process calling
the send operation is not
blocked. The message is
queued at the port if the
receiver is not waiting.

10.2 Asynchronous Message Passing - port

Port p
Receiver

v=receive(p)

 v = receive(p) - receive
a value into local variable v
from port p. The process
calling the receive
operation is blocked if
there are no messages
queued to the port.

Sender

send(e,c)
Sender

send(e,c)
Sender[n]

send(en,p)
many-to-one

Concurrency: message passing 14

©Magee/Kramer

Port port = new Port();

tx1.start(new Asender(port,send1disp));

tx2.start(new Asender(port,send2disp));

rx.start(new Areceiver(port,recvdisp));

asynchronous message passing - applet

Two senders
communicate
with a receiver
via an
“unbounded”
port.

Each sender
sends a
sequence of
integer values
from 0 to 9 and
then restarts at
0 again.

Instances of SlotCanvasInstances of ThreadPanel
Concurrency: message passing 15

©Magee/Kramer

Java implementation - port

The
implementation
of Port is a
monitor that has
synchronized
access methods
for send and
receive.

class Port extends Selectable {

Vector queue = new Vector();

public synchronized void send(Object v){

queue.addElement(v);

signal();

}

public synchronized Object receive()

throws InterruptedException {

block(); clearReady();

Object tmp = queue.elementAt(0);

queue.removeElementAt(0);

return(tmp);

}

}

Concurrency: message passing 16

©Magee/Kramer

port model

range M = 0..9 // messages with values up to 9

set S = {[M],[M][M]} // queue of up to three messages

PORT //empty state, only send permitted

= (send[x:M]->PORT[x]),

PORT[h:M] //one message queued to port

= (send[x:M]->PORT[x][h]

|receive[h]->PORT

),

PORT[t:S][h:M] //two or more messages queued to port

= (send[x:M]->PORT[x][t][h]

|receive[h]->PORT[t]

).

// minimise to see result of abstracting from data values

||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS?

Concurrency: message passing 17

©Magee/Kramer

model of applet

ASENDER = ASENDER[0],

ASENDER[e:M] = (port.send[e]->ASENDER[(e+1)%10]).

ARECEIVER = (port.receive[v:M]->ARECEIVER).

||AsyncMsg = (s[1..2]:ASENDER || ARECEIVER||port:PORT)

 /{s[1..2].port.send/port.send}.

Safety?

S[1..2]:

ASENDER
port:PORT ARECEIVER

AsynchMsg

port.receiveS[1..2].port.send

Concurrency: message passing 18

©Magee/Kramer

10.3 Rendezvous - entry

Client Server

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended
perform service

Rendezvous is a form of request-reply to support client
server communication. Many clients may request service,
but only one is serviced at a time.

Concurrency: message passing 19

©Magee/Kramer

Rendezvous

 res=call(e,req) - send the

value req as a request
message which is queued to

the entry e.

The calling process is
blocked until a reply message
is received into the local

variable req.

 req=accept(e) - receive
the value of the request

message from the entry e

into local variable req. The
calling process is blocked if
there are no messages
queued to the entry.

 reply(e,res) - send the

value res as a reply

message to entry e.

Concurrency: message passing 20

©Magee/Kramer

Entry entry = new Entry();

clA.start(new Client(entry,clientAdisp,"A"));

clB.start(new Client(entry,clientBdisp,"B"));

sv.start(new Server(entry,serverdisp));

asynchronous message passing - applet

Two clients call a
server which services a
request at a time.

Instances of SlotCanvasInstances of ThreadPanel
Concurrency: message passing 21

©Magee/Kramer

Selectable

guard()

list
Select

add()

choose()

Channel

send()

receive()

Port

send()

receive()

Entry

call()

accept()
reply()

clientChan

Java implementation - entry

The call method creates a
channel object on which to
receive the reply message.
It constructs and sends to
the entry a message
consisting of a reference
to this channel and a
reference to the req
object. It then awaits the
reply on the channel.

The accept method keeps a copy of
the channel reference; the reply
method sends the reply message to
this channel.

Entries are implemented as
extensions of ports,
thereby supporting queuing
and selective receipt.

Concurrency: message passing 22

©Magee/Kramer

public class Entry extends Port {

 private CallMsg cm;

 public Object call(Object req) throws InterruptedException {

 Channel clientChan = new Channel();

 send(new CallMsg(req,clientChan));

 return clientChan.receive();

 }

 public Object accept()throws InterruptedException {

 cm = (CallMsg) receive();

 return cm.request;

 }

 public void reply(Object res) throws InterruptedException {

 cm.replychan.send(res);

 }

 private class CallMsg {

Object request; Channel replychan;

 CallMsg(Object m, Channel c)

 {request=m; replychan=c;}

 }

}

Java implementation - entry

Do call, accept and
reply need to be
synchronized methods? Concurrency: message passing 23

©Magee/Kramer

model of entry and applet

set M = {replyA,replyB} // reply channels

||ENTRY = PORT/{call/send, accept/receive}.

CLIENT(CH='reply) = (entry.call[CH]->[CH]->CLIENT).

SERVER = (entry.accept[ch:M]->[ch]->SERVER).

||EntryDemo = (CLIENT('replyA)||CLIENT('replyB)

|| entry:ENTRY || SERVER).

CLIENT() entry:ENTRY SERVER

EntryDemo

entry.acceptentry.call[M]

We reuse the models for ports and channels …

Action labels
used in
expressions or
as parameter
values must be
prefixed with
a single quote.

Concurrency: message passing 24

©Magee/Kramer

rendezvous Vs monitor method invocation

What is the difference?

… from the point of view of the client?

… from the point of view of the server?

… mutual exclusion?

Which implementation is more efficient?

… in a local context (client and server in same computer)?

… in a distributed context (in different computers)?

Concurrency: message passing 25

©Magee/Kramer

Summary

◆Concepts

⚫ synchronous message passing – channel

⚫ asynchronous message passing – port

- send and receive / selective receive

⚫ rendezvous bidirectional comms - entry
- call and accept ... reply

◆Models
⚫ channel : relabelling, choice & guards

⚫ port : message queue, choice & guards

⚫ entry : port & channel

◆Practice
⚫ distributed computing (disjoint memory)

⚫ threads and monitors (shared memory)
Concurrency: message passing 26

©Magee/Kramer

Course Outline

 Processes and Threads

 Concurrent Execution

 Shared Objects & Interference

 Monitors & Condition Synchronization

 Deadlock

 Safety and Liveness Properties

 Model-based Design

 Dynamic systems

 Message Passing

Concepts

Models

Practice

Concurrent Software Architectures

Timed Systems

Concurrency…

Where the going gets tough

& things are not what they l k like

Christos Kloukinas

© 2024

Christos Kloukinas © 2024 2

“Normal” coding

Get some requirements

“Agile” the $@#% out of it

Test the code
(if not entirely unprofessional)

▪Things more or less “work”

May need some debugging, till “good-enough”

Christos Kloukinas © 2024 3

Coding vs Programming

▪ You don’t “code” algorithms – you:

1. Prove them

2. Program them carefully

3. Test them exhaustively

4. Prove their implementation too, if possible

Christos Kloukinas © 2024 4

Algorithms – why stress about ’em?

▪ “OpenJDK’s java.utils.Collection.sort() is broken: The

good, the bad and the worst case” de Gouw et al.,

Feb 2015 https://web.archive.org/web/20240304054839/http://envisage-

project.eu/wp-content/uploads/2015/02/sorting.pdf

▪Suggested solution was broken too
https://bugs.openjdk.org/browse/JDK-8203864

▪ This (Tim)sort had been in distributions for something like 9 years till

shown broken (TimSort used in Python & Java)

Issue: Broken INVARIANT
Christos Kloukinas © 2024 5

() INVARIANT

▪ You don’t know your class invariant?

▪ You don’t know what it’s supposed to be doing

(you just have a warm feeling)

Constructors have one goal – to make the invariant true.

Methods depend on the invariant being true when they start.

Methods should guarantee that the invariant is true when they exit.

You need to know your class invariant.

Christos Kloukinas © 2024 6

“Normal” coding & programming

▪ Is SEQUENTIAL

▪Things happen one after the other

At least, when not using complex libraries

(DBs, Logging, Networking, GUIs, …)

That is, when writing “Hello World”…

Christos Kloukinas © 2024 7

Concurrency – “reasonable” doesn’t exist

“In this execution, the reads see writes that occur

later in the execution order.

This may seem counterintuitive, but is allowed

by happens-before consistency.

Allowing reads to see later writes can sometimes

produce unacceptable behaviors.”
The Java® Language Specification - Java SE 23 Edition, Gosling et

al., 2024-08-21, p. 774 (end of “17.4.5 Happens-before Order”)
https://docs.oracle.com/javase/specs/jls/se23/jls23.pdf#%5B%7B%22num%22%3A9654%2C%22gen%22%3

A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C72%2C378%2Cnull%5D

Christos Kloukinas © 2024 8

Programming the Devil’s Computer

public class SynchronizedBarriers { int x, y;// x=y=0

void actor() { synchronized(this) { x = 1; }

synchronized(this) { y = 1; } }

void observer(IntResult2 r) {r.r1 = get_in_order(y);

r.r2 = get_in_order(x); } }
r1=y, r2=x Occurrences

0, 0 43,558,372

0, 1 22,512

1, 0 1,565

1, 1 1,372,341

“Close Encounters of The Java Memory

Model Kind”, Aleksey Shipilёv [visited

2024-12-06] https://shipilev.net/blog/2016/close-

encounters-of-jmm-kind/
Christos Kloukinas © 2024 9

Computers are highly distributed machines

▪ Lots of different components: cores, caches, memory,…

▪Hard to keep everything synchronised

▪ Some hardware considers acceptable what many

wouldn’t – We have to program that…

▪ WRL Research Report 95/7 “Shared Memory

Consistency Models: A Tutorial”, Sarita V. Adve,

Kourosh Gharachorloo, Sep 1995,

https://courses.grainger.illinois.edu/CS533/sp2023/reading_list/adve95shared.pdf

Christos Kloukinas © 2024 10

Concurrency – even experts fail (a lot!)

▪ “The Java memory model is fatally flawed” William

Pugh, Aug 2000, Concurrency: Practice and

Experience, vol. 12, No. 6, pp. 445-455
http://www.cs.umd.edu/~pugh/java/broken.pdf

 Without a proof, code means nothing – semi-

random words on a paper/in a file

Christos Kloukinas © 2024 11

Proofs are hard

▪ Need abstractions – very hard to prove the real thing

(e.g., exceptions ignored)

▪ We still struggle – what, me prove theorems?

▪ Model-checking helps A LOT!

(and then some…)

Christos Kloukinas © 2024 12

FSP/LTSA – automated model-checking

▪ Models: build/analyse prototypes fast

▪ Ignore implementation details that don’t matter

Get the protocols right

▪ Automated verification: no need to write proofs!

Christos Kloukinas © 2024 13

Patterns to guide the FSP2Java transform

▪ Active procs turned into Threads

▪Passive procs turned into Monitors:
// Proc[State] = when (guard) act -> Proc[State’]

public synchronized act()
 throws InterruptedException {
 while (!guard) wait();
 // impl State->State’
 notifyAll();
}

Christos Kloukinas © 2024 14

Patterns to guide the FSP2Java transform

▪ It’s just a guidance!

▪ Remember Alamo Transactions!

▪Tx: (1) force through; OR (2) bail out!

▪ Bailing out needs undo handlers / try-with-resources

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Christos Kloukinas © 2024 15

FSP ain’t hard – just Sequence Diagrams

▪ UML Sequence Diagrams are (dead) FSP models

▪ FSP shared action = obj calling another obj in UML

▪ UML Seq Diagrams: cannot simulate ’em!

FSP: we can

▪ UML Seq Diagrams: cannot verify ’em!

FSP: we can

▪ UML: we draw

FSP: we code

1 / 4

FSP Quick Reference Guide

(based on http://www.doc.ic.ac.uk/~jnm/book/ltsa/Appendix-A-2e.html)

Appendix A – FSP Quick Reference

A.1 Processes
A process is defined by a one or more local processes separated by commas. The definition is terminated
by a full stop. STOP and ERROR are primitive local processes.

Example

 Process = (a -> Local),
 Local = (b -> STOP).

Action Prefix -> If x is an action and P a process then (x->P)
describes a process that initially engages in the
action x and then behaves exactly as described by
P. Similar to x ; P in programming!

Choice | If x and y are actions then (x->P|y->Q)
describes a process which initially engages in
either of the actions x or y. After the first action
has occurred, the subsequent behavior is described
by P if the first action was x and Q if the first
action was y.

Guarded Action
when

The choice (when B x -> P | y -> Q)
means that when the guard B is true then the
actions x and y are both eligible to be chosen,
otherwise if B is false then the action x cannot be
chosen.

Alphabet
Extension +

The alphabet of a process is the set of actions in
which it can engage. P + S extends the alphabet
of the process P with the actions in the set S.

Table A.1 – Process operators

Indexed sub-processes/actions:
COUNTDOWN(N=3) = (start->CD[N]),
 CD[i:0..N]=(when (i>0) tick[i]->CD[i-1]
 |when (i==0) beep -> STOP
 |stop -> STOP).

2 / 4

A.2 Composite Processes
A composite process is the parallel composition of one or more processes. The definition of a composite
process is preceded by ||.

Example

 ||Composite = (P || Q).

Parallel Composition || If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q.

Replicator
forall

forall [i:1..N] P(i) is the parallel
composition (P(1) || … || P(N))

Process Labeling : a:P prefixes each label in the alphabet of P with a.

Process Sharing :: {a1,..,ax}::P replaces every label n in the alphabet
of P with the labels a1.n,…,ax.n. Further, every
transition (n->Q) in the definition of P is replaced
with the transitions ({a1.n,…,ax.n}->Q).

Priority High << ||C =(P||Q)<<{a1,…,an} specifies a
composition in which the actions a1,…,an have higher
priority than any other action in the alphabet of P||Q
including the silent action tau. In any choice in this
system which has one or more of the actions a1,…,an
labeling a transition, the transitions labeled with lower
priority actions are discarded.

Priority Low >>

||C=(P||Q)>>{a1,…,an} specifies a composition
in which the actions a1,…,an have lower priority than
any other action in the alphabet of P||Q including the
silent action tau. In any choice in this system which
has one or more transitions not labeled by a1,…,an,
the transitions labeled by a1,…,an are discarded.

Table A.2 – Composite Process Operators

3 / 4

A.3 Common Operators
The operators in Table A.3 may be used in the definition of both processes and composite processes.

Conditional
if then
else

The process if B then P else Q behaves as the
process P if the condition B is true otherwise it
behaves as Q. If the else Q is omitted and B is false,
then the process behaves as STOP.

Re-labeling

 /

Re-labeling is applied to a process to change the
names of action labels. The general form of re-
labeling is:
/ { newlabel_1/oldlabel_1,…
 newlabel_n/oldlabel_n }.

Hiding

 \

When applied to a process P, the hiding operator
\{a1..ax} removes the action names a1..ax from
the alphabet of P and makes these concealed actions
"silent". These silent actions are labeled tau. Silent
actions in different processes are not shared.

Interface

 @

When applied to a process P, the interface operator
@{a1..ax} hides all actions in the alphabet of P
not labeled in the set a1..ax.

Table A.3 – Common Process Operators

deterministic P Transforms P into a deterministic process,
removing all non-deterministic choices.

minimal P Minimizes P trying to remove all tau transitions
– produces a trace-equivalent LTS.

Table X – Interesting command keywords

A.4 Properties

Safety
property

A safety property P defines a deterministic
process that asserts that any trace including actions in
the alphabet of P, is accepted by P.

Progress
progress

progress P = {a1,a2..an} defines a
progress property P which asserts that in an infinite
execution of a target system, at least one of the
actions a1,a2..an will be executed infinitely often.

Table A.4 – Safety and Progress Properties

Avoid “if
then else”
(passive
processes need
to have
guarded actions
to be translated
into Java
easily).

4 / 4

A.5 FLTL – Fluent Linear Temporal Logic

Fluent
fluent

fluent FL = <{s1,…sn}, {e1..en}>
initially B defines a fluent FL that is
initially true if the expression B is true and initially
false if the expression B is false. FL becomes true
immediately any of the initiating actions
{s1,…sn}occur and false immediately any of the
terminating actions {e1..en} occur. If the term
initially B is omitted then FL is initially
false.

Assertion
assert

assert PF = FLTL_Expression defines
an FLTL property.

&& conjunction (and)

|| disjunction (or)

! negation (not)

-> implication ((A->B) (!A || B))

<-> equivalence ((A<->B) (A->B)&&(B->A))

next time X F iff F holds in the next instant.

always []F iff F holds now and always in the future.

eventually <>F iff F holds at some point in the future.

until P U Q iff Q holds at some point in the future and P holds
until then.

weak until P W Q iff P holds indefinitely or P U Q

forall forall [i:R] FL(i) conjunction of FL(i)

exists exists [i:R] FL(i) disjunction of FL(i)

Table A.5 – Fluent Linear Temporal Logic

