
Programming in C++
Session 1 – Introduction

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 31

Intro

What’s this module about?

Goal Become a novice C++ programmer.
That’s actually advanced!
Hard for novice programmers.

C++ is hard
Multiple programming styles (procedural, OO, generic programming)
Language & compilers geared towards experienced programmers

Function calls are often hidden
Compiler messages can seem cryptic

Different standards: 1998, 2011 (major changes!), 2020, 2023

Please ask questions!!! (lecture/Moodle)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 31

Intro

This module: more OO programming, in C++

Assuming that you are a reasonably skillful Java/C#/etc. programmer,
by the end of this course you should be able to

read and modify substantial well-written C++ programs
create classes and small programs in C++ that are:

Correct
Robust
Clear
Reusable

use various object-oriented features, including genericity,
inheritance and multiple inheritance

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 31

Intro

A bit of language history

1960 Algol 60: block structure, static typing
1967 Simula: Algol plus object-orientation (for simulation)
1970 C: statically typed procedural language with low-level

features
1972 Smalltalk: object-orientation (for graphical interfaces), no

static types
1985 C++: C + Object-Oriented features and (later) genericity
1995 Java: “C++ greatly simplified”

Procedural Algol 60, C, . . .
“To dress a young child you do X, Y, Z”

Object-Oriented Simula, Smalltalk, C++, Java, . . .
“To dress a grown up, you ask them to dress themselves”

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 31

https://staff.city.ac.uk/c.kloukinas/cpp

Intro

A bit of language history — Part II

1972 C Procedural, static typing, low-level access
1985 C++ Your beloved (top) language C extended!

C++ compilers can compile C programs
(The Linux kernel is compiled in this way)

C++ “C is good”
1995 Java Your beloved (top) language C++ simplified!

Java compilers cannot compile C++ programs
Java “C++ is too complex”

The differences between C++ & Java are serious pain points

One needs to understand them to understand the C++ language
(expert knowledge of Java not really required for this)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 31

Design Criteria

C++ design criteria

Started as “C with Classes”
support a variety of programming styles, including object oriented
(give the programmer more choices)
powerful (give the programmer more control)
enable efficient implementation (shift some implementation
concerns to the programmer)
extension of C (machine-level access)
Often C features coexist with newer, cleaner versions.
And C++98 features coexist with C++11 & C++20 versions. . .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 31

Design Criteria

Java design criteria

Keep things as simple as possible
object orientation
(moderate) simplicity (fewer variant ways of doing things)
robustness and security (type-safe, automatic memory allocation)
architecture-neutral (fairly high level)
syntax based on C++

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 31

Design Criteria

This session: non-OO programming in C++

This session introduces the philosophy of C++, and some simple
non-OO programs.
We will touch on the following features of C++:

Operator overloading
Constants
Initialization vs. assignment ⋆⋆
Parameter passing by value and reference ⋆⋆

Some library classes
All will be explored in greater detail later.

⋆⋆ NOT like Java!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 31

Design Criteria

The toolset
To Java C++
Compile javac -g pkg1/pkg2/.../pkgN/X.java g++ -g -c x.cpp
(notes) -g debug on -c compile only
Link/etc jar cfe prog.jar X X.class g++ -g -o prog x.o

or echo Main-Class: X > manifest.txt
jar cfm prog.jar manifest.txt X.class

(notes) e executable (“main” is in class X) -o output to
Execute java -jar prog.jar ./prog
Debug jdb -classpath prog.jar X gdb prog

stop in X.main break main
run a1 a2 a3 run a1 a2 a3
print 3+4 print 3+4
print args print argv[0]
step step

Curious javap -c X nm -C x.o
nm x.o | c++filt

A C++ program is processed by the preprocessor (cpp), the compiler
(g++), and the linker (ld) – all of these can complain.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 31

Differences

A small C++ program (vs in Java)
/* C++: */

#include <iostream>
using namespace std;

int main(int argc
, char *argv[]) {

cout << "Hello world!\n";
return 0;

}

/* Java: */

class MyProg {
public static void main(
String[] args){
System.out
.print("Hello world!\n");

}
}

The first two lines make available names from the standard library,
like cout. C++ pretends to not know the standard types. . .
In C++ (like C), a function (main) can exist outside of any class.

Java: oh, that’s a (public) static method! Q: Called on what?
Style: C++ – lower case, Java – CamelCase

Q: Where’s the print function call in C++?
Q: Java: Where do args come from?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 31

Differences

Accessing names from standard libraries

In Java, classes are collected in packages, and accessed with
import declarations.
In C++, there are two (mostly) independent ways of controlling
access to names:
header files like iostream contain collections of related

definitions (in this case for I/O streams). A typical
program will begin with several #include lines.

namespaces like std are collections of names, which must
usually be qualified (std::cout), unless there is a
using command.
Each source file will include the above using line,
but we will not make any other use of namespaces.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 31

Differences

Text output

cout << "Hello world!\n";

The iostream header defines three standard streams:
cin standard input (cf. Java’s System.in)

cout standard output (cf. Java’s System.out)
cerr error output (cf. Java’s System.err)

Applied to integers, << performs a left shift (as in Java)
Applied to an output stream and a string, writes the string to the
stream
The << operator is overloaded

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 31

Text output

cout << "Hello world!\n";

The iostream header defines three standard streams:
cin standard input (cf. Java’s System.in)

cout standard output (cf. Java’s System.out)
cerr error output (cf. Java’s System.err)

Applied to integers, << performs a left shift (as in Java)
Applied to an output stream and a string, writes the string to the
stream
The << operator is overloaded20

24
-1

1-
13

Programming in C++
Differences

Text output

Why do we need both cout and cerr?

We need both so that we can separate the output from the errors
into different files (or sockets), e.g., when using the bash command
shell:
program > output.txt 2> errors.txt

What’s the difference between cout and cerr? Why would one want to
use both if not splitting the output as above?

We need both because they behave differently.
When printing to cout, our output is buffered, i.e., it is placed into a
temporary area and stays there until the output buffer has been
filled. When the buffer is full, the output is sent out to wherever it is
supposed to be sent (terminal, file, network).
Unlike cout, when printing to cerr the output is not buffered – it is
printed immediately.
This is why when printing to cout we sometimes have to use
flush to tell the buffer to output whatever it has stored, even if it is
not full:
cout << "Hi"; cout.flush();
Or alternatively:
cout << "Hi" << flush;

Text output

cout << "Hello world!\n";

The iostream header defines three standard streams:
cin standard input (cf. Java’s System.in)

cout standard output (cf. Java’s System.out)
cerr error output (cf. Java’s System.err)

Applied to integers, << performs a left shift (as in Java)
Applied to an output stream and a string, writes the string to the
stream
The << operator is overloaded20

24
-1

1-
13

Programming in C++
Differences

Text output

Flushing streams – endl

Another way to flush the output stream is to use endl. We’ve seen so
far how to use the special character ’\n’ to insert a newline character
into the output. With endl we can insert a newline and at the same time
flush the output stream:

cout << "Hello, how are you?\n" // no printing yet
<< "How could I be of assistance?"
<< endl; // Add a new line & flush everything

Differences

Input and output

int i;
cout << "Type a number: " << flush;
cin >> i;
cout << i << " times 3 is " << (i*3) << ’\n’;

The >> operator reads from an input stream.
The << operator associates to the left, and returns the stream; the
above is equivalent to
(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;

It is also overloaded for int (i, i*3) and char (’\n’).
The >> operator is similar.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 31

Input and output

int i;
cout << "Type a number: " << flush;
cin >> i;
cout << i << " times 3 is " << (i*3) << ’\n’;

The >> operator reads from an input stream.
The << operator associates to the left, and returns the stream; the
above is equivalent to
(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;

It is also overloaded for int (i, i*3) and char (’\n’).
The >> operator is similar.20

24
-1

1-
13

Programming in C++
Differences

Input and output

cout << i << " times 3 is " << (i*3) << ’\n’;// same as:
(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;

In order for this to work, the operator<< has to return an output
stream. That’s why when (cout << i) is computed we can use its
result (the modified cout (cout ′) to apply the next operator<<
with the next argument (" times 3 is ").
So:

(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;
cout’ << " times 3 is "

cout’’ << (i*3)
cout’’’ << ’\n’;

Differences

Strings

#include <string>

The standard library provides a string type:

string s = "fred";
cout << s;
cin >> s; // reads a word

The + operator is overloaded on strings:

s = s + " and bill";
s = s + ’,’;

So are +=, ==, <, etc.

Unlike in Java, strings are modifiable:

s.erase(); // now s == ""

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 31

Differences

Breaking the input into words

#include <string>
#include <iostream>
using namespace std;

int main() {
string s;
while (cin >> s)

cout << s << ’\n’;
return 0;

}

The >> operator on strings reads words.
The stream returned by the >> operator can be used in a
conditional, to test if the read was successful.

(what do these words mean?)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 31

Breaking the input into words

#include <string>
#include <iostream>
using namespace std;

int main() {
string s;
while (cin >> s)

cout << s << ’\n’;
return 0;

}

The >> operator on strings reads words.
The stream returned by the >> operator can be used in a
conditional, to test if the read was successful.

(what do these words mean?)

20
24

-1
1-

13

Programming in C++
Differences

Breaking the input into words

while (cin >> s)
“The stream returned by the >> operator can be used in a
conditional, to test if the read was successful.” ?!?!
The expression cin >> s returns the modified input stream cin’,
which is what we ask while to evaluate so as to decide whether the
loop body should be executed or not.
The C++ library has functions that allow one to translate an input
stream into a boolean – the boolean is true if the last attempt to read
from the stream succeeded, and it’s false otherwise (e.g., the input
had finished, the input is corrupted, etc.). These functions work like
when we write s1 = s2 + " Hi " + 3; in Java – there they
translate automatically the array of characters " Hi " and the
integer 3 into string objects, that they concatenate with the string
object referenced by s2 to obtain the value of the string object that
will be referenced by s1 (s1 and s2 are not objects in Java, they are
pointing to objects.).
The meaning of while (cin >> s) is:
“Try to read a word from cin into string object s and if that has
succeeded, then continue executing the body of the while loop.”

Differences

Vectors

#include <vector>

C++ has arrays, but we’ll use vectors instead (cf. Java’s ArrayList):

vector<int> vi(5); // vector of 5 ints
vector<string> si; // empty vector of strings

Vectors can be accessed just like arrays:

vi[1] = x; // vi.set(1, x); <3 Java! :-P
vi[2] = vi[1] + 3;// vi.set(2, vi.get(1) + 3); <3 <3

Vectors can also be extended:

si.push_back(s);

The current length of si is si.size()

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 31

Vectors

#include <vector>

C++ has arrays, but we’ll use vectors instead (cf. Java’s ArrayList):

vector<int> vi(5); // vector of 5 ints
vector<string> si; // empty vector of strings

Vectors can be accessed just like arrays:

vi[1] = x; // vi.set(1, x); <3 Java! :-P
vi[2] = vi[1] + 3;// vi.set(2, vi.get(1) + 3); <3 <3

Vectors can also be extended:

si.push_back(s);

The current length of si is si.size()

20
24

-1
1-

13

Programming in C++
Differences

Vectors

Syntax seems simple but the meaning is not. . .

Expression “vi[1]” in Java would have to be written as
“vi.get(1)”, where vi would have been declared instead as a Java
pointer to an ArrayList container.

Thanks to operator overloading C++ allows us to type less (2 characters
for “[]” instead of 6 characters for “.get()”.

It also allows us to keep the syntax of arrays that we’re familiar with and
treat vectors as if they’re advanced arrays (that we can extend/shorten).

But this comes at a price – the code is not as clear now as it was in
Java. In Java it’s obvious we’re calling a function while in C++ it is not so
obvious – one has to remember that every use of an operator is actually
a function call in C++!

So vi[1] is actually vi.operator[](1).

Differences

Language notes

string is a class
vector is a template (generic) class
C++ has pointers (like in Java), but we won’t use them till later:

string s1 = "bill", s2;

declares (and initializes) string objects, not pointers
assignments like

s1 = s2;

copy the objects (not the Java pointers!)

Note: syntax looks like Java, but meaning is VERY different

Capitalisation: In C++ everything is lower case – words are separated
by underscores: class string, void push back

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 31

Differences

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;

Slide has 4 different method calls!
(C++ function calls are often hidden!)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 31

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;

Slide has 4 different method calls!
(C++ function calls are often hidden!)

20
24

-1
1-

13

Programming in C++
Differences

Initialization vs. assignment

SUPER IMPORTANT!!! – I

This slides looks simple and boring – initialise some variables, assign
some variables, blah blah blah, whatever. . .
Your success in the module depends on understanding it fully – and it
ain’t easy.
It actually shows four different methods.
Remember that s1, s2, and s3 are real objects in C++ – unlike Java
where they are pointers.

string s1;
/* INITIALISATION: To initialise s1, the string
constructor must be called.
Which constructor? The one taking no arguments.
So here, we call:
string()

SPECIAL NAME: ‘‘Default Constructor’’ */

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;

Slide has 4 different method calls!
(C++ function calls are often hidden!)

20
24

-1
1-

13

Programming in C++
Differences

Initialization vs. assignment

SUPER IMPORTANT!!! – II

string s2 = "bill";
/* INITIALISATION: Which constructor do we call to
initialise s2?
The one taking an array of characters:
string(const char a[]) */

s1 = s2;
/* ASSIGNMENT: s1 and s2 are OBJECTS, not just
pointers to objects (as in Java).

So here we’re calling a FUNCTION:
string & operator=(string &o, const string &o);
Though usually we’re calling a METHOD:
string & operator=(const string &o);

SPECIAL NAME: ‘‘Assignment Operator’’ */

string s3 = s2;
/* INITIALISATION: Which constructor do we call
to initialise s3?
The one taking another object of class string:
string(const string &o)

SPECIAL NAME: ‘‘Copy Constructor’’ */

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;

Slide has 4 different method calls!
(C++ function calls are often hidden!)

20
24

-1
1-

13

Programming in C++
Differences

Initialization vs. assignment

Is it initialisation or assignment?

To distinguish between initialisation and assignment you need to look at
the form of the statement.

If it’s initialisation we are just introducing a new variable, so we have to
tell the compiler what is its type.
string s1;
string s2 = "Bill";
string s3 = s2;

All initialisations of objects call a constructor of the object’s class.

When assigning a variable the variable exists already, so we do not
declare its type:
s1 = s2;

Assignments call the assignment operator: operator=

Differences

The BIG Difference
Java C++

String s; string s;
// s == null // s != null
// s is a Java *POINTER*!!! // s is an OBJECT
// nothing called // constructor called!

You can never access an object directly in Java (for safety).

C++ gives you direct access to objects (for performance/control).

Many of their core differences are a consequence of this!
Garbage collection vs Manual memory deallocation
Sharing objects by copying Java pointers vs Copying objects
Immutable strings vs Modifiable strings
Call by value vs Call by reference

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 31

The BIG Difference
Java C++

String s; string s;
// s == null // s != null
// s is a Java *POINTER*!!! // s is an OBJECT
// nothing called // constructor called!

You can never access an object directly in Java (for safety).

C++ gives you direct access to objects (for performance/control).

Many of their core differences are a consequence of this!
Garbage collection vs Manual memory deallocation
Sharing objects by copying Java pointers vs Copying objects
Immutable strings vs Modifiable strings
Call by value vs Call by reference

20
24

-1
1-

13

Programming in C++
Differences

The BIG Difference

DANGER!!!

If you don’t understand what the big difference is here, you’re in
dangerous waters.

Draw a picture of the memory for Java and another for C++.

Draw the objects in each – there is one for Java and one for C++.

The C++ object is called s – that’s all there is in the memory of C++.

The Java object has NO NAME. In Java, the name s is the name of an
object POINTER [*], and this (Java) POINTER is in another location in
memory and is pointing to the actual Java object.

Confused? Go over this again (and again, and again, . . .) till you
have understood it – it’s super-basic and you’ll suffer if you don’t get it.

[*] Java’s “references” are pointers – that’s why when you try to use
a NULL Java “reference” you get a “NullPointerException”. You
do not get a “NullReferenceException”, do you?

Differences

Passing parameters by value

Formal parameters are new variables, initialized from the actual
parameters (a.k.a. arguments)

void f(int i) {
i = i + 5;

}

void g() {
int j = 3;
f(j); // no effect on j
f(j*2); // acceptable

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 31

Passing parameters by value

Formal parameters are new variables, initialized from the actual
parameters (a.k.a. arguments)

void f(int i) {
i = i + 5;

}

void g() {
int j = 3;
f(j); // no effect on j
f(j*2); // acceptable

}20
24

-1
1-

13

Programming in C++
Differences

Passing parameters by value

Pass by value

void f(int i) – here i is a local variable of function f, which gets
initialised with whatever we pass as argument to the function.

That’s why we can call the function with an expression as an argument:
f(3 * 2);

Parameter i will be initialised with the value of that expression
int i = 3*2; /* 6 */

Differences

Parameter passing in Java

In Java/C, all parameters are passed by value
Even Java/C pointers!

By Value the method is given a copy of the parameter
Any changes have no effect on the original

If param is a pointer, the copy points to the same object
So it is possible to modify the object pointed to

But Cannot modify original pointer to point to another object

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 31

Differences

Limitations of value parameters

Might wish to change an actual parameter inside a function
Parameter might be large (e.g. an object), so expensive to copy
A solution (Fortran, Pascal, C++, etc) is reference parameters
Can get similar effects with value parameters & pointers

(but more error-prone)
(so we prefer references)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 31

Differences

Passing parameters by reference

A reference parameter is another name (an alias) for the actual
parameter

void f(int &i) {
i = i + 5;

}

void g() {
int j = 3;
f(j); // j is updated
// f(j*2); // NOT ALLOWED!

}

Note: There is no relationship to Java’s pointers (“references”).

Less error prone: Reference params can never be NULL!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 31

Differences

Passing large values by reference

Reference parameters are also used to avoid copying large values:

int last(vector<int> &v) { // v exists!
return v[v.size() - 1];

}

void g() {
vector<int> x(100);
...
int n = last(x); // don’t copy x

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 31

Differences

Constant parameters: const <3 <3 <3

We can indicate that the function doesn’t change the parameter with
the keyword const:

int last(const vector<int> &v) {
return v[v.size() - 1];

}

void g() {
vector<int> x(100);
...
int n = last(x); // don’t copy x

}

This makes programs safer, and helps the compiler.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 31

Differences

Constants

The C++ keyword const introduces a constant:
const int days_per_week = 7;

Constants may (must!) be initialized, but cannot be assigned to.
const parameters are a special case.
C programmers: use const instead of #define, or use enum
definitions:

enum class traffic_light { red, yellow, green };
traffic_light r = traffic_light::red;

enum class colour_rgb { red, green, blue };
colour_rgb r = colour_rgb::red;

A different use of const will be mentioned later.

Use const wherever you can!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 31

Constants

The C++ keyword const introduces a constant:
const int days_per_week = 7;

Constants may (must!) be initialized, but cannot be assigned to.
const parameters are a special case.
C programmers: use const instead of #define, or use enum
definitions:

enum class traffic_light { red, yellow, green };
traffic_light r = traffic_light::red;

enum class colour_rgb { red, green, blue };
colour_rgb r = colour_rgb::red;

A different use of const will be mentioned later.

Use const wherever you can!

20
24

-1
1-

13

Programming in C++
Differences

Constants

We should always try to use const wherever we can and only
remove it if the compiler complains that we cannot update something
because it is const (and we cannot figure another way to do what we
want without updating).
Consts improve our code — make it more robust and help the
compiler optimise further.
Other ways to restrict the code and help the compiler is to use the
more restrictive versions of things, e.g., (lecture 7) prefer
unique_ptr<T> over shared_ptr<T>, if possible.

John Carmack (founder and technical director of Id Software) had
written a blog post (back in 2013) about this — read it here:
https://web.archive.org/web/20130819160454/http:
//www.altdevblogaday.com/2012/04/26/
functional-programming-in-c/
In his Quakecon 2013 keynote he also talked about it (among other
things) — this is the relevant part:
https://www.youtube.com/watch?v=1PhArSujR_A

Differences

References

The C++ symbol & after a type defines a reference, which is
another name (or alias) for a piece of storage (a.k.a. lhs)
Initialization defines the reference as an alias:

int x;
int &y = x; // there’s only one int here

person dr_jekyll;
person & mr_hyde = dr_jekyll; // only one person

Assignment assigns to the original storage:
y = 3;

is the same as assigning to x.

References can never be NULL!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 27 / 31

References

The C++ symbol & after a type defines a reference, which is
another name (or alias) for a piece of storage (a.k.a. lhs)
Initialization defines the reference as an alias:

int x;
int &y = x; // there’s only one int here

person dr_jekyll;
person & mr_hyde = dr_jekyll; // only one person

Assignment assigns to the original storage:
y = 3;

is the same as assigning to x.

References can never be NULL!

20
24

-1
1-

13

Programming in C++
Differences

References

C++ references are almost like (const) pointers:

A reference can never be NULL - it must always refer to a legitimate
object;
Once established, a reference can never be changed so that it
refers to a different object - a const pointer;
A reference does not require any explicit mechanism to
de-reference the memory address & access data values (it’s just
an alias).

C++ references are NOT pointers.

Never state in public or write down that they are pointers.
Never say that they “point” to an object or say that they “have its
address”.
All of these demonstrate a gross misunderstanding of what a C++
reference is.
A C++ reference IS the thing it refers to. They are one and the
same.

Why use references inside a block of code? To simplify things:
int &size = tree.left.value.size;
++size;
cout << size;
equivalent to:
++(tree.left.value.size);
cout << tree.left.value.size;

Examples

An example function (from iostream)

istream & getline(istream & in, string & s) {
s.erase();
char c;
while (in.get(c) && c != ’\n’)

s += c;
return in;

}
// Use:
//string s;while (getline(cin, s)){cout<<s<<endl;}

Note that
get also uses pass-by-reference
There’s no copying here: arg in returned by reference
(Cannot return a local by reference)

(never use getline unless explicitly told to)
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 28 / 31

https://web.archive.org/web/20130819160454/http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/
https://web.archive.org/web/20130819160454/http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/
https://web.archive.org/web/20130819160454/http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/
https://www.youtube.com/watch?v=1PhArSujR_A

An example function (from iostream)

istream & getline(istream & in, string & s) {
s.erase();
char c;
while (in.get(c) && c != ’\n’)

s += c;
return in;

}
// Use:
//string s;while (getline(cin, s)){cout<<s<<endl;}

Note that
get also uses pass-by-reference
There’s no copying here: arg in returned by reference
(Cannot return a local by reference)

(never use getline unless explicitly told to)

20
24

-1
1-

13

Programming in C++
Examples

An example function (from iostream)

How many things does getline return? Three – the result, the
modified parameter in and the modified parameter s.
By using reference parameters you can return multiple things.

Parameter in is passed by reference, because we need to modify the
input stream (we modify it when we call in.get(c) since we remove
one character from it).

Parameter s is passed by reference because we need again to modify
the string so as to be able to return to our caller the contents of the line
we’ve read from the input.

We cannot simply return a string from the function, because we need
to return a stream – and we need that because we want to use getline
as in the next slide, where we test the returned stream to see if
getline succeeded in reading a line or note.

Note that the returned result (istream &) is also returned by reference
to avoid returning a copy of in!

In order to return a variable by reference, the variable must not be local –
it must have been received as a reference parameter.

This is because all local variables are destroyed when a function
returns so they no longer exist to be returned themselves – only a
copy of them can be returned.

An example function (from iostream)

istream & getline(istream & in, string & s) {
s.erase();
char c;
while (in.get(c) && c != ’\n’)

s += c;
return in;

}
// Use:
//string s;while (getline(cin, s)){cout<<s<<endl;}

Note that
get also uses pass-by-reference
There’s no copying here: arg in returned by reference
(Cannot return a local by reference)

(never use getline unless explicitly told to)

20
24

-1
1-

13

Programming in C++
Examples

An example function (from iostream)

(Advanced)

Since C++11, one can return an object without copying it. These
versions of the C++ language standard support moving objects.

If your class contains sub-objects of classes that are well-behaved
(string, vector<T>, etc.) then objects of your class can be
moved without you having to do anything special.
Just pass flag -std=c++23 to the compiler (this flag works for the
g++ and clang++ compilers).

Examples

Prefixing lines with their lengths

#include <iostream>
#include <string>

using namespace std;

int main() {
string s;
while (getline(cin, s))

cout << s.size() << ’\t’ << s << ’\n’;
return 0;

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 29 / 31

Don’t Panic!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 30 / 31

Coming next

Next session

C++ Classes: very similar to Java, but with important differences.
Reading:

Absolute C++ by Walter Savitch, Addison-Wesley Longman,
Reading, Mass, 2002. Chapter 1, sections 6.2 and 7.1.
The C++ Programming Language (3rd edition) by Bjarne
Stroustrup, Addison-Wesley Longman.

For this session: sections 2.1–3 (except 2.3.3), 3.2–6 (except 3.5.1),
3.7.1.
For next session: sections 2.5.3–4, 2.6, 10.2.1–6.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 31 / 31

Next session

C++ Classes: very similar to Java, but with important differences.
Reading:

Absolute C++ by Walter Savitch, Addison-Wesley Longman,
Reading, Mass, 2002. Chapter 1, sections 6.2 and 7.1.
The C++ Programming Language (3rd edition) by Bjarne
Stroustrup, Addison-Wesley Longman.

For this session: sections 2.1–3 (except 2.3.3), 3.2–6 (except 3.5.1),
3.7.1.
For next session: sections 2.5.3–4, 2.6, 10.2.1–6.

20
24

-1
1-

13

Programming in C++
Coming next

Next session

Final Notes

Make sure you understand the difference between initialisation
(TYPE VARNAME = EXPRESSION;) and assignment
(VARNAME = EXPRESSION;).
In C++ these call different methods – you need to know which case it is
to figure out which method will be called (and to understand how to write
these methods – more later).

BIG DIFFERENCE between Java and C++ – in C++ you have direct
access to objects, in Java you can only access pointers to objects.

Because of the direct access to objects, C++ supports call-by-reference
as well as call-by-value – make sure you understand the differences!
(and call-by-constant-reference. . .)
(and return-by-reference vs return-by-value. . .)

	Intro
	Design Criteria
	Differences
	Examples
	Don't Panic!
	Coming next

