
Programming in C++
Session 2 – Classes in C++

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 23

C++ source files

A C++ source file may contain:

include directives #include <iostream>

comments // what this does

constant definitions const double pi = 3.14159;

global variables int count;

function definitions int foo(int x) { ... }

class definitions class foo bar { ... };

Unlike Java, C++ requires that things are declared before use.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 23

C++ source files

A C++ source file may contain:

include directives #include <iostream>

comments // what this does

constant definitions const double pi = 3.14159;

global variables int count;

function definitions int foo(int x) { ... }

class definitions class foo bar { ... };

Unlike Java, C++ requires that things are declared before use.20
24

-1
1-

13

Programming in C++

C++ source files

Naming – NoMoreCamels!!!

In C++ names of classes, functions, variables, constants, files, etc.
are all lower case and multiple words are separated by underscores
(“ ”).
So, never write class MyString – it should be class my string
instead.
The exception is things that have been defined in the pre-processor,
e.g., NULL (the old way of naming the null pointer – now it’s called
nullpointer).
Pre-processor? What’s that?!?! → (next note page)

C++ source files

A C++ source file may contain:

include directives #include <iostream>

comments // what this does

constant definitions const double pi = 3.14159;

global variables int count;

function definitions int foo(int x) { ... }

class definitions class foo bar { ... };

Unlike Java, C++ requires that things are declared before use.20
24

-1
1-

13

Programming in C++

C++ source files

Sidenote – The toolbox

Your source code is treated internally by a sequence of programs:
pre-processor (cpp) → C++ compiler → assembler → linker (ld)

1 The pre-processor (cpp for C-Pre-Processor). Treats all #’s.
It includes files (inserts their contents verbatim at the point where the
#include directive appears, and allows you to define constants and
macros that cause changes to your code:
#define LOCALHOST "banana.city.ac.uk"
#define MAX(a, b) (((a)<(b)) ? (b) : (a)) /* many
parens but still unsafe - try calling MAX(++i, ++j) */

Use flag -E with g++ to ask just for the preprocessor to run.

2 The compiler itself (cc1) – this one reads text without any #include’s
and compiles to assembly code.
Use flag -S with g++ to run just up to this point (pre-process & compile
only).

3 The assembler (as). Translates the assembly code into object (i.e.,
machine) code, producing a file with a suffix .o (equivalent to a .class
file in Java).
Use flag -c to run just up to this point.

4 The linker (ld – Link eDitor). Links all the object files together to
produce a standalone executable (somewhat equivalent to when
creating a standalone, executable jar file in Java).

https://staff.city.ac.uk/c.kloukinas/cpp

Classes in C++

Like Java, C++ supports
classes, with public, protected and private members and methods
inheritance and dynamic binding
abstract methods and classes

but the syntax and terminology is different.
Major semantic difference: copying of objects

(because now you have direct access to objects)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 23

The elements of a C++ class

class date {

As in Java, C++ classes contain:
fields, called members

int day, month, year;

constructors
date() ...
date(int d, int m, int y) ...

methods, called member functions
int get_day() { return day; }
...

};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 23

Visibility of members and methods

Visibility is indicated by dividing the class into sections introduced by
access specifiers:

class date {
private:

int day, month, year;

public:
date() ...
date(int d, int m, int y) ...
int get_day() { return day; }
...

};

In this case, the fields are private, and the constructors and methods
are public.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 23

Access specifiers

C++ has the same keywords as in Java, but as there are no packages,
the situation is simpler:

private visible only in this class.
protected visible in this class and its descendents.

public visible in all classes.

Access specifiers may occur in any order, and may be repeated.
An initial “private:” may be omitted.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 23

Constant member functions

Recall that the const keyword is used for values that cannot be
changed once initialized:

const int days_per_week = 7;
int last(const vector<int> &v) { ... }

We can indicate that the member function get day() doesn’t change
the state of the object by changing its declaration to

int get_day() const { return day; }

This will be checked by the compiler.
Advice: add const where appropriate.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 23

Constructors

Objects are initialized by constructors
class date {
public:

date(); // today’s date
date(int d, int m);
date(int d, int m, int y);
...

};

A constructor with no arguments is called a default constructor
If no constructors are supplied, the compiler will generate a
default constructor
Compiler-generated default constructor:

Call the default constructor of each member (if it exists)
Basic types:

No default constructor (so garbage values)
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 23

Constructors

Objects are initialized by constructors
class date {
public:

date(); // today’s date
date(int d, int m);
date(int d, int m, int y);
...

};

A constructor with no arguments is called a default constructor
If no constructors are supplied, the compiler will generate a
default constructor
Compiler-generated default constructor:

Call the default constructor of each member (if it exists)
Basic types:

No default constructor (so garbage values)

20
24

-1
1-

13

Programming in C++

Constructors

What do we need a default constructor for?

There are cases where there are valid default values for an object – then
we should offer a default constructor that initialises the object with the
default values.

There are equally cases where there are no good default values – then
we should not offer a default constructor.

It is a design issue – you need to think before programming one.

One additional thing you need to think of is whether you’d like to be able
to declare arrays of objects of that class:
some_class array[3];

When declaring arrays there is no way to pass arguments to the
constructor of the array elements – the only constructor that is available
to the constructor for initialising the array elements is the default
constructor.
This means that if there is no default constructor then we cannot
declare arrays of objects of that class like we’ve done above.
Note: Since C++14 we can use array initialisers to bypass this
shortcoming:
some_class array[3] = { o1, o2, o3 };

This way we’re initialising the array elements using the copy
constructor [*], copying o1 into array[0], o2 into array[1], and o3
into array[2].
[*] Or the move constructor if it exists and it’s safe to apply it. . .

Initialization and assignment of objects

Unlike basic types, objects are always initialized.

date today; // uses default constructor
// NOTE: NO PARENTHESES!!!

date christmas(25, 12);

Initialization as a copy of another object: copy constructor

date d1 = today;
date d2(today); // equivalent

Assignment of objects performs a copy, member-by-member:

d1 = christmas;

These are the defaults; later we shall see how these may be
overridden.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 23

Initialization and assignment of objects

Unlike basic types, objects are always initialized.

date today; // uses default constructor
// NOTE: NO PARENTHESES!!!

date christmas(25, 12);

Initialization as a copy of another object: copy constructor

date d1 = today;
date d2(today); // equivalent

Assignment of objects performs a copy, member-by-member:

d1 = christmas;

These are the defaults; later we shall see how these may be
overridden.

20
24

-1
1-

13

Programming in C++

Initialization and assignment of objects

If we had written date today(); then the compiler would have
thought that we want to declare (but not define) a FUNCTION called
today, which takes no parameters and returns a date object. . .

This is the meaning in C and C++ wants to be compatible with C.

Using objects

Declaring object variables:

date today;
date christmas(25, 12); // Reminder: book tickets...

In C++ (unlike Java) these variables contain objects (not pointers to
objects) and they are already initialized.

Methods are invoked with a similar syntax to Java:

cout << today.get_day();
christmas.set_year(christmas.get_year() + 1);

Except that in C++ today is an. . . OBJECT.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 23

Qualification in C++ and Java

Java uses dot for all qualification, while C++ has three different
syntaxes:

C++ Java
object.field (no equivalent) Can’t access objects in Java!

pointer->field Java “reference”.field Java “ref” = C++ pointer!
Class::field Class.field

(no equivalent) package.Class

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 23

Temporary objects
We can also use the constructors to make objects inside expressions:

cout << date().get_day();

1 A temporary, anonymous date object is created and initialized
using the default constructor;

2 The method get day() is called on the temporary object;
3 The result of the method is printed; and
4 The temporary object is discarded (destructor called).

(Can do similarly in Java with new, but relies on GC.)
Another example:

date d;
...
d = date(25, 12);

A temporary date object is created and initialized using the
date(int,int) constructor, copied into d using the assignment
operator, and then discarded (destructor called).

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 23

Temporary objects
We can also use the constructors to make objects inside expressions:

cout << date().get_day();

1 A temporary, anonymous date object is created and initialized
using the default constructor;

2 The method get day() is called on the temporary object;
3 The result of the method is printed; and
4 The temporary object is discarded (destructor called).

(Can do similarly in Java with new, but relies on GC.)
Another example:

date d;
...
d = date(25, 12);

A temporary date object is created and initialized using the
date(int,int) constructor, copied into d using the assignment
operator, and then discarded (destructor called).

20
24

-1
1-

13

Programming in C++

Temporary objects

Important

You must be able to describe the order of calls and be precise:

cout << date().get_day();

1 A temporary date object is created and initialized using the default
constructor ;

2 The method get day() is called on the temporary object ;

3 The result of the method is printed; and

4 The temporary object is discarded (destructor called).

d = date(25, 12);

A temporary date object is created and initialized using the
date(int,int) constructor, copied into d using the assignment
operator, and then discarded (destructor called).
(Advanced) Since C++11, the temporary object will be moved into d
using the move assignment operator, i.e., its contents will be
“stolen” by d (the compiler will consider it as no longer being used),
before being discarded (destructor called).

Initializing members

Members are initialized in initialisation lists, NOT in constructor bodies!
(it’s legal to give default values since C++11)

class date {
int day, month, year;

public:
date() : day(current_day()),

month(current_month()),
year(current_year()) {}

date(int d, int m, int y) :
day(d), month(m), year(y) {}

...
};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 23

Initializing members

Members are initialized in initialisation lists, NOT in constructor bodies!
(it’s legal to give default values since C++11)

class date {
int day, month, year;

public:
date() : day(current_day()),

month(current_month()),
year(current_year()) {}

date(int d, int m, int y) :
day(d), month(m), year(y) {}

...
};

20
24

-1
1-

13

Programming in C++

Initializing members

Why do we need to initialise members with the constructor
initialisation list?
Because all objects need to have been properly constructed before
they’re used and the members are used by the body of the class’s
constructor.
If we don’t initialise them explicitly at the constructor initialisation list,
then the compiler will insert there calls to their default constructors (if
these exist. . .)
Try to compile this:

class A { public: A(int i){} }; // no default constructor

class B { public: B(int i){} }; // no default constructor

class AB {
A a;
B b;

public:
AB() { // Implicitly calls A’s and B’s default constructors
return ;

}
};

int main() {
AB ab;
return 0;

}

Initializing subobjects

Initializers supply constructor arguments:

class event {
date when;
string what;

public:
event(string name) : what(name) {}

event(string name, int d, int m) :
what(name), when(d, m) {}

...
};

If no initializer is supplied, the default constructor is used.
- What happens to when at the first constructor?
- When is its constructor called and which constructor is that?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 23

Two ways to define methods

Methods can be defined in class definitions
int get_day() const { return day; }

C++ compilers treat these as inline functions
(expand the body where function’s called)

It is also possible to merely declare a method in a class
int get_day() const;

Then give the full definition outside the class :
int date:: get day() const { return day; }

Because this is outside the class, we must qualify the function
name with the class name (date::)

Underlined parts must match the original declaration exactly

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 23

The date class minus the method definitions

class date {
private:

int day, month, year;

public:
date();
date(int d, int m);
date(int d, int m, int y);

int get_day() const;
int get_month() const;
int get_year() const;

};

Note that this falls short of an ideal interface, as all members (even
private ones) must be included.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 23

The deferred method definitions

At a later point, outside of any class, we can define the methods.
To state which class they belong to, they are qualified with “date::”.

date::date() : day(current_day()),
month(current_month()),
year(current_year()) {}

date::date(int d, int m, int y) :
day(d), month(m), year(y) {}

int date::get_day() const { return day; }

Advice: place only the simplest method bodies in the class.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 23

Differences with Java

Various minor syntactic differences.

In C++ we have variables of object type :
Initialization and assignment involves copying
(or moving – advanced [*]).
Pass-by-Value vs Pass-by-Reference

Use (const) references to avoid copying
Inheritance (session 6):

Copying from derived classes involves slicing
Method overriding:

In Java method overriding is the default;
In C++ you have to ask for it
(more when discussing static vs dynamic binding).

(session 5) C++ also has pointers (similar to Java “references”)

[*] You can copy someone’s notes or you can move (i.e., steal) them. . .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 23

Properties (revision)

pre-condition a condition that the client must meet to call a method.
post-condition a condition that the method promises to meet,

if the pre-condition was satisfied. (pre → post [*])
invariant a condition of the state of the class,

which each method can depend upon when starting
and must preserve before exiting.

Properties should always be documented.
Where possible, they should be checked by the program.

[*] a → b = ¬a ∨ b so it’s true when a is false, independently of what b is.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 23

Properties are SUPER-important!

The job of each constructor is to establish the class invariant .

Each method depends on the invariant being true when it’s called ;

And must preserve the invariant right before it returns .
A method can also have a pre-condition, for example:
vector v must have at least k + 1 elements before calling v[k].
A method can also have a post-condition, for example:
vector’s size() always returns a non-negative integer.

These are your guide to designing correct code.
If you don’t know what your class invariant and method
pre/post-conditions are, then your code is wrong .
It takes practice to come up with good ones (and correct ones).
Aim for simplicity!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 23

C-style assertions

Properties to be checked at runtime can be written using assert:
#include <cassert>
.
.
.
assert(position < size);

If condition is false, program halts, with filename & line number
of failed assertion
Can turn off assertion checking (Stroustrup 24.3.7.2), but don’t!

Be like NASA: test what you fly & fly what you test

users.cs.duke.edu/˜carla/mars.html

www.cse.chalmers.se/˜risat/Report_MarsPathFinder.pdf

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 23

Assertions or Exceptions?

What should one use – assertions?

assert(1 <= month && month <= 12);

Or exceptions?

if (!(1 <= month && month <= 12))
throw runtime_error("month out of range\n");

Exceptions!

Assertions are enabled during development but are usually meant
to be disabled in the release code – exceptions remain in the
release code
Exceptions allow the program to release resources, while
assertions don’t – so need exceptions to release resources

Not only locally – also in the functions that may have called the
current one

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 23

users.cs.duke.edu/~carla/mars.html
www.cse.chalmers.se/~risat/Report_MarsPathFinder.pdf

Next session: Operator overloading

A kind of polymorphism: overloading resolved with static types
Any of the C++ operators may be overloaded, and often are
An overloaded operator may be either an independent function or
a member function (where the object is the first argument)
Example: object I/O, by overloading the >> & << operators

Reading for this session:
Savitch 1, 6.2, 7.1
(or Stroustrup 2.5.3-4, 2.6, 10.1-6)
(or Horstmann 8)

(Plus, [Stroustrup 24.3.7.2] for how to turn assertions off)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 23

Next session: Operator overloading

A kind of polymorphism: overloading resolved with static types
Any of the C++ operators may be overloaded, and often are
An overloaded operator may be either an independent function or
a member function (where the object is the first argument)
Example: object I/O, by overloading the >> & << operators

Reading for this session:
Savitch 1, 6.2, 7.1
(or Stroustrup 2.5.3-4, 2.6, 10.1-6)
(or Horstmann 8)

(Plus, [Stroustrup 24.3.7.2] for how to turn assertions off)

20
24

-1
1-

13

Programming in C++

Next session: Operator overloading

Final Notes – II

Invariant: What doesn’t change.
Constructors have one goal; to establish the invariant (i.e., make that
property true). The methods should then keep it true when they
terminate.

Constant member functions: int get_day() const
{ return day; }

pre-/post-conditions and invariants:

A pre-condition is a property that needs to hold for a method to
work correctly, e.g., the deposit amount should be non-negative.
We can check it at the start of the method if we want to make sure
that we’re not being called with wrong values or when the object is
not able to offer the services of that method (you don’t call a
takeaway when they’re closed).
We can throw an exception if it’s violated.
This is called defensive programming (e.g., Java checks that array
indices are not out-of-bounds).
In some cases, we simply document it and don’t check for it – it’s
the caller’s obligation to ensure it’s true (and they may get garbage
or crash the program if it isn’t – C++ doesn’t check array indices, it’s
your problem!).

A post-condition is a property that a method promises to the caller after
it has completed executing, as long as the pre-condition was true when it
started executing.
Otherwise the method promises nothing – all bets are off.

We can check for it right before returning, e.g., the deposit method
can check that the new balance is equal to the old balance plus the
deposit amount.
We can throw an exception if it’s violated or try to repair the error.
Sometimes we document it because it’s too expensive to check,
e.g., checking if we’ve indeed sorted an array can take a lot of time,
so may want to only do it during testing, not in normal operation.

An invariant is a property that never changes (”in-variant”).
It should hold immediately after the constructors (that’s their main
goal!!!), and hold immediately after any non-const member function, e.g.,
the balance should always be non-negative.

It’s difficult to identify invariants (and to get them right) but it’s them
that actually help us to design correct and robust code.
We usually start by observing what the different constructors try to
achieve – that gives us a glimpse into how the invariant might look
like.
We can then look at the code of each method to see if they
preserve the invariant, i.e., if the invariant was true before the
method, will it be true after it as well?

When thinking of pre-/post-conditions and invariants, and when doing
code testing we need to think of all possible values – not just the ones
we like.
If we receive numbers as input, always check for -1, 0, 1.
Just because you call a parameter amount, it doesn’t mean that it’s a
positive number – it could be anything.

Next session: Operator overloading

A kind of polymorphism: overloading resolved with static types
Any of the C++ operators may be overloaded, and often are
An overloaded operator may be either an independent function or
a member function (where the object is the first argument)
Example: object I/O, by overloading the >> & << operators

Reading for this session:
Savitch 1, 6.2, 7.1
(or Stroustrup 2.5.3-4, 2.6, 10.1-6)
(or Horstmann 8)

(Plus, [Stroustrup 24.3.7.2] for how to turn assertions off)

20
24

-1
1-

13

Programming in C++

Next session: Operator overloading

Final Notes – I

What looks like writing to memory (initialisation: string s = "Hi";
and assignment: s = s + " there";) is in fact a function call
(initialisation: constructor, assignment: assignment operator, i.e.,
operator=).

This is because in C++ you access objects directly.
So you need to be able to distinguish between initialisation and
assignment, as things are not what they look like!

Default constructor: date() – no parameters; it initialises the object
with default values.

The default constructor date() will be created by the compiler if
you define NO constructors at all. This will try to call the default
constructors of your class’ fields (if they exist – this may cause a
compilation error).
It’ll still leave fields of basic types uninitialised. . . :-(
(cause there’s no default constructor for basic types. . .)

Copy constructor: date(const date &o) – single parameter, which
is (a const reference to) another object of the same class.
It initialises your object as a copy of the other object o.

The copy constructor will be created by the compiler if you don’t
define it yourself (even if you’ve defined other constructors).
This will try to call the copy constructors of your class’ fields.

