
Programming in C++
Session 3 – Overloading

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 27

Polymorphism

Code that works for many types.
ad-hoc polymorphism (overloading) – this session

The version executed is determined statically from the
types of the arguments (Savitch 8.1; Stroustrup 7.4,11;
Horstmann 13.4)

parametric polymorphism (genericity) – next session
A single version, parameterized by types, is used (Savitch
16.1–2; Stroustrup 13.2–3; Horstmann 13.5)

subtype polymorphism (dynamic binding) - session 7
The version executed is determined dynamically. (Savitch
14,15; Stroustrup 12; Horstmann 14)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 27

Overloading

Term symbol is overloaded. . .
A single symbol has multiple meanings.
The meaning of a particular use is statically determined by the types of
its arguments.
The following may be overloaded in C++:

constructors (as in Java) – often useful.
member functions (or methods, as in Java) – a dubious (and
dangerous) feature.
independent functions – ditto.
operators – heavily used in the standard libraries.
Operator overloading makes for concise programs, but overuse
may impair readability.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 27

Implicit conversions and overloading

Recall that numeric types may be implicitly converted, e.g. given a
definition

void f(double x) { ... }

it is legal to write f(1), because 1, of type int can be implicitly
converted to double. (Later: similar situation with inheritance of
class types.)
Now suppose there was another definition

void f(int n) { ... }

If we call f(1), the best (most specific) definition is selected, i.e.
the one closest to the call type.

So, to be explicit - say which you really want: f(1.0)
or even better f(double(1))

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 27

https://staff.city.ac.uk/c.kloukinas/cpp

Ambiguity

Given the definitions

void f(int i, double y) { ... }
void f(double x, int j) { ... }

the following is rejected by the the compiler:

f(1, 2); // ambiguous!

We could get around this by also defining

void f(int i, int j) { ... }

Then every application would have a best match.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 27

Ambiguity

Given the definitions

void f(int i, double y) { ... }
void f(double x, int j) { ... }

the following is rejected by the the compiler:

f(1, 2); // ambiguous!

We could get around this by also defining

void f(int i, int j) { ... }

Then every application would have a best match.20
24

-1
1-

13

Programming in C++

Ambiguity

You’re writing programs for PEOPLE first!

So, DOCUMENT THEM!

f(int(1), double(2));

OverRidingLoading – Write fewer if’s with OOP!
Overriding – compare:

void move(person p) {
if (p isA driver) {
} else if (p isA cyclist) {
} else if (p isA pilot) {
} else { //*DEFAULT* }

class person {//*DEFAULT*
void move(){...} }

class driver :person{
void move(){...} }

class cyclist :person{
void move(){...} }

class pilot :person{
void move(){...} }

Overloading – compare:
void f(x) {
if (x isA double) {
} else if (x isA float) {
} else if (x isA int) {
} else {assert(0);}//*ERROR*

void f(double x) {...}
void f(float x) {...}
void f(int x) {...}
//*NO* (runtime) *ERROR*!!!

They allow us to write if/then/else’s better – the compiler does it!
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 27

Overloaded equality

In C++, we can compare values of built-in types:

int i;
if (i == 3) ... // [*]

We can also compare objects:

string s1, s2;
if (s1 == s2) ...

And similarly for vectors.
The == operator is overloaded :
special definitions have been given for string, vector and many
other types.

[*] Prefer (3 == i), because “if (i = 3)” is valid C++ (and it’s
always true. . .)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 27

Expanding overloaded operators

An operator can be either an independent function or a member
function, in each case with a special name starting with operator:
Binary operators An expression a == b could mean either of

operator==(a, b) (independent function)
a.operator==(b) (member function)

a is the implicit 1st argument!
Unary operators An expression ! a could mean either of

operator!(a) (independent function)
a.operator!() (member function)

As with ordinary overloading, there must be a unique best match.

a.method(b, c, d) is in reality: method(a, b, c, d)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 27

Comparing points

class point {
int _x, _y;

public:
point(int x, int y) : _x(x), _y(y) { }

int x() const {return _x;}//p1.x();p1 as if const
int y() const {return _y;}

// p1 == p2; stands for p1.operator==(p2);
bool operator==(const point &p) const {

return _x == p._x && _y == p.y();
}// methods can read private fields

};
Use const as much as possible.
Put it in by default, only remove it if you (really) need to.
If you need a non-const version, see if you can also provide a
const one (for use with constant objects).

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 27

An alternative definition

We could instead have defined an independent function:

// p1 == p2; now stands for operator==(p1, p2);
bool operator==(const point &p1, const point &p2){
return p1.x() == p2.x() && p1.y() == p2.y();
}

In either case we can then write

point p1, p2;
...
if (p1 == p2)

...
if (p1 == point(0, 0)) // temporary object

// (only works if second parameter is *const*)
...

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 27

A note on types

The language does not enforce any constraints on the argument
types and return type of operator==, or any other operator.
It is conventional that the arguments have the same type and the
result type is bool.
It is also conventional that the == operator should define an
equivalence relation.
Departing from these conventions is permitted by the language,
but will be very confusing for anyone trying to understand your
code (including a future you).

Equivalence Relation R:
Reflective x R x

Symmetric x R y → y R x

Transitive x R y ∧ y R z → x R z

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 27

Other comparison operators

The <utility> header file (which is included by <string>,
<vector> and other data types) defines

a != b as !(a == b)
a > b as b < a
a <= b as !(b < a)
a >= b as !(a < b)

So usually we need only define == and <, but we can also define the
others if required.

You need to declare:

using namespace std::rel_ops;

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 27

Operators available for overloading

Only built-in operators can be overloaded:

unary ˜ ! + - & * ++ -- ++ --

binary + - * / % ˆ & | << >>
+= -= *= /= %= ˆ= &= |= <<= >>=
== != < > <= >= && ||
= , ->* -> () []

Their precedence and associativity can’t be changed, so the
expressions

a + b + c * d (a + b) + (c * d)

are always equivalent, no matter how the operators are overloaded.
++a; is a.operator++();
a++; is a.operator++(int);//dummy argument (ignored)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 27

Output of built-in types

Consider

cout << "Total = " << sum << ’\n’;

This is equivalent to

((cout << "Total = ") << sum) << ’\n’;

The operator << is overloaded in iostream, not in the C++
language.
It associates to the left.
It is defined as a member function of ostream, and returns the
modified ostream.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 27

The << operator
The built-in meaning of << is bitwise left shift of integers, so that
the expression 5 << 3 is equal to 40.
It associates to the left, so 5 << 2 << 1 is also equal to 40.
It was selected for stream output for its looks. Luckily it associated
the right way.
Different overloadings of the same symbol need not have related
meanings, or even related return types.

Bitwise left shift
5 << 0 101 = 5
5 << 1 1010 = 10
5 << 2 10100 = 20
5 << 3 101000 = 40

x<<y = x ∗ 2y
x>>y = x ∗ 2−y = x/2y

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 27

The ostream class
class ostream {
public:

ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(float n);
ostream& operator<<(double n);
...

};

In the string header file an independent function:

ostream& operator<<(ostream &out, const string &s);

Why not define it as a member function???

ostream& operator<<(ostream &out);

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 27

The ostream class
class ostream {
public:

ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(float n);
ostream& operator<<(double n);
...

};

In the string header file an independent function:

ostream& operator<<(ostream &out, const string &s);

Why not define it as a member function???

ostream& operator<<(ostream &out);

20
24

-1
1-

13

Programming in C++

The ostream class

Why not define printing string objects as a member function?

The writer of the string class cannot modify the ostream class.
So if they want to declare it as a member function they can only do so
within the class string.

But then the meaning of the operator changes – instead of writing
cout << s; we would have to write s << cout; – not what we want!

Do you understand why we’d have to write s << cout; to print a
string s on cout if we’d have defined operator<< as a member
function of class string?
If you do not, start reading again from slide “Expanding overloaded
operators” (slide 8) – repeat until it’s clear.

Output of a user-defined type

class point { int _x, _y;
public:
point(x, y) : _x(x), _y(y) { }
int x() const { return _x; }
int y() const { return _y; }

};

The output operator for points is defined as a non-member function:

ostream& operator<<(ostream &s, const point &p) {
return s << ’(’ << p.x() << ’,’ << p.y() << ’)’;

}

Again – why as a non-member function ???

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 27

Output of a user-defined type – ATTENTION!!!
1 Always output to the ostream parameter (s), NOT to cout/cerr!!!

cout/cerr might not exist!
May want to print to a socket, a string buffer. . .

2 Always return the stream received as parameter
To enable chaining: cout << a << b;

3 Return type and the parameters should all be references – the
object should be a const reference.

We need to change the ostream (so a reference) and we want to
avoid copying the object (so a const reference).

4 We NEVER print a newline at the end!
Some may need to print more things before the newline.

5 We output the bare minimum – nothing more!
Never print things such as:
“The point object is (3,4)”

6 We keep the output simple and easy to READ BACK.
We must be able to eat our own dog food!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 27

Using various versions of the << operator

Suppose we have an expression a << b, where a has type A, and b
has type B. Then the relevant definition of << could be either

a method of class A taking one argument of type B:
ReturnType A::operator<<(B x)

or an independent function (not a method in a class) taking two
arguments of types A and B:

ReturnType operator<<(A x, B y)

For example the following uses a mixture of these:

point p(2,3);
cout << "The point is " << p << ’\n’;

Can you identify which occurrences of the << operator are
independent functions and which are member functions?

(Hint: Think which types were already known to whomever wrote the
ostream class.)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 27

On accessing private state: Friend (or NOT)

An accidental consequence of the way operators are defined in C++:
An operator defined as a member function has access to the
private and protected fields of its first argument, but not its second
(when the second is an object of a different class).
Sometimes this is not what we want (e.g. for << and >> of
user-defined types).
One work-around is to declare the operator as a friend of the
second class.
Even better to use a helper member function:
class point {
public:
ostream& print_on(ostream &s) const {//*CONST* !!!

return s << ’(’ << _x << ’,’ << _y << ’)’; }
};
ostream& operator<<(ostream &s, const point &p) {

return p.print_on(s); }
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 27

Input of built-in types

Input is almost the mirror image of output:

int x, y, z;
cout << "Please type three numbers: ";
cin >> x >> y >> z;

Again >> is overloaded: it knows what to look for based on the
type of its argument.
It also associates to the left, and returns an istream.
By default, >> will skip white space before the item; in this mode
you will not see a space, newline, etc.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 27

The istream class

class istream : virtual public ios {
public:

istream& operator>>(char &c);
istream& operator>>(unsigned char &c);
istream& operator>>(int &n);
istream& operator>>(unsigned int &n);
istream& operator>>(long &n);
istream& operator>>(float &n);
istream& operator>>(double &n);
...

};

In the string header file, as an independent function:

istream& operator>>(istream &in, string &s);

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 27

The state of an istream

The following methods of istream test its state:
bool eof() the end of the input has been seen.
bool fail() the last operation failed.
bool good() the next operation might succeed.

(Equivalent to ! eof() && ! fail().)
bool bad() the stream has been corrupted: data has been lost

(data was read but not stored in an argument).
(Implies fail(), but not vice-versa.)

A test “if (s)” is equivalent to “if (! s.fail())”

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 27

Input of a user-defined type
istream& operator>>(istream &s, point &p) {

int x, y;
char lpar, comma, rpar;

if (s >> lpar) { //not met EOF (End Of File)

if ((s >> x >> comma >> y >> rpar) &&
(lpar == ’(’ && comma == ’,’ && rpar == ’)’))

p = point(x, y); // *constructor*, not setters!
else

s.setstate(ios::badbit); //read failed

}
return s;

}

When “if (s >> lpar)” fails, that means there is no more input.
We have not read any data so far, so have not corrupted the input.
Therefore, we simply return the input stream.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 27

Input of a user-defined type – ATTENTION!!!
1 Always read from the stream received as parameter – NEVER cin!

cin may not exist!
May want to read from a file/buffer/socket. . .

2 Always return the stream received as parameter
To allow checking for input success.
To allow for chaining.

3 Return and all parameters should be references (non-const).
4 Set the badbit if there’s a problem (i.e., you’ve read something but

cannot use it to set your object) – failing to read anything at all
because of an EOF is NOT a problem.

5 Always read what you print – always (so, keep the format simple!).
6 NEVER use getline() – you’re corrupting the stream!
7 NEVER read into a string and parse that – stream corruption!
8 NEVER, EVER print anything!
9 Prefer constructors over setter member functions.

Avoid setters altogether – not very OO. Same with getters. . .
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 27

Getters/Setters – Why Not
Avoid getters

Objects should be asked to do tasks themselves:
point1.move(3,5);
shape2.scale(.5);
employee3.clock_in(log_register); etc.
When you’re using getters, you end up doing the task yourself using
the state data you got.
But that’s procedural, not OO programming. . .

Avoid setters (OK, you can write ForTran in any language. . .)
Object’s state should only change because of actions they ’ve
performed on your behalf , not because you’ve done a task and
are now giving them the results.
Don’t spoon-feed your objects – they can take care of themselves.
Setters need to preserve the class invariance.
Much easier to get this right once (in the constructors) and re-use
the constructors from that point on.

Delegate! “What can I ask an object of this class to do for me?”

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 27

Next session

Genericity (parametric polymorphism)
Template classes and functions in C++.
Reading: Savitch 16.1–2; Stroustrup 13.2–3; Horstmann 13.5.
Introducing the Standard Template Library: some container
classes.
Reading: Savitch 19.1; Stroustrup 16.2.3,16.3; Horstmann 13.5.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 27 / 27

Next session

Genericity (parametric polymorphism)
Template classes and functions in C++.
Reading: Savitch 16.1–2; Stroustrup 13.2–3; Horstmann 13.5.
Introducing the Standard Template Library: some container
classes.
Reading: Savitch 19.1; Stroustrup 16.2.3,16.3; Horstmann 13.5.

20
24

-1
1-

13

Programming in C++

Next session

Final Notes

a + b, can be either a.operator+(b) or operator+(a, b). All
methods receive the current object (*this) as their implicit first
argument.

Avoid friend functions – use helper methods.
“Treat your friend as if he might become an enemy.” – Publilius Syrus,
85-43 BC.

Output: Read again slides 17–18. Repeat.

Input: Read again slides 24–25. Repeat.

More on Operators:
https://www.cplusplus.com/doc/tutorial/operators/

More on Operator overloading:
https://en.cppreference.com/w/cpp/language/operators

More on friends: https://isocpp.org/wiki/faq/friends

https://www.cplusplus.com/doc/tutorial/operators/
https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/friends

