
Programming in C++
Session 4 – Genericity, Containers

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 27

Polymorphism

Code that works for many types.

ad-hoc polymorphism (overloading)
subtype polymorphism (dynamic binding)
parametric polymorphism (genericity)

See also:

Savitch, sections 16.1–2 and 19.1.
Stroustrup, chapter 13 (sections 2 and 3)
Horstmann, section 13.5

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 27

A problem of reuse

Often an operation looks much the same for values of different
types.
This situation is common with operations on container types, such
as vectors, lists, stacks, trees, tables, etc.
For example reversing a vector looks much the same whatever the
types of the elements.
Reuse: separate what varies (the type of the elements) from what
doesn’t (the code), and reuse the latter.
Instead of writing many similar versions, we will write one generic
implementation (parameterized by type), and reuse it for various
types.

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 27

Swapping arguments

Swapping a pair of integers:

void swap(int & x, int & y) {
int tmp = x; x = y; y = tmp;

}

x & y are references, i.e., aliases of real objects - so what does swap
do? Copies CONTENTS !!!
Swapping a pair of strings is very similar:

void swap(string & x, string & y) {
string tmp = x; x = y; y = tmp;

}

And so on for every other type.
Idea: make the type a parameter, and instantiate it to int, string or
any other type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 27

https://staff.city.ac.uk/c.kloukinas/cpp
https://staff.city.ac.uk/c.kloukinas/cpp

A generic swapping procedure

Instead of the preceding versions, we can write:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Here T is a type parameter. When we use this function, T is
instantiated to the required type:

int i, j;
swap(i, j); // T is int
string s, t;
swap(s, t); // T is string

but in each use T must stand for a single type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 27

A generic swapping procedure

Instead of the preceding versions, we can write:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Here T is a type parameter. When we use this function, T is
instantiated to the required type:

int i, j;
swap(i, j); // T is int
string s, t;
swap(s, t); // T is string

but in each use T must stand for a single type.

20
23

-1
1-

20

Programming in C++

A generic swapping procedure

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

What is the interface of class T we use here?

In T tmp = x; we introduce a new variable of type T and initialise it
with x.
This calls the copy constructor of class T – can you see why it’s that
constructor?
T(const T & o);

In x = y; we are assigning y into x.
This calls the assignment operator of class T.
T & operator=(const T & o);
// form 1 - member function (*almost always*)

In y = tmp; we are assigning tmp into y.
This calls the assignment operator of class T again.
T & operator=(const T & o);

You should be able to understand why these functions are called. If
not, please post on Moodle.

Writing generic code

Prefix the function (or class) with
template <typename T>

and then T stands for a type, which will be supplied when the
function or class is used.
You can equivalently use class instead of typename (and some
old compilers do not recognize typename).
Multiple parameters are also permitted:

template <typename Key, typename Value>

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 27

Reversing a vector of integers

void reverse(vector<int> & v) {
int l = 0;
int r = v.size()-1;
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Reversing a vector of strings is the same, except for string instead of
int as the element type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 27

A generic reversal procedure

Instead of the preceding versions, we can write:

template <typename Elem>
void reverse(vector<Elem> & v) {

int l = 0; // unsigned is better
int r = v.size()-1;// but size_t is *best*
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Possible strategy: write a specific version and then generalize.
Note: We didn’t just change all int’s to Elem!!!

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 27

A generic reversal procedure

Instead of the preceding versions, we can write:

template <typename Elem>
void reverse(vector<Elem> & v) {

int l = 0; // unsigned is better
int r = v.size()-1;// but size_t is *best*
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Possible strategy: write a specific version and then generalize.
Note: We didn’t just change all int’s to Elem!!!

20
23

-1
1-

20

Programming in C++

A generic reversal procedure

Actually, the type of the indices shouldn’t have been int

They’re supposed to hold non-negative values, so they should be
unsigned

And since they need to represent the length of an array, they should
actually have been std::size_t, according to the C++ standard.

std::size_t is an unsigned integer type, that is long enough to hold
the length of an array (unsigned int might not be long enough).

template <typename Elem>
void reverse(vector<Elem> & v) {

std::size_t l = 0;
std::size_t r = v.size()-1;
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Well-known (*very* well-known!) C++ experts claim that
std::size_t was defined wrongly in the standard and should have
been a signed type, since that would have avoided a number of bugs
when writing loops (comparison of signed and unsigned values and
the fact that unsigned variables loop when over/under-flowing, while
signed variables don’t loop).
As such, they advise to use int instead of size_t. But doing so is
going to produce compilation warnings. Compilation warnings are an
indication that your code is incorrect (indeed it will be if the
array/vector has more elements than an int can index).
To resolve this, avoid writing loops that use an ”integer” index – prefer
to use range-based for loops instead where applicable:
en.cppreference.com/w/cpp/language/range-for
Here we need two index (offset really) values, so a range-based for
loop is not applicable – we need to use the begin and end iterators
instead (more on these when we consider pointers) – see next note.

A generic reversal procedure

Instead of the preceding versions, we can write:

template <typename Elem>
void reverse(vector<Elem> & v) {

int l = 0; // unsigned is better
int r = v.size()-1;// but size_t is *best*
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Possible strategy: write a specific version and then generalize.
Note: We didn’t just change all int’s to Elem!!!

20
23

-1
1-

20

Programming in C++

A generic reversal procedure

Looping using iterators instead of offsets:

template <typename Elem> // now impl works for lists too!
void reverse(vector<Elem> & v) {

auto l = begin(v);
auto r = end(v);
// r points one element *after* the right target.
while (l != r) {

if (l == --r) return;
swap(*l, *r); // *iterator = element
++l; // *prefer* over l++

}
}

See p. 173 of Stepanov’s “Elements of Programming”
elementsofprogramming.com/
Even better – use one of the standard C++ algorithms if applicable!
en.cppreference.com/w/cpp/algorithm

Hey, can you print the array elements in reverse order here? (see
code commented out at the bottom)
coliru.stacked-crooked.com/a/2c2dc58a2c81fc8c

Using the generic procedure

We can call reverse with vectors of any type, and get a special
version for that type:

vector<int> vi;
vector<string> vs;
...
reverse(vi); // Elem = int
reverse(vs); // Elem = string

This works for any type:

vector<vector<int> > vvi;
...
reverse(vvi); // Elem = vector<int>

(reversing a vector of vectors may seem expensive but a vector’s swap
has been optimised)

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 27

https://en.cppreference.com/w/cpp/language/range-for
http://elementsofprogramming.com/
https://en.cppreference.com/w/cpp/algorithm
https://coliru.stacked-crooked.com/a/2c2dc58a2c81fc8c

Implementation methods

Code sharing: a single instance of the generic code is generated, and
shared between all uses. This requires a common
representation for types, and is often used in functional
languages.
In Java too: Object.

Instantiation (or specialisation): an instance of the code is generated
for each specific type given as an argument, possibly
avoiding unused instances (C++).
Caution: these methods are only instantiated (and fully
checked) when used.

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 27

Another example

Testing whether a value occurs in a vector (algo std::find):

template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v){

// v & x are const - cannot modify them!!!
for (std::size t i = 0; i < v.size(); ++i)

if (v[i] == x)
return true;

return false;
}

The generic definition of member only makes sense
1 If the operator == is defined for Elem.
2 And if operator== promises not to modify v[i] or x.
3 And if operator[] promises not to modify v
4 And if size promises not to modify v. . .

⇒How can you optimise member ? (apart from using std::find instead)
Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 27

Another example

Testing whether a value occurs in a vector (algo std::find):

template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v){

// v & x are const - cannot modify them!!!
for (std::size t i = 0; i < v.size(); ++i)

if (v[i] == x)
return true;

return false;
}

The generic definition of member only makes sense
1 If the operator == is defined for Elem.
2 And if operator== promises not to modify v[i] or x.
3 And if operator[] promises not to modify v
4 And if size promises not to modify v. . .

⇒How can you optimise member ? (apart from using std::find instead)

20
23

-1
1-

20

Programming in C++

Another example

What will happen if we write if (v[i] = x) instead of
if (v[i] == x)?
Parameter v has been declared as a const reference, so the compiler
will catch the error – use const as much as possible!

How can you optimise the loop? It keeps computing v.size() on each
iteration.

Optimisation 1:
template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v) {
size_t i = v.size();
if (0 == i) return false; // no elements
for (i -= 1; 0 < i ; --i) // backwards search

if (v[i] == x) return true;
return (v[0] == x); // v[0] exists: v.size() != 0
}

Optimisation 2: Best because simplest.
template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v) {
for (size_t i = 0, limit = v.size(); i < limit; ++i)

if (v[i] == x) return true;
return false;
}

Since v is const the compiler might be able to optimise the original code – use const as much as possible!
Note: Elem x does not promise the compiler that we’ll treat v as a constant inside member.
const Elem & x does promise that (and avoids copying potentially large objects).

Bounded genericity

Sometimes a generic definition makes use of functions or member
functions that are not defined for all types (e.g. member uses ==).
In C++, this is checked when the definition is specialized for some
type. (Unused functions are not specialized.)
In some other languages, T might be constrained to be a subtype
of a class that provides the required operations, e.g., in Java:
List< ? extends Serializable > myList;

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 27

https://en.cppreference.com/w/cpp/algorithm/find
https://en.cppreference.com/w/cpp/algorithm/find
https://en.cppreference.com/w/cpp/algorithm/find
https://en.cppreference.com/w/cpp/algorithm/find

Bounded genericity

Sometimes a generic definition makes use of functions or member
functions that are not defined for all types (e.g. member uses ==).
In C++, this is checked when the definition is specialized for some
type. (Unused functions are not specialized.)
In some other languages, T might be constrained to be a subtype
of a class that provides the required operations, e.g., in Java:
List< ? extends Serializable > myList;

20
23

-1
1-

20

Programming in C++

Bounded genericity

Since C++20, one can use concepts to provide bounds for the
generic types: en.cppreference.com/w/cpp/concepts

A generic class

The following class is defined in <utility>:

template <typename A, typename B>
class pair {
public:

A first; // Members are

B second; // public!

pair(const A& a, const B& b) :
first(a), second(b) {}

};

Some pair objects:

pair<int, int> p(3, 4);
pair<int, string> n(12, "twelve");

Note we must specify the type arguments (unlike generic functions).
Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 27

A generic class

The following class is defined in <utility>:

template <typename A, typename B>
class pair {
public:

A first; // Members are

B second; // public!

pair(const A& a, const B& b) :
first(a), second(b) {}

};

Some pair objects:

pair<int, int> p(3, 4);
pair<int, string> n(12, "twelve");

Note we must specify the type arguments (unlike generic functions).

20
23

-1
1-

20

Programming in C++

A generic class

Why not use a vector<int> p = {3, 4}; instead of
pair<int, int> p(3,4);?

Apples ’n’ oranges. . .
When using a vector you are stating that all its elements are of the
same type.
When using a pair you are stating that the two elements are of
different types, even if they happen to be represented by the same
basic type.
Number of apples and number of oranges – this cannot be stored in a
vector.
Plus – a vector allows enlarging/reducing its size, while a pair always
has exactly two elements.

A pair is more efficient than a vector (less space, faster).

Why not use a int p[2] = {3, 4}; instead of
pair<int, int> p(3, 4);?

Apples ’n’ oranges. . . (a vector is a generalisation of an array)

Have you noticed the initializer list constructors?
vector<int> p1 = {3, 4}; int p2[2] = {3, 4};
https://www.cplusplus.com/reference/initializer_
list/initializer_list/

Container classes in the STL

The Standard Template Library is part of the C++ standard library, and
provides several template classes, including

Containers
Sequences

vector
deque
list

Associative Containers
set
map

Iterators
See en.cppreference.com/w/cpp/container

Just taught you about deque and set! :-)

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 27

https://en.cppreference.com/w/cpp/concepts
https://www.cplusplus.com/reference/initializer_list/initializer_list/
https://www.cplusplus.com/reference/initializer_list/initializer_list/
https://en.cppreference.com/w/cpp/container

The vector class
template <typename T>
class vector {
public:
vector();
vector(size_t initial_size);
size_t size() const;
void clear();
const T & operator[](size_t offset) const;//The Good

T & operator[](size_t offset) ;//& the Bad
const T & front() const { return operator[](0); }

T & front() { return operator[](0); }
const T & back() const{return operator[](size()-1);}

T & back() {return operator[](size()-1);}
void push_back(const T & x);
void pop_back();

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 27

The vector class
template <typename T>
class vector {
public:
vector();
vector(size_t initial_size);
size_t size() const;
void clear();
const T & operator[](size_t offset) const;//The Good

T & operator[](size_t offset) ;//& the Bad
const T & front() const { return operator[](0); }

T & front() { return operator[](0); }
const T & back() const{return operator[](size()-1);}

T & back() {return operator[](size()-1);}
void push_back(const T & x);
void pop_back();

};

20
23

-1
1-

20

Programming in C++

The vector class

Why do we return a T &?
So that we can assign into the returned value.
That’s why we can write v[i] = 3; – what operator[] returns is a
reference, so it’s assignable.

Note that for the compiler, v[i] is actually v.operator[](i)

Another container: lists

A list is a sequence of items of the same type, that may be
efficiently modified at the ends.
We may access the first or last elements, add elements at either
end and remove elements from either end.
All these operations are fast, independently of the size of the list.
Lists are implemented as linked structures, using pointers.
Other uses of lists require iterators (covered next session).

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 27

The list class
template <typename T> class list {
public:

list();
size_t size() const;
void clear();
const T & front() const ; // The Good

T & front() ; // & the Bad
void push_front(const T & x);
void pop_front();
const T & back() const ; // The Good

T & back() ; // & the Bad
void push_back(const T & x);
void pop_back();

};

Missing: operator[] – too slow with lists!
(just like push/pop_front is too slow with vectors)

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 27

Using a list
Reversing the order of the input lines:

list<string> stack;
string s;
while (getline(cin, s))

stack.push_back(s);
while (stack.size() > 0) {

cout << stack.back() << ’\n’;
stack.pop_back();

}

Can we implement this with vectors?
Yes – vectors support back, push_back, and pop_back.
What if we had used push_front and pop_front instead?
No.

⇒ Use APIs that are supported by most containers,
to make it easy to change the container.

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 27

Commonality between STL containers (pre C++20!)

push back, size, back and pop back common to list and
vector

Use vectors instead? Only a small change is required!
Those common methods could have been inherited from a
common parent class, but the STL designers decided not to. The
various STL classes use common names, but this commonality is
not enforced by the compiler (it is since C++20! – concepts!).
It is not possible to use subtype polymorphism with STL
containers (but is possible with other container libraries).

How come?
Because the use of subtype polymorphism (a.k.a. inheritance) has
an extra cost.
(Non-overridable member functions are faster than overridable
ones – more when we look at inheritance)

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 27

Requirements on containers in the STL

A Container has methods
size_t size() const;
void clear();

with appropriate properties.
A Sequence has these plus

T & front() const;
T & back() const;
void push_back(const T & x);
void pop_back();

But Container, Sequence, etc. are not C++ (in C++20 they are!): they
do not appear in programs, and so cannot be checked by compilers.

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 27

Some STL terminology

The STL documentation uses the following terms:
A concept is a set of requirements on a type (e.g., an interface).
Examples are Container, Sequence and Associative Container.
A type that satisfies these properties is called a model of the
concept.
For example, vector is a model of Container and Sequence.
A concept is said to be a refinement of another if all its models
are models of the other concept.
For example, Sequence is a refinement of Container.

Remember that all this is outside the C++ language.
Note: The C++ standard committee has made concepts part of the
language and thus testable by the compilers. (since C++20)
See standard ones:
https://en.cppreference.com/w/cpp/named_req

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 27

https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/named_req

New template classes from old

Often template classes are built using existing template classes. The
following is defined in <stack>:

template <typename Item>
class stack {

vector<Item> v;
public:

bool empty() const { return v.size() == 0; }
void push(const Item & x) { v.push_back(x); }
const Item & top() const { return v.back(); }

Item & top() { return v.back(); }
void pop() { v.pop_back(); }

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 27

Defining methods outside the class

As with ordinary classes, we can defer the definition of methods:

template <typename Item>
class stack {

vector<Item> v;
public:

Item & top();
...

};

The method definition must then be qualified with the class name,
including parameter(s):

template <typename Item>
Item & stack<Item>::top() { return v.back(); }

Note: The class name is stack<Item> *NOT* stack !!!
Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 27

Defining methods outside the class

As with ordinary classes, we can defer the definition of methods:

template <typename Item>
class stack {

vector<Item> v;
public:

Item & top();
...

};

The method definition must then be qualified with the class name,
including parameter(s):

template <typename Item>
Item & stack<Item>::top() { return v.back(); }

Note: The class name is stack<Item> *NOT* stack !!!

20
23

-1
1-

20

Programming in C++

Defining methods outside the class

Note that the full name of the class is stack<Item> as stack is a
generic class.
So it’s
Item & stack<Item>::top() {...
and not
Item & stack::top() {...

Also note that the definition needs to be preceded again by
template <typename Item>, just like the original class, because the
class name contains a type parameter.
So it’s

template <typename Item>
Item & stack<Item>::top() { return v.back(); }

and not just

Item & stack<Item>::top() { return v.back(); }

Maps

A map is used like an vector, but may be indexed by any type:

map<string, int> days;
days["January"] = 31;
days["February"] = 28;
days["March"] = 31;
...
string m;
cout << m << " has " << days[m] << " days\n";
cout << "There are " << days.size() << " months\n";

This is a mapping from strings to integers.

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 27

The map class

template <typename Key, typename Value>
class map {

map();

size_t size() const;
void clear();

size_t count(Key k); // 0 or 1
Value & operator[](Key k); //NOTE THE RETURN TYPE!!!

};

WARNING! The expression m[k] creates an entry for k if none
exists in m already. (return type is a reference!)
Checking if an entry for k exists already? ⇒ Use m.count(k)
[What does “days[m]” mean? Or “days["March"]=31;”?]

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 27

The map class

template <typename Key, typename Value>
class map {

map();

size_t size() const;
void clear();

size_t count(Key k); // 0 or 1
Value & operator[](Key k); //NOTE THE RETURN TYPE!!!

};

WARNING! The expression m[k] creates an entry for k if none
exists in m already. (return type is a reference!)
Checking if an entry for k exists already? ⇒ Use m.count(k)
[What does “days[m]” mean? Or “days["March"]=31;”?]

20
23

-1
1-

20

Programming in C++

The map class

What does “days[m]” mean?
days[m] ≡ days.operator[](m)

days["March"]= 31 ≡ days.operator[]("March")= 31;

Why does m[k] create an entry for k if none exists in m already?
Because operator[] needs to be able to return a reference to an
existing element (it returns Value & !).

Summary

Generic code is parameterized by a type T, and does the same
thing for each type.
To use a generic class, we supply a specific type, which replaces
each use of T in the definition.
One way to write a generic class is to write it for a specific type,
and then generalize.
The Standard Template Library includes many useful template
classes.
The STL has a hierarchical organization, but does not use class
inheritance (because inheritance introduces extra costs).
STL uses concepts instead (compiler checked since C++20)

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 27

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 27

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes – I

Humans shouldn’t have to write the same code over and over for
parameters of type int, char, float, big_huge_object, etc. We
have the right to say it once and have it work for any type (any type that
makes sense): GENERIC PROGRAMMING

// this is a code *template* - T is some name type
template <typename T>
void swap(T & x, T & y) {// x & y of the same type T
T tmp = x; // calls T’s copy-constructor:
// T(const T &other)

x = y; // calls T’s assignment operator:
//T & operator=(const T & b) // "method"

y = tmp; // assignment operator again:
//T & operator=(const T & b)
}

See also: “Template Classes in C++ tutorial”
(https://www.cprogramming.com/tutorial/templates.html)

Strategy: write normal code, then generalize it (easier to debug this
way!)

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes – II
Java vs C++ implementation strategies (slide 10):

Java produces one version, where T has been replaced by Object
(a pointer to any kind of object) or a class that’s sufficiently generic.

Good:
Java checks your generic code (*).
Java doesn’t suffer code-bloat – only one version of the code
in the program.

Bad:
Java doesn’t take advantage of the type parameter to
specialize the code for that specific type.

In C++ generic code is instantiated, specialized, and checked when
it’s used – otherwise it’s ignored (and so are the bugs in it).

Good:
Type-specific optimized code!
Checks at compile time that the type parameter works with this
code! (The Java compiler does check but also adds a number
of run-time casts (*) – so you can get a run-time exception in it
due to type incompatibility, he, he, he...)

Bad:
No checks when the code isn’t used.
Code-bloat – one version for each type parameter.

(*) “Type erasure” (https://docs.oracle.com/javase/
tutorial/java/generics/erasure.html), which leads to a
number of “Java restrictions on generic code”
(https://docs.oracle.com/javase/tutorial/java/
generics/restrictions.html). (advanced – not to be assessed
– for curious cats only)

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes – III

vector, list, commonality between STL containers (slides 19–21 –
STL container “inheritance” done manually, for increased speed)

new template classes from old (slide 22),

syntax for defining generic member functions outside their generic class
(slide 23), and maps (slides 24–25)

https://www.cprogramming.com/tutorial/templates.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html

