Module IN3013/INM173 — Object-Oriented
Programming in C++

Solutions to Exercise Sheet 4

1. This is similar to the stack, but since we need to add to one end of the collection and
remove elements from the other, we must use a 1ist or deque instead of a vector:

template <typename Element>
class queue {
list<Element> elements;

public:
bool empty() const { return elements.size() == 0; }

// Add a new element to the back of the queue
void enqueue(Element x) {
elements.push_back(x);

}

// Remove an element from the front of the queue
// require: ! empty()
Element dequeue() {
Element x = elements.front();
elements.pop_front();
return Xx;

};

This version has an operation dequeue that removes the front element. An alternative
design (which may be better) would be to have a function returning the front of the
queue, and a procedure to remove it.

2. We need to associate with each word a count, and this is exactly what a map is for.
Our first cut is

map<string, int> occurrences;
string s;
while (cin >> s)

occurrences [s]++;



This sets up the map correctly, but we have no way to print it out. So we add a
vector of strings containing all the unique words we have seen. We want to add
each word to this vector, but only if we haven’t seen it before. To check this, we can
check the occurrences map. If the entry for the word if 1 after incrementing, then
this is the first time we’ve seen the word, and we should add it:

vector<string> words;
map<string, int> occurrences;
string s;
while (cin >> s) {

occurrences [s]++;

if (occurrences[s] == 1)

words . push_back(s) ;

}

Alternatively, we could test the entry before incrementing:

while (cin >> s) {
if (occurrences[s] == 0)
words .push_back(s) ;
occurrences [s]++;

}

Note that if you refer to a mep entry that doesn’t exist, it is created with default
initialization (e.g. 0 for int). We were already using this by incrementing the entry
whether or not it already existed.

Yet another alternative is to test for existence of the entry using the count () method:

while (cin >> s) {
if (occurrences.count(s) == 0)
words . push_back(s) ;
occurrences [s]++;

b

Now we can print the words and their number of occurrences by looping over the
vector, giving the complete program:

#include <string>
#include <map>
#include <vector>
#include <iostream>

using namespace std;



int main() {

vector<string> words;

map<string, int> occurrences;

string s;

while (cin >> s) {
if (occurrences[s] == 0)

words .push_back(s) ;

occurrences [s]++;

}
for (int i = 0; i < words.size(); i++)
cout << words[i] << " : " <<
occurrences [words[i]] << ’\n’;
return O;

Note that we index the words vector to obtain a word, and then use that as the key
of the occurrences map.

When we use iterators next session, it will be possible to do this exercise without the
auxiliary map.

. For each word, we need a total and an average, so we introduce a class to hold these
values:

class Stats {
double total;

int count;
public:
Stats() : total(0), count(0) {}
virtual void add_value(double v) {
count++;
total += v;
}
double get_total() { return total; }
int get_count() { return count; }
double get_mean() { return total/count; }
+;

Since we have only a default constructor that initializes each field to te default values
of the respective types, we could have omitted it: the compiler would then have
generated an equivalent one.



Now we will use a map from string to Stats:
map<string, Stats> stats;

Now we read words and associated numbers until the end of the input, adding each
to the map:

string s;

double n;

while (cin >> s >> n)
stats[s].add_value(n);

As in the previous question, we need to keep track of which words we’ve seen, and
we do it in the same way:

map<string, Stats> stats;
vector<string> words;

string s;
double n;
while (cin >> s >> n) {
if (stats.count(s) == 0)

words.push_back(s) ;
stats[s] .add_value(n);

Now we can print the results by iterating over the words vector as before:

for (int i = 0; i < words.size(); i++) {
Stats & stat = stats[words[il];
cout << words[i] << ": "
<< "total = " << stat.get_total() << ", "
<< "mean = " << stat.get_mean() << << ’\n’;

Note the use of the reference stat as an alias for stats[words[i]] to shorten the
output statement. (It is also a bit more efficient, avoiding repeated indexing.)



