L L
Introduction
Programming in C++

Session 5 — Pointers and Arrays
Iterators

@ Pointers and arrays: from C with love
(Savitch 10.1; Stroustrup 5.1-3; Horstmann 9.7)

Dr Christos Kloukinas @ lterators: for sequential access to container elements

City St George’s, UoL (Savitch 17.3 and 19.2; Stroustrup 19.2)
https://staff.city.ac.uk/c.kloukinas/cpp @ STL iterator interface based on that of pointers and arrays
(based on slides originally pr;:duced by Dr Ross Paterson) @ STL: many generic functions operating on iterators.
In the STL, these are called algorithms <algorithm>
ST GEORGE'S
Copyright © 2005 — 2024

Pointers and arrays Pointers in C and C++
@ Pointer variables are declared with =
int *ip;
@ C’s arrays, pointers and pointer arithmetic survive in C++. This does NG initialize the pointer. (not null, - value!)
@ The address of a piece of storage, obtained with &, Is a pointer:
@ Arrays are mostly superseded by vectors. int i:
@ C/C++ pointers support arithmetic, but this is little used in C++. ip = ;.i;

@ Many uses of pointers are superseded by references, but they still @ Pointers are dereferenced with *
have their uses:

) *ip = *ip + 3;
@ Subtype polymorphism.

In general, * and & are inverses.

e Dynamically allocated objects (sessions 8 and 9).

o Dynamic data structures. & the address-of operator

o Legacy interfaces. * the dereference operator

o Accessing hardware directly. Note: Beware of multiple variable definitions!

int *ipl, ip2; // ipl is a pointer, ip2 is an int

Why? xip1l is an int —so is ip2. The * operator binds with the
name, not the type.

[Dr Christos Kloukinas (City St George's, UoL) Programming in C++ 3/26 Dr Christos Kloukinas (City St George’s, UoL, Programming in C++ 4/26

https://staff.city.ac.uk/c.kloukinas/cpp

Pointers vs References

Given the definition of two integer variables: int i = 3, j = 4;

\ References \ Pointers
Declaration int &ref = i; | int *pointr = &i;
Reading the integer cout << ref; cout << xpointr;
Assigning the integer | ref = 5; *pointr = 5;
Using another integer | N/A pointr = &j;

@ pointr is an actual variable, allocated somewhere in memory.

@ A ref is more like a const pointer (
with an easier interface (no » and &)

int * const r = &i;),

, and the additional assertions

that r !'= nullptr AND that r referstoa VALID object

(On a 16 bit computer:)

// i, j, ref, pointr:
// names, not in memory

1024 | 3 | i, ref
1040 | 4 I3

1056 | 1024 | pointr
1072 | | (other
1088 | . | (other

(holds the address of i)
— possibly garbage)
— possibly garbage)

[Dr Christos Kloukinas (City St George’s, UoL)

Null pointers

@ The value 0 in pointer types is distin
int *ip = 0;
cf. null in Java.

Programming in C++ 5/26

ct from any address.

@ Since C++11 one should use nullptr instead of 0 — avoid

using NULL (comes from C).

@ Pointers that are global variables are initialized to nullptr

@ Again, pointers that are local variabl

Dr Christos Kloukinas (City St George'’s, UoL)

Programming in C+:

es are not initialized.

+ 7126

Undefined pointers

@ The storage pointed to by a pointer may become undefined. There
will be no warning from the compiler or runtime system:

int *p;
{
int i = 5;
p = &i;
} // i ceases to exist
*p = 3; // undefined behaviour

Like a telephone number that has gone out of use — calling it
doesn’t reach anyone (or may reach another person).
It is the programmer’s responsibility to ensure that the pointer points
at something valid whenever it is dereferenced.

@ BTW, local variable pointers are not initialized (no basic type is).

= p’'sinitial value is garbage .

Dr Christos Kloukinas (City St George’s, UoL,

Programming in C++

More pointers
@ The following declaration
const int *p;

6/26

means that things pointed to by p cannot be changed through p

(but p itself can be changed.)

o Read it from right to left till the , then left to right:
“p is a pointer () to a constant (const) integer (int).”
@ ltis possible to have pointers to pointers:

int i;

int *pl = &i;
int *xp2 = &pl;
int **xp3 =

// I solve problems...
// I know a guy who solves probler
// I know a guy who knows a guy..
&p2;// I know a guy who knows a guy wl

@ These may be qualified with const in various ways:

int * pl;// a pointer to
const int * r2;// a pointer to
int * const p3;// a const pointer to
const int * const p4;// a const pointer to

Dr Christos Kloukinas (City St George’s, UoL]

Programming in C++

an int
a const int
an int

a const int

8/26

Programming in C++

€2
% L_More pointers
int * * pl;// a pointer to a pointer to an int
const int * * p2;// ???
int * const * p3;// ???
int * * const p4;// 2?2
const int * const * p5;// 2?2
const int * * const p6;// 2?2
int * const * const p7;// ???
const int * const * const p8;// 22?2

.
Arrays

We have already used vectors, but C++ also has arrays, which are
fixed in size:

int arr[40];
for (std::size_t i = 0; i < 40; ++i)
arr[i] = arr[i] + 5;
Unlike Java, there is no check that the index is in bounds.
Advice:
@ Use vector<T> instead when the size is unknown
@ With a fixed size use array<T> instead!
(Help the compiler — it'll pay you back!)

Dr Christos Kloukinas (City St George'’s, UoL)

Programming in C++

10/26

Dr Christos Kloukinas (City St George’s, UoL,

Pointers to objects

Given a class

class point {

public:
int x, y;
point (int xx, int yy) x(xx), y(yy) {}
};

We can refer to members as follows:

point my point (2, 3);
point *p = &my_point;
cout << (*p).x << ’'\n’;

or equivalently as
cout << p—>x << '\n’;

and similarly for member functions.

Programming in C++ 9/26

Programming in C++

2024-11-13

L Arrays

We can find the length of an array using the sizeof£ function:
int 1 = sizeof (arr) / sizeof (int);
Only works if arr is the name of the array, not if it's a pointer. ..

sizeof (Name of the array)
/ sizeof (Type of the elements)

Pointers and arrays

When assigning or initializing from an array, a pointer to the first
element is copied, not the array:

int arr[40];

int *p = arr; // What’s arr ?2°?

Now *p is equivalent to arr[0], and indeed to *arr.
The following are all equivalent:

arr[0] = arr[0] + 5;

*p = *p + 5;
*arr = %xarr + 5;

Programming in C++ 11/26

[Dr Christos Kloukinas (City St George’s, UoL)

Programming in C++ e

2024-11-13

L_Parameter passing

But it might be used if we want to:
@ re-use a C library; or

@ write a C++ library that may be used by C programs as well.

Parameter passing

Parameter passing is a form of initialization, so an array
int arr[40];

can be passed as a pointer parameter:
void f(int *p) { ... }

Functions that take a pointer to a single element look the same.
(pointer passing less common in C++ than in C, thanks to references)

Programming in C++ 12/26

Dr Christos Kloukinas (City St George’s, UoL,

.
C-style strings

@ In C, strings are stored in char arrays, with the end of the string

marked by a * \0’ character delimiter
char name[]="Bill";//array of 5 chars

char *name2="Fred";//pointer to a *const* array of 5 chars

@ Often char = indicates a C-style string, e.g.,
int main(int argc, char x*xargv);
@ C++'s stringis MUCH safer
@ A C-style string can be used where a string is expected, and is

automatically converted
That’s done with constructor string (char *s);

@ If you need a C-style string for some legacy interface, use the
method c¢_str () of string
For example, string s; char *p = s.c_str(); foo(p);

Dr Christos Kloukinas (City St George’s, UoL,

Programming in C++ 13/26

Pointer arithmetic
When p has type T *, and points to the i" element of an array of Ts:

T arr[N];
T +p = arr + i; // WOULD BE NICE IF i < N ...

Then:

@ p + k is a pointer to the (i + k)" element.

@ ++pisequivalenttop = p+1

@ p - kis a pointer to the (i — k)" element.

@ ——pisequivalenttop = p-1

@ p[k] is equivalent to » (p+k) DEFINED IFF arr < p+k < arr+N
Again, there are no checks that anything is in bounds.
Can also subtract two pointers (ptrdif£_t), which should be pointers
to the same array (*NOT* checked of course. . .).

T *pl = arr + i;

T *p2 = arr + j;

ptrdiff t diff = p2 - pl; // = j - i

Dr Christos Kloukinas (City St George’s, UoL, Programming in C++ 14/26

Looping over an array
Given an array of integers:
int arr[40];

The following are (functionally) equivalent:
@ Using offsets (slower):
for (std::size_t i = 0; i < 40; ++i)
arr[i] = arr[i] + 5;
@ Using pointers (faster):

int xend = arr + 40;

for (int *p = arr; p != end; ++p)
*p = *p + 5;
Notes:
e arr + 40 SHOULDN'’T be dereferenced (undefined behaviour)
o Pointer loop is faster! (why?)

Programming in C++ 16/26

[Dr Christos Kloukinas (City St George's, UoL)

A Gamell!

Consider:

int arr[] = (1, 2, 3, 4, 5};
int *p = arr;
Which are legal, which are illegal?
Q pl2]
Q 2[p]
Q@p +2
Q arr[2]
@ 2[arr]
Q arr + 2

ONLINE QUIZNOW! t .ly/KHC3jm

You’'ve got 3 mins!

What do the legal ones mean?

Dr Christos Kloukinas (City St George's, UoL] Programming in C++ 15/26

Iterators

Iterators are objects providing sequential access to container elements

@ The Java interface is analogous to a linked list or a stream:
public interface java.util.Iterator {
boolean hasNext () ;
Object next();
void remove(); // not always supported

}
@ C++ STL iterators are modelled after array pointers

Dr Christos Kloukinas (City St George’s, UoL,

Programming in C++ 17/26

https://t.ly/KHCjm

|
lterators in the STL

Iterating over a list of strings:

list<string> names;

for (list<string>::iterator p = names.begin();
p !'= names.end(); ++p)
cout << *p << '\n’;

Sequences include a type iterator and two iterators:
begin() positioned at the start of the sequence, and
end() positioned just past the end of the sequence.
Each iterator supports the operators ==, ++ and *.
@ For int *p we now have list<int>::iterator p.
@ What about const int *p ?
list<int>:: const iterator p (one word, with a hyphen)
c.begin()/c.end () become c.cbegin()/c.cend ()

[Dr Christos Kloukinas (City St George’s, UoL)

Programming in C++ 18/26

A variation: typedefs

In C++ we can define new names for types using typedef:

typedef int time;

typedef char * cstr;

typedef deque<string> phrase;

typedef vector<vector<double> > matrix;

(can also do this in C, but only outside functions)
With typedef we can introduce an abbreviation for the iterator type:

typedef list<string>::iterator iter;
for (iter p = begin(names), e = end(names);
p != e; ++p)
cout << *p << '\n’;
// Or xbetterx: USE auto!
for (auto p = begin(names), e = end(names);
P != e; ++p)
cout << *p << '\n’;

Dr Christos Kloukinas (City St George'’s, UoL)

Programming in C++ 19/26

Programming in C++

L_lterators in the STL

2024-11-13

@ Prefer using begin (container) and end (container)
@ Instead of container.begin () and container.end ()

o The former form works with arrays as well; *and*
o It selects container.begin () Or container.cbegin ()
automatically, depending on whether container is const or not.

The analogy

C STL — C++98
array arr container ¢
pointer P iterator P

start pointer arr start iterator c¢.begin () /cbegin ()
end pointer arr + LENGTH | end iterator c.end()/cend()

increment ++p ++p
dereference *p *p
Since C++11 — One API for all!
array arr container c
pointer P iterator P

start pointer begin (arr) | startiterator begin (c)
end pointer end(arr) end iterator end(c)
increment ++p ++p
dereference *p *p

begin (c) returns a const/non-const iterator as appropriate! :-)

Dr Christos Kloukinas (City St George’s, UoL]

Programming in C++ 20/26

.
lterator is a concept

@ ‘“Iterator” is an STL concept, not a C++ class.
@ All iterators support the same operations in the same way:

o Switching representations is relatively easy
o Generic code can be written using these operations

@ Special kinds of iterators support more operations
@ Checking is done when generic code is instantiated

[Dr Christos Kloukinas (City St George’s, UoL)

Programming in C++ 21/26

.
A generic function

template <typename Iterator, typename Elem>
int count (Iterator start,
Iterator finish, const Elem & v) {
int n = 0;
for (Iterator p = start; p != finish; ++ p)
if (*p == v)
n++;
return n;

}

There are several type requirements here (checked at instantiation):
@ Iterator mustbe atleast an input iterator type;
@ Iterator must be an iterator with element type Elem; and
@ The Elem type must support ==.

[Dr Christos Kloukinas (City St George's, UoL)

Programming in C++ 23/26

.
Iterator concepts in the STL

Different containers have different iterator kinds, belonging to a
hierarchy of iterator concepts:

Input lterator supports ==, ++, (unary) » and —>
e.g., the iterator of forward list [*]

Bidirectional Iterator supports all these as well as ——
e.g., the iterator of list

Random Access lterator supports all these as well as <, +, —and [],
which should behave similarly to operations on pointers
e.g., the iterator of vector or deque
@ Why isn’'t < supported for input/bidirectional iterators?
@ What does iter[3] stand for?

[*] forward list: née slist, see issue:
stackoverflow.com/a/6885508

Dr Christos Kloukinas (City St George's, UoL] Programming in C++ 22/26

Using the generic count function

Function count is defined in <algorithm>.
Here is an example of its use:

list<string> names;
string s;

int n = count (begin(names), end(names), s);

cout << s << " occurs " << n << " times\n";
In the above use,

@ Iteratoris list<string>::iterator

@ Elemis string

Check <algorithm> out! en.cppreference.com/w/cpp/algorithm

Dr Christos Kloukinas (City St George’s, UoL,

Programming in C++ 24/26

stackoverflow.com/a/6885508
https://en.cppreference.com/w/cpp/algorithm

I
lterating over associative containers

@ A map associates keys with values.
@ The iterator of a map produces pairs of key and value.

o If pis amap<K, V> iterator, then xp has type pair<const K, V>.

map<string, int> table;//How to print map’s elements?

typedef map<string, int>::iterator Iter;
for (Iter p = begin(table); p != end(table); ++p)

cout << p—>first << " -> " << p->second << ’'\n’;//Or
for (auto p = begin(table); p != end(table); ++p)

cout << p->first << " -> " << p->second << ‘\n’;//Or
for (const auto &pr table) // range for

cout << pr.first << " -> " << pr.second << ’'\n’;//Or

Programming in C++ 25/26

[Dr Christos Kloukinas (City St George’s, UoL)

Summary

@ Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>)

pointers most useful for dynamic binding & structures
Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

@ lterators: sequential access to container elements
@ STL iterators look like pointers (++, *, —> etc)
@ Many generic functions use iterators STUDY <algorithm> !!!

@ After the reading week:
@ inheritance in C++
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)
@ Genericity and inheritance

[Dr Christos Kloukinas (City St George's, UoL)

Programming in C++ 26/26

2024-11-13

2024-11-13

Programming in C++

therating over associative containers

#include <string>

#include <iostream>
#include <algorithm>
#include <execution>

std: :map<std: :string, int> table;
std: :for_each(std::execution: :par_unseq,
//instance of parallel_unsequenced_policy
std: :begin(table), // start from.
std: :end(table), // end before.
// a lambda (anonymous) function
[]1 (const auto &pair) {
std::cout << pair.first
<< "> "
<< pair.second
<< std::endl;
});// std::for_each **xPARALLELIZED*xx!!!

(doesn’t make much sense to parallelize stream output, since the
stream sequences the output from the different parallel printers)

Check out en.cppreference.com/w/cpp/algorithm/reduce

Programming in C++

L-Summary

(Area left empty on purpose)

https://en.cppreference.com/w/cpp/algorithm/reduce

2024-11-13

Programming in C++ Programming in C++

o We can have pointers to pointers (to represent things like
multi-dimensional arrays):
int ** ppl = &pl;
ppl is a pointer to a pointer to an int (or pp1 is a double pointer to

an int).
const can be sprinkled around quite freely as before:
int * const «* pp2 = &pl;

Read it right-to-left: pp2 is a
pointer to an int.

pointer to a constant

The null pointer is nullptr since C++11 — use that instead of 0 or
NULL (C language). See an article on “enums and nullptr in C++11”
(https://www.cprogramming.com/c++11/c+
+1l-nullptr-strongly-typed-enum-class.html),

An array’s name can be used as a pointer to the first element of the
array. int arr[40]; int *p = arr;

Pointers support arithmetic operators (slide 14). Incrementing a pointer
takes you to the next address that represents an object of the type you're
pointing at (so it's address+1 for a char, address+4 for a 32 bit int,
address+432 for an object that's 432 bytes long, etc.)

Array elements can be accessed with pointers (more efficient than
indexes — slide 16):

for (int *p = arr, *end = arr+40; p != end; ++p)
*p = xp + 5;

This pattern is extremely important — it's how we use iterators to go
over container elements.

(Why more efficiently than indexes? Check slide 14 to see what arr[i]
is translated to)

Each container defines two types: iterator and const_iterator:

vector<int>::iterator il; /] —-—-—> int *pl;
list<float>::const_iterator i2; // —---> const float *p2;

The looping pattern:

for (vector<int>::iterator
p = begin(vi), end = end(vi); p != end; ++p)
*p = *p + 5;

@ Learn how to write generic functions that take iterators (slide 23)

52
L-Summary % L-Summary
Final Notes — I: Final Notes — II:
@ Pointers are used with operators & (address-of) and = (dereference). @ Also learn to use auto when your compiler supports C++11:
o & returns the memory address where a variable/object(/function. . .) The looping pattern:
can be found. for (auto p = begin(vi), end = end(vi);
o takes an address and returns the item at that address. p != end;
@ Pointers are declared as +p = +$)+ {5; // LEARN THIS!!!
type * p = nullptr; // Not O/NULL!!! C++11 }
Such declarations are read right-to-left: “p is a pointer (*) to a type”. So
given some integer i: e Functions begin (c¢) and end (c) work when c is either a
o const int * pl = &i; container orl an array_ (C++11), while ¢.begin () and c.end ()
pl is a pointer to a constant int (can point to another integer j but :Jar:tlirwork with containers — use the former form rather than the
can_not bfa used to modify any of them) Both functions return the correct iterator (const or not) depending
int j = 3;)))) on whether ¢ is const or not: watch out for this — might cause
*pl = 4; // attempt to modify i - invalid compilation errors if you try to store it in the wrong iterator variable:
pl = &j; // attempt to point elsewhere - valid . .)
. i void print(const vector<int> & v) {
° 1n§ * const p2_= &1; i . . // for (vector<int>::const_iterator // CORRECT
p2 |§ a c*onstant pointer to an int (cann(?t point to another integer for (vector<int>::iterator // ERROR
but *can* be used to modify the integer it’s pointing at) p = begin (v),
int j = 3; end = end(v);
*p2 = 4; // attempt to modify i - valid p != end;
p2 = &j; // attempt to point elsewhere - invalid ++p)
@ const int * const p3 = &i; cout << *p << ' '
p3 is constant pointer to a constant int (cannot point to another }
integer nor be used to modify the integer it’'s pointing at) o Crash course on auto:
int j = 3; i i
*p3 = 4; // attempt to modify i - invalid int i=23;
p3 = &3j; // attempt to point elsewhere - invalid auto j =4i; /* j is also an int, initialized as a

copy of i */
auto && k = i; /* k is a *xreference* to an int (&& is
not a typo - use that with auto) =*/
const auto && m = i; /+ m is a constant reference to
an int */

o More on auto: https://www.cprogramming.com/c++11/c+
+ll-auto-decltype-return-value-after-function.
html

o More on rvalue references (&&):
https://www.cprogramming.com/c++11/
rvalue-references—-and-move-semantics—in-c++11.
html
(advanced — not to be examined. First time | read this | had to go
and lie down — haven't read it again since. . .).

File copy-string.cc (*) contains four different implemen-
tations of a function that copies a source (s) C-style string
(e.g., an array of characters) into a target (t) C-style string.

Version strcpy3 is the canonical one — once you've
understood why/how it works, your understanding of point-
ers should be quite good (and of the difference between i++
and ++i).

(*) https://www.staff.city.ac.uk/c.kloukinas/cpp/
session-05/copy—-string.cc

// *%xx The ONE, TRUE strcpy!!! *xx
void strcpy3(const char *s, char xt) {
while ((*t++ = *s++)) /* extra parentheses added
to get rid of warning */
; /* do nothing in the body - loop condition
does the job */

/*

* Source: Kernighan & Ritchie, The C Programming
* Language, 2nd Edition, Prentice Hall PTR, 1988,
* p. 106

*

* strcpy: copy s (ource) into t (arget).

* ASSUMPTION: t (arget) has enough space for the
* string inside s (source)!

https://www.cprogramming.com/c++11/c++11-nullptr-strongly-typed-enum-class.html
https://www.cprogramming.com/c++11/c++11-nullptr-strongly-typed-enum-class.html
https://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-function.html
https://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-function.html
https://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-function.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.staff.city.ac.uk/c.kloukinas/cpp/session-05/copy-string.cc
https://www.staff.city.ac.uk/c.kloukinas/cpp/session-05/copy-string.cc

