
Programming in C++
Session 5 – Pointers and Arrays

Iterators

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 26

Introduction

Pointers and arrays: from C with love
(Savitch 10.1; Stroustrup 5.1–3; Horstmann 9.7)

Iterators: for sequential access to container elements
(Savitch 17.3 and 19.2; Stroustrup 19.2)

STL iterator interface based on that of pointers and arrays
STL: many generic functions operating on iterators.
In the STL, these are called algorithms <algorithm>

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 26

Pointers and arrays

C’s arrays, pointers and pointer arithmetic survive in C++.
Arrays are mostly superseded by vectors.
C/C++ pointers support arithmetic, but this is little used in C++.
Many uses of pointers are superseded by references, but they still
have their uses:

Subtype polymorphism.
Dynamically allocated objects (sessions 8 and 9).
Dynamic data structures.
Legacy interfaces.
Accessing hardware directly.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 26

Pointers in C and C++

Pointer variables are declared with *
int *ip;

This does NOT initialize the pointer. (not null, garbage value!)
The address of a piece of storage, obtained with &, is a pointer:

int i;
ip = &i;

Pointers are dereferenced with *
*ip = *ip + 3;

In general, * and & are inverses.
& the address-of operator
* the dereference operator

Note: Beware of multiple variable definitions!

int *ip1, ip2; // ip1 is a pointer, ip2 is an int

Why? *ip1 is an int – so is ip2. The * operator binds with the
name, not the type.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 26

https://staff.city.ac.uk/c.kloukinas/cpp

Pointers vs References
Given the definition of two integer variables: int i = 3, j = 4;

References Pointers
Declaration int &ref = i; int *pointr = &i;
Reading the integer cout << ref; cout << *pointr;
Assigning the integer ref = 5; *pointr = 5;

Using another integer N/A pointr = &j;

pointr is an actual variable, allocated somewhere in memory.
A ref is more like a const pointer (int * const r = &i;),
with an easier interface (no * and &), and the additional assertions
that r != nullptr AND that r refers to a VALID object

_______ (On a 16 bit computer:)
1024 | 3 | i, ref // i, j, ref, pointr:
1040 | 4 | j // names, not in memory
1056 | 1024 | pointr (holds the address of i)
1072 | ... | (other - possibly garbage)
1088 | ... | (other - possibly garbage)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 26

Undefined pointers

The storage pointed to by a pointer may become undefined. There
will be no warning from the compiler or runtime system:

int *p;
{

int i = 5;
p = &i;

} // i ceases to exist

*p = 3; // undefined behaviour
Like a telephone number that has gone out of use – calling it
doesn’t reach anyone (or may reach another person).

It is the programmer’s responsibility to ensure that the pointer points
at something valid whenever it is dereferenced.

BTW, local variable pointers are not initialized (no basic type is).
⇒ p’s initial value is garbage .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 26

Null pointers

The value 0 in pointer types is distinct from any address.
int *ip = 0;

cf. null in Java.
Since C++11 one should use nullptr instead of 0 – avoid
using NULL (comes from C).
Pointers that are global variables are initialized to nullptr

Again, pointers that are local variables are not initialized.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 26

More pointers
The following declaration

const int *p;
means that things pointed to by p cannot be changed through p
(but p itself can be changed.)

Read it from right to left till the *, then left to right:
“p is a pointer (*) to a constant (const) integer (int).”

It is possible to have pointers to pointers:
int i; // I solve problems...
int *p1 = &i; // I know a guy who solves problems...
int **p2 = &p1; // I know a guy who knows a guy...
int ***p3 = &p2;// I know a guy who knows a guy who knows a guy...

These may be qualified with const in various ways:

int * p1;// a pointer to an int
const int * p2;// a pointer to a const int

int * const p3;// a const pointer to an int
const int * const p4;// a const pointer to a const int

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 26

More pointers
The following declaration

const int *p;
means that things pointed to by p cannot be changed through p
(but p itself can be changed.)

Read it from right to left till the *, then left to right:
“p is a pointer (*) to a constant (const) integer (int).”

It is possible to have pointers to pointers:
int i; // I solve problems...
int *p1 = &i; // I know a guy who solves problems...
int **p2 = &p1; // I know a guy who knows a guy...
int ***p3 = &p2;// I know a guy who knows a guy who knows a guy...

These may be qualified with const in various ways:

int * p1;// a pointer to an int
const int * p2;// a pointer to a const int

int * const p3;// a const pointer to an int
const int * const p4;// a const pointer to a const int

20
24

-1
1-

13

Programming in C++

More pointers

int * * p1;// a pointer to a pointer to an int
const int * * p2;// ???

int * const * p3;// ???
int * * const p4;// ???

const int * const * p5;// ???
const int * * const p6;// ???

int * const * const p7;// ???
const int * const * const p8;// ???

Pointers to objects

Given a class

class point {
public:

int x, y;
point (int xx, int yy) : x(xx), y(yy) {}

};

We can refer to members as follows:

point my_point(2, 3);
point *p = &my_point;
cout << (*p).x << ’\n’;

or equivalently as

cout << p->x << ’\n’;

and similarly for member functions.
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 26

Arrays

We have already used vectors, but C++ also has arrays, which are
fixed in size:

int arr[40];
for (std::size_t i = 0; i < 40; ++i)

arr[i] = arr[i] + 5;

Unlike Java, there is no check that the index is in bounds.
Advice:

Use vector<T> instead when the size is unknown
With a fixed size use array<T> instead!

(Help the compiler – it’ll pay you back!)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 26

Arrays

We have already used vectors, but C++ also has arrays, which are
fixed in size:

int arr[40];
for (std::size_t i = 0; i < 40; ++i)

arr[i] = arr[i] + 5;

Unlike Java, there is no check that the index is in bounds.
Advice:

Use vector<T> instead when the size is unknown
With a fixed size use array<T> instead!

(Help the compiler – it’ll pay you back!)20
24

-1
1-

13

Programming in C++

Arrays

We can find the length of an array using the sizeof function:
int l = sizeof(arr) / sizeof(int);
Only works if arr is the name of the array, not if it’s a pointer. . .

sizeof(Name of the array)
/ sizeof(Type of the elements)

Pointers and arrays

When assigning or initializing from an array, a pointer to the first
element is copied, not the array:

int arr[40];
int *p = arr; // What’s arr ???

Now *p is equivalent to arr[0], and indeed to *arr.
The following are all equivalent:

arr[0] = arr[0] + 5;

*p = *p + 5;

*arr = *arr + 5;

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 26

Parameter passing

Parameter passing is a form of initialization, so an array

int arr[40];

can be passed as a pointer parameter:

void f(int *p) { ... }

Functions that take a pointer to a single element look the same.
(pointer passing less common in C++ than in C, thanks to references)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 26

Parameter passing

Parameter passing is a form of initialization, so an array

int arr[40];

can be passed as a pointer parameter:

void f(int *p) { ... }

Functions that take a pointer to a single element look the same.
(pointer passing less common in C++ than in C, thanks to references)

20
24

-1
1-

13

Programming in C++

Parameter passing

But it might be used if we want to:

re-use a C library; or

write a C++ library that may be used by C programs as well.

C-style strings

In C, strings are stored in char arrays, with the end of the string
marked by a ’\0’ character delimiter

char name[]="Bill";//array of 5 chars
char *name2="Fred";//pointer to a *const* array of 5 chars

Often char * indicates a C-style string, e.g.,
int main(int argc, char **argv);

C++’s string is MUCH safer
A C-style string can be used where a string is expected, and is
automatically converted
That’s done with constructor string(char *s);

If you need a C-style string for some legacy interface, use the
method c str() of string
For example, string s; char *p = s.c_str(); foo(p);

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 26

Pointer arithmetic
When p has type T *, and points to the i th element of an array of Ts:

T arr[N];
T *p = arr + i; // WOULD BE NICE IF i < N ...

Then:
p + k is a pointer to the (i + k)th element.
++p is equivalent to p = p+1
p - k is a pointer to the (i − k)th element.
--p is equivalent to p = p-1
p[k] is equivalent to *(p+k) DEFINED IFF arr ≤ p+k < arr+N

Again, there are no checks that anything is in bounds.
Can also subtract two pointers (ptrdiff_t), which should be pointers
to the same array (*NOT* checked of course. . .).

T *p1 = arr + i;
T *p2 = arr + j;
ptrdiff_t diff = p2 - p1; // = j - i

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 26

A Game!!!

Consider:

int arr[] = {1, 2, 3, 4, 5};
int *p = arr;

Which are legal , which are illegal?
1 p[2]
2 2[p]
3 p + 2 ONLINE QUIZ NOW! t.ly/KHCjm
4 arr[2]
5 2[arr] You’ve got 3 mins!
6 arr + 2

What do the legal ones mean?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 26

Looping over an array

Given an array of integers:

int arr[40];

The following are (functionally) equivalent:
Using offsets (slower):

for (std::size_t i = 0; i < 40; ++i)
arr[i] = arr[i] + 5;

Using pointers (faster):
int *end = arr + 40;
for (int *p = arr; p != end; ++p)

*p = *p + 5;
Notes:

arr + 40 SHOULDN’T be dereferenced (undefined behaviour)
Pointer loop is faster! (why?)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 26

Iterators

Iterators are objects providing sequential access to container elements

The Java interface is analogous to a linked list or a stream:
public interface java.util.Iterator {

boolean hasNext();
Object next();
void remove(); // not always supported

}

C++ STL iterators are modelled after array pointers

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 26

https://t.ly/KHCjm

Iterators in the STL

Iterating over a list of strings:

list<string> names;
...
for (list<string>::iterator p = names.begin();

p != names.end(); ++p)
cout << *p << ’\n’;

Sequences include a type iterator and two iterators:
begin() positioned at the start of the sequence, and

end() positioned just past the end of the sequence.
Each iterator supports the operators ==, ++ and *.

For int *p we now have list<int>::iterator p.
What about const int *p ?
list<int>:: const iterator p (one word, with a hyphen)
c.begin()/c.end() become c.cbegin()/c.cend()

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 26

Iterators in the STL

Iterating over a list of strings:

list<string> names;
...
for (list<string>::iterator p = names.begin();

p != names.end(); ++p)
cout << *p << ’\n’;

Sequences include a type iterator and two iterators:
begin() positioned at the start of the sequence, and

end() positioned just past the end of the sequence.
Each iterator supports the operators ==, ++ and *.

For int *p we now have list<int>::iterator p.
What about const int *p ?
list<int>:: const iterator p (one word, with a hyphen)
c.begin()/c.end() become c.cbegin()/c.cend()

20
24

-1
1-

13

Programming in C++

Iterators in the STL

Prefer using begin(container) and end(container)

Instead of container.begin() and container.end()

The former form works with arrays as well; *and*
It selects container.begin() or container.cbegin()
automatically, depending on whether container is const or not.

A variation: typedefs

In C++ we can define new names for types using typedef:

typedef int time;
typedef char * cstr;
typedef deque<string> phrase;
typedef vector<vector<double> > matrix;

(can also do this in C, but only outside functions)
With typedef we can introduce an abbreviation for the iterator type:

typedef list<string>::iterator iter;
for (iter p = begin(names), e = end(names);

p != e; ++p)
cout << *p << ’\n’;

// Or *better*: USE auto!
for (auto p = begin(names), e = end(names);

p != e; ++p)
cout << *p << ’\n’;

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 26

The analogy

C STL – C++98
array arr container c
pointer p iterator p
start pointer arr start iterator c.begin()/cbegin()
end pointer arr + LENGTH end iterator c.end()/cend()
increment ++p ++p
dereference *p *p

Since C++11 – One API for all!
array arr container c
pointer p iterator p
start pointer begin(arr) start iterator begin(c)
end pointer end(arr) end iterator end(c)
increment ++p ++p
dereference *p *p

begin(c) returns a const/non-const iterator as appropriate! :-)
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 26

Iterator is a concept

“Iterator” is an STL concept, not a C++ class.
All iterators support the same operations in the same way:

Switching representations is relatively easy
Generic code can be written using these operations

Special kinds of iterators support more operations
Checking is done when generic code is instantiated

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 26

Iterator concepts in the STL

Different containers have different iterator kinds, belonging to a
hierarchy of iterator concepts:
Input Iterator supports ==, ++, (unary) * and ->

e.g., the iterator of forward list [*]
Bidirectional Iterator supports all these as well as --

e.g., the iterator of list
Random Access Iterator supports all these as well as <, +, - and [],

which should behave similarly to operations on pointers
e.g., the iterator of vector or deque

Why isn’t < supported for input/bidirectional iterators?
What does iter[3] stand for?

[*] forward list: née slist, see issue:
stackoverflow.com/a/6885508

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 26

A generic function

template <typename Iterator, typename Elem>
int count(Iterator start,

Iterator finish, const Elem & v) {
int n = 0;

for (Iterator p = start; p != finish; ++ p)
if (* p == v)

n++;
return n;

}

There are several type requirements here (checked at instantiation):
Iterator must be at least an input iterator type;
Iterator must be an iterator with element type Elem; and
The Elem type must support == .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 26

Using the generic count function

Function count is defined in <algorithm>.
Here is an example of its use:

list<string> names;
string s;
....
int n = count(begin(names), end(names), s);
cout << s << " occurs " << n << " times\n";

In the above use,
Iterator is list<string>::iterator
Elem is string

Check <algorithm> out! en.cppreference.com/w/cpp/algorithm

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 26

stackoverflow.com/a/6885508
https://en.cppreference.com/w/cpp/algorithm

Iterating over associative containers
A map associates keys with values.
The iterator of a map produces pairs of key and value.
If p is a map<K, V> iterator, then *p has type pair<const K, V>.

map<string, int> table;//How to print map’s elements?
...
typedef map<string, int>::iterator Iter;
for (Iter p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (auto p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (const auto &pr : table) // range for
cout << pr.first << " -> " << pr.second << ’\n’;//Or

for_each(begin(table), end(table),
[](const auto &pr) { // a lambda function
cout << pr.first << " -> " << pr.second << ’\n’;

});// for_each can be ***PARALLELIZED***!!!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 26

Iterating over associative containers
A map associates keys with values.
The iterator of a map produces pairs of key and value.
If p is a map<K, V> iterator, then *p has type pair<const K, V>.

map<string, int> table;//How to print map’s elements?
...
typedef map<string, int>::iterator Iter;
for (Iter p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (auto p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (const auto &pr : table) // range for
cout << pr.first << " -> " << pr.second << ’\n’;//Or

for_each(begin(table), end(table),
[](const auto &pr) { // a lambda function

cout << pr.first << " -> " << pr.second << ’\n’;
});// for_each can be ***PARALLELIZED***!!!

20
24

-1
1-

13

Programming in C++

Iterating over associative containers

#include <string>
#include <iostream>
#include <algorithm>
#include <execution>

std::map<std::string, int> table;
std::for_each(std::execution::par_unseq,

//instance of parallel_unsequenced_policy
std::begin(table), // start from.
std::end(table), // end before.
// a lambda (anonymous) function
[](const auto &pair) {

std::cout << pair.first
<< " -> "
<< pair.second
<< std::endl;

});// std::for_each ***PARALLELIZED***!!!

(doesn’t make much sense to parallelize stream output, since the
stream sequences the output from the different parallel printers)

Check out en.cppreference.com/w/cpp/algorithm/reduce

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>)
pointers most useful for dynamic binding & structures

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators: sequential access to container elements
STL iterators look like pointers (++, *, -> etc)
Many generic functions use iterators STUDY <algorithm> !!!
After the reading week:

inheritance in C++
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)

Genericity and inheritance

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 26

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>)
pointers most useful for dynamic binding & structures

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators: sequential access to container elements
STL iterators look like pointers (++, *, -> etc)
Many generic functions use iterators STUDY <algorithm> !!!
After the reading week:

inheritance in C++
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)

Genericity and inheritance

20
24

-1
1-

13

Programming in C++

Summary

(Area left empty on purpose)

https://en.cppreference.com/w/cpp/algorithm/reduce

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>)
pointers most useful for dynamic binding & structures

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators: sequential access to container elements
STL iterators look like pointers (++, *, -> etc)
Many generic functions use iterators STUDY <algorithm> !!!
After the reading week:

inheritance in C++
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)

Genericity and inheritance

20
24

-1
1-

13

Programming in C++

Summary

Final Notes – I:

Pointers are used with operators & (address-of) and * (dereference).

& returns the memory address where a variable/object(/function. . .)
can be found.
* takes an address and returns the item at that address.

Pointers are declared as
type * p = nullptr; // Not 0/NULL!!! C++11
Such declarations are read right-to-left: “p is a pointer (*) to a type”. So
given some integer i:

const int * p1 = &i;
p1 is a pointer to a constant int (can point to another integer j but
cannot be used to modify any of them)
int j = 3;
*p1 = 4; // attempt to modify i - invalid
p1 = &j; // attempt to point elsewhere - valid

int * const p2 = &i;
p2 is a constant pointer to an int (cannot point to another integer
but *can* be used to modify the integer it’s pointing at)
int j = 3;
*p2 = 4; // attempt to modify i - valid
p2 = &j; // attempt to point elsewhere - invalid

const int * const p3 = &i;
p3 is constant pointer to a constant int (cannot point to another
integer nor be used to modify the integer it’s pointing at)
int j = 3;
*p3 = 4; // attempt to modify i - invalid
p3 = &j; // attempt to point elsewhere - invalid

We can have pointers to pointers (to represent things like
multi-dimensional arrays):
int ** pp1 = &p1;

pp1 is a pointer to a pointer to an int (or pp1 is a double pointer to
an int).
const can be sprinkled around quite freely as before:
int * const * const pp2 = &p1;
Read it right-to-left: pp2 is a constant pointer to a constant
pointer to an int.

The null pointer is nullptr since C++11 – use that instead of 0 or
NULL (C language). See an article on “enums and nullptr in C++11”
(https://www.cprogramming.com/c++11/c+
+11-nullptr-strongly-typed-enum-class.html),

An array’s name can be used as a pointer to the first element of the
array. int arr[40]; int *p = arr;

Pointers support arithmetic operators (slide 14). Incrementing a pointer
takes you to the next address that represents an object of the type you’re
pointing at (so it’s address+1 for a char, address+4 for a 32 bit int,
address+432 for an object that’s 432 bytes long, etc.)

Array elements can be accessed with pointers (more efficient than
indexes – slide 16):

for (int *p = arr, *end = arr+40; p != end; ++p)
*p = *p + 5;

This pattern is extremely important – it’s how we use iterators to go
over container elements.
(Why more efficiently than indexes? Check slide 14 to see what arr[i]
is translated to)

Each container defines two types: iterator and const_iterator:

vector<int>::iterator i1; // ---> int *p1;
list<float>::const_iterator i2; // ---> const float *p2;

The looping pattern:

for (vector<int>::iterator
p = begin(vi), end = end(vi); p != end; ++p)

*p = *p + 5;

Learn how to write generic functions that take iterators (slide 23)

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>)
pointers most useful for dynamic binding & structures

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators: sequential access to container elements
STL iterators look like pointers (++, *, -> etc)
Many generic functions use iterators STUDY <algorithm> !!!
After the reading week:

inheritance in C++
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)

Genericity and inheritance

20
24

-1
1-

13

Programming in C++

Summary

Final Notes – II:

Also learn to use auto when your compiler supports C++11:
The looping pattern:

for (auto p = begin(vi), end = end(vi);
p != end;
++p) {

*p = *p + 5; // LEARN THIS!!!
}

Functions begin(c) and end(c) work when c is either a
container or an array (C++11), while c.begin() and c.end()
only work with containers – use the former form rather than the
latter.
Both functions return the correct iterator (const or not) depending
on whether c is const or not: watch out for this – might cause
compilation errors if you try to store it in the wrong iterator variable:
void print(const vector<int> & v) {
// for (vector<int>::const_iterator // CORRECT

for (vector<int>::iterator // ERROR
p = begin(v),
end = end(v);

p != end;
++p)

cout << *p << ’ ’;
}

Crash course on auto:

int i = 3;
auto j = i; /* j is also an int, initialized as a

copy of i */
auto && k = i; /* k is a *reference* to an int (&& is

not a typo - use that with auto) */
const auto && m = i; /* m is a constant reference to

an int */
More on auto: https://www.cprogramming.com/c++11/c+
+11-auto-decltype-return-value-after-function.
html
More on rvalue references (&&):
https://www.cprogramming.com/c++11/
rvalue-references-and-move-semantics-in-c++11.
html
(advanced – not to be examined. First time I read this I had to go
and lie down – haven’t read it again since. . .).

File copy-string.cc (*) contains four different implemen-
tations of a function that copies a source (s) C-style string
(e.g., an array of characters) into a target (t) C-style string.

Version strcpy3 is the canonical one – once you’ve
understood why/how it works, your understanding of point-
ers should be quite good (and of the difference between i++
and ++i).
(*) https://www.staff.city.ac.uk/c.kloukinas/cpp/
session-05/copy-string.cc

// *** The ONE, TRUE strcpy!!! ***
void strcpy3(const char *s, char *t) {
while ((*t++ = *s++)) /* extra parentheses added

to get rid of warning */
; /* do nothing in the body - loop condition

does the job */
}
/*
* Source: Kernighan & Ritchie, The C Programming
* Language, 2nd Edition, Prentice Hall PTR, 1988,
* p. 106
*
* strcpy: copy s(ource) into t(arget).
* ASSUMPTION: t(arget) has enough space for the
* string inside s(source)!
*/

https://www.cprogramming.com/c++11/c++11-nullptr-strongly-typed-enum-class.html
https://www.cprogramming.com/c++11/c++11-nullptr-strongly-typed-enum-class.html
https://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-function.html
https://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-function.html
https://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-function.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.staff.city.ac.uk/c.kloukinas/cpp/session-05/copy-string.cc
https://www.staff.city.ac.uk/c.kloukinas/cpp/session-05/copy-string.cc

