
Inheritance

Programming in C++
Session 6 – Inheritance in C++

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 26

Inheritance

The most important slide of the lecture

Why use inheritance?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 26

Inheritance

Reasons for Inheritance (revision)

Implementation Re-Use Bad-ish. . . [+]
new classes extend existing classes with additional fields and
methods, and can override the definitions of existing methods.

Interface/Type Hierarchies (Is-A relations [*]) Good!
the new class is also a subtype of the old: its objects can be used
wherever objects of the old class can (subtype polymorphism) with
the appropriate method selected by dynamic binding.
abstract classes declare methods without defining them: the
methods are defined in subclasses.

[*] Is-A vs Has-A relations:
A car Is-A vehicle Inheritance
A car Has-A steering wheel Composition

[+] Just have an object of that class as a field (composition) and have your
methods forward calls to it.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 26

Inheritance

Inheritance in C++

The basic concept is similar to Java, but
different syntax
objects of subclasses may be assigned to object variables of
superclasses, by slicing off the extra parts.
interactions with:

overloading
pointers
template classes

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 26

https://staff.city.ac.uk/c.kloukinas/cpp

Inheritance

Inheritance syntax in Java and C++

in Java:
public class holiday extends date {

in C++:
class holiday : public date {

we will always use public inheritance.
C++ terminology: date is a base class;
holiday is a derived class.
multiple inheritance (in C++):

class child : public parent1, public parent2 {

there are no interfaces in C++.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 26

Inheritance

A base class

Recall the class date from session 2:

class date {
int day, month, year;

public:
date(); // today’s date
date(int d, int m);
date(int d, int m, int y);
int get_day() const { return day; }
int get_month() const { return month; }
int get_year() const { return year; }

};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 26

Inheritance

Inheritance and initialization

The members of base class(es) are initialized similarly to subobjects:

class holiday : public date {
string name;

public:
holiday(string n) : date(), name(n) {}

holiday(string n, int d, int m) :
date(d, m), name(n) {}

string get_name() const { return name; }
};

Members of the base class can’t be initialized directly:
use constructor date

(can only use it in the initialisation list!)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 26

Inheritance

Order of initialization – IMPORTANT!

Initialization is done in the following order:
1 constructors for base classes
2 members (in order of declaration) – WARNING!!! BE CAREFULL!!!
3 body of constructor

Principle: The constructor body needs a fully initialised object!

Danger:
Order of initializers has *NO* effect,
only declaration order matters!

So: Initialise members with order-independent expressions

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 26

Inheritance

Initialization and assignment

As in Java, we can initialize and assign from derived classes, but
here objects are copied, not pointers:

holiday h("Anzac Day", 25, 4);
date d = h;

initializes d as a copy of the date part of h
d = h;

copies the date part of h into d

In both cases, the object is sliced

Note: Call-by-value initialises a new variable, so it also involves
copying (and slicing)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 26

Inheritance

Method overriding in Java and C++

The default in C++ is the opposite to that in Java:
in Java:

final int non_redefinable_method() { ... }
int redefinable_method() { ... }

abstract int undefined_method();

in C++:
int non_redefinable_method() { ... }

virtual int redefinable_method() { ... }
virtual int undefined_method() = 0;

The latter is called a pure virtual function.
When a method is declared virtual in a base class, it is also
virtual in derived classes (the keyword there is optional).

Why is it the opposite?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 26

Method overriding in Java and C++

The default in C++ is the opposite to that in Java:
in Java:

final int non_redefinable_method() { ... }
int redefinable_method() { ... }

abstract int undefined_method();

in C++:
int non_redefinable_method() { ... }

virtual int redefinable_method() { ... }
virtual int undefined_method() = 0;

The latter is called a pure virtual function.
When a method is declared virtual in a base class, it is also
virtual in derived classes (the keyword there is optional).

Why is it the opposite?

20
24

-1
1-

13

Programming in C++
Inheritance

Method overriding in Java and C++

It’s the opposite because non-redefinable member functions are faster
than redefinable (virtual) ones. (C++’s #1 aim is speed!)

Redefinable member functions are actually pointers to functions – at run
time the code has to dereference the pointer held in the class
information of the current object to figure out which code to execute.

This also explains the bizarre syntax for abstract (pure virtual) member
functions:
“ = 0” means that the function pointer is the nullptr, i.e., there’s no
respective code for it!

Inheritance

Method overriding

Overridable methods must be declared virtual:

class date {
...
virtual string desc() const { ... }

};

Overriding in a derived class:

class holiday : public date {
...
virtual string desc() const {

return name + " " + date::desc();
}

};

Note: Qualify with the class name to get the base version.
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 26

Inheritance

Static and dynamic binding
Given functions

void print_day1(date d) {
cout << "It’s " << d.desc() << ’\n’;

}

void print_day2(date &d) {
cout << "It’s " << d.desc() << ’\n’;

}

then

holiday xmas("Christmas", 25, 12, 2004);
print_day1(xmas); // It’s 25/12/2004
print_day2(xmas); // It’s Christmas 25/12/2004

Why the different behaviour?!
(the answer is on slide 9)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 26

Static and dynamic binding
Given functions

void print_day1(date d) {
cout << "It’s " << d.desc() << ’\n’;

}

void print_day2(date &d) {
cout << "It’s " << d.desc() << ’\n’;

}

then

holiday xmas("Christmas", 25, 12, 2004);
print_day1(xmas); // It’s 25/12/2004
print_day2(xmas); // It’s Christmas 25/12/2004

Why the different behaviour?!
(the answer is on slide 9)

20
24

-1
1-

13

Programming in C++
Inheritance

Static and dynamic binding

Dynamic Binding

In order to get dynamic binding we need:

1 a type hierarchy (inheritance)

2 some virtual member functions

3 references or pointers to objects
(so that the compiler isn’t sure what the real object type is)

If you don’t need Dynamic Binding, then you don’t need Inheritance!
You can simply use composition and (implicit) conversion:

class holiday {
date d;

...
operator date() const { return d; } // convert to date

};
void print_month(date d) { // works with holiday objects too.

cout << d.get_month() << endl;
}

Inheritance

Abstract classes

A class containing a pure virtual function is abstract, though this is not
marked in the syntax.

class pet {
protected:

string _name;
public:

pet(string name) : _name(name) {}
virtual string sound() const = 0;
virtual void speak() const {

cout << _name << ": " << sound() << "!\n";
}

};

As in Java, abstract classes may not be instantiated, so no variable
may have type pet, but we can declare a reference (or a pointer).

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 26

Inheritance

Derived classes

class dog : public pet {
public:

dog(string name) : pet(name) {}
string sound() const { return "woof"; }
void speak() const { // virtual is optional

pet::speak();
cout << ’(’ << _name << " wags tail)\n";

}
};

class cat : public pet {
public:

cat(string name) : pet(name) {}
virtual string sound() const { return "miao"; }

};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 26

Inheritance

Subtype polymorphism and dynamic binding

We cannot pass pets by value, but we can pass them by reference:

void speakTwice(const pet &a_pet) {
a_pet.speak();
a_pet.speak();

}

Then we can write

dog a_dog("Fido");
speakTwice(a_dog);
cat a_cat("Tiddles");
speakTwice(a_cat);

Why can’t we pass a pet by value to speakTwice ?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 26

Subtype polymorphism and dynamic binding

We cannot pass pets by value, but we can pass them by reference:

void speakTwice(const pet &a_pet) {
a_pet.speak();
a_pet.speak();

}

Then we can write

dog a_dog("Fido");
speakTwice(a_dog);
cat a_cat("Tiddles");
speakTwice(a_cat);

Why can’t we pass a pet by value to speakTwice ?

20
24

-1
1-

13

Programming in C++
Inheritance

Subtype polymorphism and dynamic binding

Because

call-by-value involves instantiating a new local object, which is
initialised using the original parameter (see slide 9); and

a_pet is an abstract class, so we cannot instantiate it. . .

Inheritance

Caution: inheritance and overloading
class A {

virtual void f(int n, Point p) { ... }
};

Now suppose we intend to override f in a derived class, but make a
mistake with the argument types:

class B : public A {
void f(Point p, int n) { ... }

};

f will be accepted as a definition of a new and different member
function.

Even forgetting a single const or changing a * to a & means it’s a
different function!

class B : public A {
void f(Point p, int n) override { ... }

};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 26

Caution: inheritance and overloading
class A {

virtual void f(int n, Point p) { ... }
};

Now suppose we intend to override f in a derived class, but make a
mistake with the argument types:

class B : public A {
void f(Point p, int n) { ... }

};

f will be accepted as a definition of a new and different member
function.

Even forgetting a single const or changing a * to a & means it’s a
different function!

class B : public A {
void f(Point p, int n) override { ... }

};

20
24

-1
1-

13

Programming in C++
Inheritance

Caution: inheritance and overloading

How can you protect yourself against such mistakes?

Since C++11 there’s a new keyword override that you can use to
state that you’re trying to override a member function of one of your
base classes:

class B : public A {
void f(Point p, int n) override { ... }
// Now the compiler catches the error

};

There’s also a keyword final to state that derived classes should
not be allow to further override the member function:

class A {
virtual void f(int n, Point p) { ... }
virtual int g(Point p) const { ... }

};
class B : public A {
void f(int n, Point p) override { ... }
int g(Point p) const final { ... }

};

Inheritance

Which version is selected?

If more than one overloaded function or method matches, the best
(most specific) is chosen:

class pet {};
class cat : public pet {};

void wash(pet &x) { ... }
void wash(cat &x) { ... }

int main() {
cat felix;
wash(felix);// both functions match; second is used

}

Overload: STATIC (i.e., compile-time) decision

Override: DYNAMIC (i.e., run-time) decision
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 26

Inheritance

OverLoading
Riding – Write fewer if’s with OOP!

Overloading – STATIC/COMPILATION TIME:
void f(pet & x) {
if (x isA cat) {}
else if (x isA dog) {}
else if (x isA hamster) {}
else {assert(0);}//*ERROR*

void f(cat &x) {...}
void f(dog &x) {...}
void f(hamster &x) {...}
//*NO* (runtime) *ERROR*!!!

Overriding – DYNAMIC/RUN TIME: (only need inheritance for this)

void move(person &p) {
if (p isA driver) {}
else if (p isA cyclist) {}
else if (p isA pilot) {}
else { //*DEFAULT* } }

class person {//*DEFAULT*
virtual void move(){...} }

class driver :person{
void move(){...} }

class cyclist :person{
void move(){...} }

class pilot :person{
void move(){...} }

Write better if/then/else’s – let the compiler do it!
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 26

Inheritance

Pointers and subtyping

Pointers to derived classes are subtypes of pointers to base classes
(i.e., if I can point to a base class, I can also point to a derived class):

cat felix;
pet *p = &felix;

No slicing occurs here, because pointers are copied not objects
(a memory address is the same size as another memory address):

p->speak(); // miao

The speak method uses the virtual method sound, which is defined in
the cat class, and selected by dynamic binding (see slides 6–13).

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 26

Inheritance

Containers of pointers

Often a container holds pointers to a base type:

vector<pet *> pets;
cat felix("Felix");
dog fido("Fido");
pets.push_back(&felix);
pets.push_back(&fido);

When we access elements of the vector, dynamic binding is used:

for (std::size_t i = 0; i < pets.size(); ++i)
pets[i]->speak(); // miao, woof

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 26

Inheritance

Introducing dynamic allocation

Typically the number of things in the collection is unpredictable
So allocate objects dynamically (as in Java) on the heap:

cat *cp = new cat("tiddles");
pets.push_back(cp);

Here the pointer cp is local, but the object it points at is on the
heap (so it outlasts the current block)
Major difference: in C++ the programmer is responsible for
deallocation, but we’ll ignore that till session 8
Better (C++11):

#include <memory>
vector<shared_ptr<pet>> pets;
// shared_ptr<cat> cp = make_shared<cat>("Tom");//Old
auto cp = make_shared<cat>("Tom");//New, simpler!!!
pets.push_back(cp);

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 26

Inheritance

Templates and subtyping (I)

When cat is a subtype of pet,
cat * IS a subtype of pet *, but

vector<cat *> IS NOT a subtype of vector<pet *>!

Why not? Consider this code fragment:

vector<cat *> cats;
vector<pet *> *p = &cats; // illegal
dog fido;
p->push_back(&fido); // would be trouble

See Stroustrup 13.6.3(3rd ed.)/27.2.1(4th ed.) for more.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 26

Inheritance

Templates and subtyping (II)

It is possible to inherit from a template class
template <typename T>
class history { ... };

template <typename T>
class my_history : public history<T> { ... };

The parameters need not be the same
class browser_history : history<string> { ... };

template <typename T>
class pointer_history : history<T *> { ... };

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 26

Templates and subtyping (II)

It is possible to inherit from a template class
template <typename T>
class history { ... };

template <typename T>
class my_history : public history<T> { ... };

The parameters need not be the same
class browser_history : history<string> { ... };

template <typename T>
class pointer_history : history<T *> { ... };20

24
-1

1-
13

Programming in C++
Inheritance

Templates and subtyping (II)

Why not

template <typename T>
class browser_history : history<string> { ... };

???
Because borwser_history is NOT a template class, it simply
inherits from a (specialised) template class.

Inheritance

Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 26

20
24

-1
1-

13

Programming in C++
Inheritance

Final Notes

(area left empty on purpose)

20
24

-1
1-

13

Programming in C++
Inheritance

Final Notes

Final Notes – I

Inheritance is used for:
1 Code re-use (bad, bad, bad! That’s why Java allows us to inherit

from at most one class)
2 Defining type-hierarchies through the IsA relation between types:

car Is-A vehicle, cat Is-A pet (good, good, good! That’s why Java
allows us to inherit from as many interfaces as we want)

Inheritance is required if we need *dynamic binding*, i.e., code that
behaves differently at run-time depending on the real type of the objects
involved.

For dynamic binding we also need to use references or pointers
(they keep the real type of the objects and don’t cause slicing to
happen).
And of course we need some member functions to be virtual,
otherwise the compiler will plug-in direct calls to the superclass
member functions (static binding) instead of checking the object’s
real type and using dynamic binding.

Slicing: If we try to assign an object of a derived class (like holiday) into
an object of a base class (like date), then there’s not enough room for all
the information, so we need to slice the object of the derived class - we
throw away its new members and keep just the members of the base
class.

We can initialize the base class part of a derived object by calling the
constructor of the base class in the initialization list of the derived
object’s constructor (only there can we call it):
holiday(string n, int d, int m) : date(d, m), name(n) {}

Initialization order:
1 Constructors of base classes
2 Constructors of members
3 Body of constructor of the derived class

Principle: The constructor body needs a fully initialised object!
The destruction follows the opposite order (destructor body, destructors
of members, destructors of base classes).

Principle: The destructor body needs a fully initialised object! (same principle)

Overriding behaviour: The base class must have declared the member
function as virtual for us to be able to override it in the derived class:
virtual string desc() const {...}

Pure virtual member functions (aka abstract methods):
virtual string sound() const = 0; // no code!

Virtual functions are essentially pointers (to functions).
Pure virtual (abstract) functions are null (nullptr) pointers (no
code to point to). That should explain the bizarre syntax (= 0).
A class with at least one pure virtual member function is an abstract
class - cannot instantiate it (but we can have references and
pointers to it – for dynamic binding, see below).
A class with no members (fields) and all of its member functions
pure virtual is equivalent to a Java interface.
If your class has a virtual function then it probably needs a virtual
destructor.

20
24

-1
1-

13

Programming in C++
Inheritance

Final Notes

Final Notes – II

Static vs Dynamic binding - check out slide 12.

Function print_day1 uses call-by-value (so the real object
passed is copied and sliced in order to initialize the local parameter
and the function always operates on a date object).
Function print_day2 uses call-by-reference (so the real object is
passed without copying/slicing, initializing the local reference
parameter to refer to it whatever it may be, and the function
operates on any kind of date object).
To get dynamic binding, i.e., different behaviour at runtime
depending on the real type of an object, one needs two things:

To have virtual member functions, which have been overriden
in derived classes (the implementation of the different
behaviour according to the type of the object)
To allow these virtual member functions to be selected
dynamically at runtime, by passing objects either by reference
or by pointer. Otherwise (i.e., in pass-by-value) static binding
is used.

Java has super(...); to call the same method in the parent class. A
C++ class may have multiple parent (base) classes, so to call one of
their member functions that we’ve overridden, we must name the base
class explicitly:

class dog : public pet {
void speak() const override

/* "override" - C++11 keyword to show that we want
to override some base class’ speak */ {
pet::speak(); // call pet’s speak
cout << ’(’ << _name << " wags tail)\n";

}
};

Containers of pointers:

Want to have a collection of objects but your class doesn’t have a
default constructor?
Want to avoid copying objects around?
Want to store different sub-types of some base class and get
dynamic binding when you use them (and avoid slicing them)?

Then use a container of pointers – slide 20.

Beware that vector< cat * > isn’t a sub-type of
vector< pet * >, even though cat * is a sub-type of pet *
when cat is a sub-type of pet (slides 22–23).

Inheritance and templates: slides 22–23. Partial specialization
(PointerHistory partially specializes the type of History to be a
pointer to some still unknown type T).

More on template specialization (and partial specialization)
www.cprogramming.com/tutorial/template_
specialization.html
Did you notice in the template specialization article that a template
parameter does not have to be a typename?
Welcome to Template Meta-Programming
www.codeproject.com/Articles/3743/
A-gentle-introduction-to-Template-Metaprogramming
No need to thank me.
(DEFINETELY *NOT* IN THE SCOPE OF THE MODULE/EXAM!)

And some interesting further reading that may help you better
understand how virtual member functions work (and don’t work
sometimes) – not part of the exam but highly helpful:

Vee Table https://wiki.c2.com/?VeeTable
Fragile Binary Interface Problem https:
//c2.com/cgi/wiki?FragileBinaryInterfaceProblem

www.cprogramming.com/tutorial/template_specialization.html
www.cprogramming.com/tutorial/template_specialization.html
www.codeproject.com/Articles/3743/A-gentle-introduction-to-Template-Metaprogramming
www.codeproject.com/Articles/3743/A-gentle-introduction-to-Template-Metaprogramming
https://wiki.c2.com/?VeeTable
https://c2.com/cgi/wiki?FragileBinaryInterfaceProblem
https://c2.com/cgi/wiki?FragileBinaryInterfaceProblem

	Inheritance
	Final Notes

