
Module IN3013/INM173 – Object-Oriented
Programming in C++

Solutions to Exercise Sheet 6

1. A suitable main function is

int main() {

Cat cat1("miffy");

Dog dog1("rover");

Dalmatian dog2("bill", 101);

cat1.speak();

dog1.speak();

speakTwice(dog2);

return 0;

}

Note that speakTwice calls speak, which is dynamically bound to the Dog version.

2. Firstly, we replace the definition of the method in the class with a declaration:

class Dog : public Pet {

public:

Dog(string name) : Pet(name) {}

string sound() const { return "woof"; }

virtual void speak() const;

};

Note that the const, indicating that the method do not alter the object, is part of the
method’s signature. Now we can define the method outside the class, by qualifying
it with the class name Dog:

void Dog::speak() const {

Pet::speak();

cout << ’(’ << _name << " wags tail)\n";

}

Note that we cannot say virtual here, though the method is virtual because of its
declaration in the class.

Note also that this is not a pure virtual method: speak still has a definition for Dog,
it’s just defined outside the class.

1



3. If we add the line

Pet pet("norbert");

we get the error message

pets.cc: In function ‘int main()’:

pets.cc:45: cannot declare variable ‘pet’ to be of type ‘Pet’

pets.cc:45: since the following virtual functions are abstract:

pets.cc:10: class string Pet::sound() const

The compiler is saying that no objects of type Pet can be created, because the
method sound() has no definition (i.e. it is abstract). In Java, we would have had
to declare sound() as abstract, and therefore the whole class as abstract. C++
has no such keyword, but the underlying concept is the same: no objects of the clas
can be created, because they would lack some methods.

4. We can define a version that calls the parent method (the equivalent of super.speak()
in Java):

virtual void speak() const {

Dog::speak();

cout << ’(’ << _name << " looks cute)\n";

}

We can also call the Pet version directly:

virtual void speak() const {

Pet::speak();

cout << ’(’ << _name << " looks cute)\n";

}

Note that the virtual qualifier is not necessary here (or in Dog): once a method is
declared virtual, any overriding is also virtual.

5. Assuming the declarations above, if we write

dog1 = dog2;

dog1.speak();

then the assignment on the first line slices the Dalmatian object to make it fit into
a Dog object, copying only the Dog fields. Moreover, the object left of dog1 is a Dog,
as may be verified by calling its speak() method.

2



6. A vector of pointers to pets:

vector<Pet *> pets;

Adding the address of a local Cat to the vector:

Cat felix("Felix");

pets.push_back(&felix);

Adding a pointer to a dynamically allocated Dog to the vector:

Dog *dog_ptr = new Dog("Fido");

pets.push_back(dog_ptr);

or equivalently,

pets.push_back(new Dog("Fido"));

When we access elements of the vector, dynamic binding is used:

for (int i = 0; i < pets.size(); i++)

pet[i]->speak(); // miao, woof

7. Starting with a list of pointers

list<Pet *> pets;

The associated iterator type returns pointers:

typedef list<Pet *>::iterator Iter;

for (Iter p = pets.begin(); p != pets.end(); ++p)

(*p)->speak();

In the last line,

• p is an iterator, and *p uses an overloaded definition of the * operator.

• The value of *p is an element of the container, in this case a pointer to Pet, so
here -> is the built-in pointer dereferencing.

3


