
Programming in C++
Session 7 – Multiple Inheritance

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 26

Major Differences between Java and C++

These are the main pain points to understand C++ [*]
(why did Java “simplify” them?)

call-by-reference (session 1 and since)
operator overloading (session 3)
genericity or template classes (sessions 4–6)
memory management

local allocation of objects (sessions 1–2 and since)
pointers (sessions 5–6)
dynamic allocation & de-allocation (sessions 8–9)

multiple inheritance (this session)

[*] (and to answer in job interviews)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 26

Multiple Inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises some questions:

What if both happen to define the same names?
What if both derive from a common class?

Both these are implementation (code reuse) problems,
nothing to do with the type hierarchies.

That’s why interfaces (i.e., abstract classes) don’t have problems. . .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 26

The simple case

A common, simple, use of multiple inheritance to combine two
essentially unrelated classes:

class read write : public reader, public writer { An IS-A relation.
...

};
We can also combine classes using sub-objects:

class chess game : public window { An IS-A relation.
protected:

board board; A HAS-A relation.
...

};
Key question: should the new class be usable by clients of the old?
That is, do we need an IS-A relation (yes) or a HAS-A relation (no) ?
This question is about the type relation – nothing to do with code reuse.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 26

https://staff.city.ac.uk/c.kloukinas/cpp

An asymmetrical case

Often a class extends a concrete base class and an abstract one,
using the concrete class to implement the undefined methods from the
second class, and possibly a bit more:

class active_grid : public grid,
public button_listener {

public:
void mouse_pressed(button_event & e) {

// use grid stuff
}

};

Java supports only this special case.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 26

Name clashes (ambiguity)

What if two base classes define the same name?

class A { public: int f(); };

class B { public: int f(); };

class AB : public A, public B {
public:

int g() {
return f() + 1; // which one?

}
};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 26

Possible solutions

The language chooses one, using some rule (some LISP dialects).
The language permits the programmer to rename methods of a
base class in a derived class, thus avoiding the clash (Eiffel).
The programmer must explicitly qualify the names with the class
from which they come (C++).

Renaming the methods in the original classes is often not an option, as
they may be part of a library or fixed interface.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 26

Ambiguity resolution by qualification
In C++, ambiguous names must be qualified: t.ly/C90gP QUIZ now!
class A { public: int f() {return 1;} };
class B { public: int f() {return 2;} };
class AB : public A, public B {

public:
int f() { return 3; }
int g() {

return A::f() + B::f() + f() + 1; // 7
}

};
void fa(A &a){ cout << a.f() << endl; }
void fb(B &b){ cout << b.f() << endl; }

...
AB ab;
fa(ab); // prints what? why?
fb(ab); // prints what? why?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 26

https://t.ly/C90gP

Ambiguity resolution by qualification
In C++, ambiguous names must be qualified: t.ly/C90gP QUIZ now!
class A { public: int f() {return 1;} };
class B { public: int f() {return 2;} };
class AB : public A, public B {

public:
int f() { return 3; }
int g() {

return A::f() + B::f() + f() + 1; // 7
}

};
void fa(A &a){ cout << a.f() << endl; }
void fb(B &b){ cout << b.f() << endl; }

...
AB ab;
fa(ab); // prints what? why?
fb(ab); // prints what? why?

20
24

-1
1-

22

Programming in C++

Ambiguity resolution by qualification

Will print 1 & 2 respectively, because f is NOT virtual!

So there’s no dynamic binding – compiler chooses the appropriate f
statically (at compilation time), by considering the interface of the object.

If A’s f() was virtual, then fa() would print 3 if its argument was of
class AB. . .

What if f was virtual only inside class A?

Replicated base classes

class storable { int width; ... };//I HAVE *width*!

class transmitter : public storable { ... };

class receiver : public storable { ... };

class radio : public transmitter,
public receiver { ... };

A radio object will contain two distinct storable components,
and thus two versions of each member.
All references to storable members in radio must be qualified
with either transmitter or receiver.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 26

Replicated base classes, graphically

storable storable

transmitter receiver

radio

Memory view:

storable
transmitter stuff

storable
receiver stuff

radio stuff
&(rad1.transmitter::width) != &(rad1.receiver::width)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 26

Virtual functions in the base class

class storable {
public:

virtual void write() = 0;
};

class transmitter : public storable {
public:

virtual void write() { ... }
};

class receiver : public storable {
public:

virtual void write() { ... }
};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 26

https://t.ly/C90gP

Overriding virtual methods

A virtual function in the replicated base class can be overridden:

class radio : public transmitter,
public receiver {

public:
virtual void write() {

transmitter::write();
receiver::write();
// write extra radio stuff

}
};

The use of the base class versions, plus a bit more, is common.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 26

Virtual inheritance (sharing)

Suppose we want:

window

win with menu win with border

painter

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 26

Virtual base class

If we write

class window { ... };

class win with border : public virtual window {...};
class win with menu : public virtual window {...};

class painter : public win_with_border,
public win_with_menu { ... };

Then a painter object includes a single window.
Class window is a virtual base class of class painter.

Virtual method – you have a pointer to the method.
Pure virtual method (= 0) means a nullptr pointer (no code)

⇒ Virtual base class – you have a pointer to it!
(just like “virtual memory” in OSs uses indirection to real memory)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 26

Virtual inheritance – Memory view

shared window w
window *wptr = &w
win with menu stuff
window *wptr = &w

win with border stuff
painter stuff

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 26

Constructors
class window {
public:

window(int i) { ... }
};
class win_with_border : public virtual window {
public:

win_with_border() : window(1) { ... }
};
class win_with_menu : public virtual window {
public:

win_with_menu() : window(2) { ... }
};

PROBLEM: The base classes of painter want to initialise the
common window object in a different way – they don’t know it’s shared!
SOLUTION: Ignore them – class painter is the one best placed to
decide how the common window object should be initialised.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 26

Constructors for a virtual base class

The class in the hierarchy that knows that a common virtual base class
is shared decides how to construct it (intermediate classes don’t know
if the virtual base class is shared or not).

class painter : public win_with_border,
public win_with_menu {

public:
painter(int i) : window(i),

win_with_border(),
win_with_menu() { ... }

...
};

Avoids conflicts between intermediate class constructors
Language ensures each constructor is called exactly once

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 26

Ensuring other methods are called only once

When the virtual base class has a method redefined by each class?

class window {
public:

virtual void draw() {
// draw window

}
};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 26

Drawing, first attempt

class win_with_border : public virtual window {
public:

virtual void draw() {
window::draw();
// draw border

}
};

class win_with_menu : public virtual window {
public:

virtual void draw() {
window::draw();
// draw menu

}
};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 26

Disaster!!!

But then if we write:

class painter : public win_with_border,
public win_with_menu {

void draw() {
win_with_border::draw();
win_with_menu::draw();
// draw painter stuff

}
};

The window gets drawn twice!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 26

Solution: auxiliary methods

We put the drawing of the extra stuff in a method of its own:

class win_with_border : public virtual window {
protected:

void own_draw() { ... }
public:

virtual void draw() {
window::draw();
own_draw();

}
};

And similarly for win with menu.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 26

Calling each method once

class painter : public win_with_border,
public win_with_menu {

protected:
void own_draw();

public:
void draw() {

window::draw();
win_with_border::own_draw();
win_with_menu::own_draw();
own_draw();

}
};

Then each part is drawn exactly once.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 26

Virtual inheritance: Summary

Good news: Virtual inheritance is a rare case.
Even better: Language ensures constructors called exactly once.
Bad: Code Re-use Kills
If a method is defined in the virtual base class and overridden in
more than one derived class (a rare case), considerable care is
required to ensure that each method is called exactly once.
If a method is pure virtual in the virtual base class, the issue does
not arise (because the derived versions cannot call it).
If the method is overridden in only one branch, the issue does not
arise (because only that version need be called).

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 26

I/O stream classes

class ios {
// private state

public:
bool good() const { ... }
bool eof() const { ... }
bool fail() const { ... }
bool bad() const { ... }

};

class istream : virtual public ios { ... };

class ostream : virtual public ios { ... };

class iostream : public istream, public ostream {};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 26

Stream class hierarchy

ios

istream ostream

istringstream ifstream ostringstream ofstreamiostream

stringstream fstream

The state of ios is not duplicated.
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 26

Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs (Java only #1):
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . .)
5 (And freeing things the wrong way. . .)
6 (And freeing things that were not created with new. . .)

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique ptr<T> , shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 26

Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs (Java only #1):
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . .)
5 (And freeing things the wrong way. . .)
6 (And freeing things that were not created with new. . .)

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique ptr<T> , shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.

20
24

-1
1-

22

Programming in C++

Next session: memory management

Final Notes – I:

Multiple inheritance is a major difference between Java and C++.

Java doesn’t allow it – inheriting fields and code from multiple
classes is problematic:

What if multiple parent classes define the same fields or
functions?
What if multiple parent classes inherit from a common class
themselves?

Both these problems are caused by code reuse, not by introducing
a type hierarchy.
That’s why in Java you can inherit from only one class and
. . . multiple interfaces (that don’t have any code).
C++ allows multiple inheritance – it gives you all the tools you need
to solve the issues (enough rope to hang yourself. . .).

Sometimes you can avoid inheritance altogether – the key question to
ask is:
Should class A be usable at all settings where class B is usable?
If so, then A should inherit from B (A Is-A B). Otherwise A can simply
contain a B (A Has-A B).

Name ambiguity is resolved by qualification:
ClassName::MemberName()

Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs (Java only #1):
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . .)
5 (And freeing things the wrong way. . .)
6 (And freeing things that were not created with new. . .)

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique ptr<T> , shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.

20
24

-1
1-

22

Programming in C++

Next session: memory management

Final Notes – II:

Two types of multiple inheritance:

Replicated inheritance:
#include <cassert>
// struct’s a class with everything public.
struct A {int x;};
class B: public A {};
class C: public A {};
class D: public B, public C {};
int main() {
D d1;
d1.B::x = 1; // assign d1’s x from the B side
d1.C::x = 2; // assign d1’s x from the C side
assert(&(d1.B::x) != &(d1.C::x));
assert(d1.B::x == 1);
assert(d1.C::x == 2);
// restricted view of d1 - B interface (B & ...)
B & b_view_of_d1 = d1;
// restricted view of d1 - C interface (C & ...)
C & c_view_of_d1 = d1;
assert(&(b_view_of_d1.x) != &(c_view_of_d1.x));
assert(b_view_of_d1.x == 1);
assert(c_view_of_d1.x == 2);

/* ALWAYS */
assert(&(d1.B::x) == &(b_view_of_d1.x));
assert(&(d1.C::x) == &(c_view_of_d1.x));

return c_view_of_d1.x - b_view_of_d1.x; // 1
}

D contains two copies of A – one from the B side and one from the
C side (like persons having two grandfathers – one from their
mother’s side and one from their father’s side).
Virtual inheritance:
#include <cassert>
struct A {int x;};
class B: virtual public A {}; // virtual public =
class C: public virtual A {}; // public virtual
class D: public B, public C {};
int main() {
D d1;
d1.B::x = 1;
assert(&(d1.B::x) == &(d1.C::x) && d1.B::x == 1);

d1.C::x = 2;
assert(&(d1.B::x) == &(d1.C::x) && d1.B::x == 2);

B &b_view_of_d1 = d1;
C &c_view_of_d1 = d1;
assert(&(b_view_of_d1.x) == &(c_view_of_d1.x));
assert(b_view_of_d1.x == 2);

/* ALWAYS */
assert(&(d1.B::x) == &(b_view_of_d1.x));
assert(&(d1.C::x) == &(c_view_of_d1.x));

return c_view_of_d1.x - b_view_of_d1.x; // 0
}
D contains only one copy of A – the B and C side have virtual A’s.

Compiler ensures constructors work as expected (only called once).
You need auxiliary methods to get this version of inheritance
work for other methods.

Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs (Java only #1):
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . .)
5 (And freeing things the wrong way. . .)
6 (And freeing things that were not created with new. . .)

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique ptr<T> , shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.

20
24

-1
1-

22

Programming in C++

Next session: memory management

Checking if two objects are the same

As we saw in slide 10, to check if two objects are the same (and not
just equal to each other) we need to check their addresses in memory
Here’s a simple example of that using int:

#include <cassert>

int main() {

int i = 3, j = 3;

assert(i == j); // same values

assert(&i != &j); // BUT different objects
// (cause different addresses!)

return 0;
}

Comparing addresses is closer to what the === operator does in
languages like JavaScript, which is (mainly) used to check if two
objects are the same (developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Operators/Strict_equality).
In Java, the == operator when applied to Object references compares
the references directly (i.e., the pointers), so can be used to figure out
if two objects are the same. In Java we need to call equals() to
compare object contents instead.

public class SameObj {
public int i = 1;
public boolean equals(SameObj other) {
return i == other.i;

}

public static void main(String[] args) {
SameObj o1 = new SameObj(), o2 = new SameObj();

// Comparing VALUES: .equals()
if (o1.equals(o2))
System.out.println("o1 & o2 are equal");

else
System.out.println("o1 & o2 are *not* equal");
// Comparing POINTERS: ==

if (o1 == o2)
System.out.println("o1 & o2 are the same");
else
System.out.println("o1 & o2 are *not* the same"); /**/
if (o1 == o1) // should always be true
System.out.println("o1 & o1 are the same"); /**/
else
System.out.println("o1 & o1 are *not* the same");

}
}

developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Strict_equality
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Strict_equality

