
What’s Different: At a Glance

Then Now

circle* p = new circle(42);

vector<shape*> vw = load_shapes();

for(vector<circle*>::iterator i = vw.begin(); i != vw.end(); ++i) {

if(*i && **i == *p)

cout << **i << “ is a match\n”;

}

for(vector<circle*>::iterator i = vw.begin();

i != vw.end(); ++i) {

delete *i;

}

delete p;

auto p = make_shared<circle>(42);

vector<shared_ptr<shape>> vw = load_shapes();

for_each(begin(vw), end(vw), [&](shared_ptr<circle>& s) {

if(s && *s == *p)

cout << *s << “ is a match\n”;

});

T*  shared_ptr<T>

new make_shared

no need for “delete”

automatic lifetime management

exception-safe

for/while/do 
std:: algorithms

[&] lambda functions

auto type deduction

not exception-safe

missing try/catch,
__try/__finally

Heap Lifetime: Standard Smart Pointers

class gadget;

class widget {
private:
shared_ptr<gadget> g;

};

class gadget {
private:
weak_ptr<widget> w;

};

class node {
vector<unique_ptr<node>> children;
node* parent;
:::

public:
node(node* parent_)

: parent(parent_)
{

children.push_back(new node(…));
:::

}
};

shared ownership

still keeps gadget alive
w/auto lifetime mgmt

no leak, exception safe

use weak_ptr to break
reference-count cycles

unique ownership

node owns its children

no leak, exception safe

node observes its
parent

plain “new” should
immediately initialize

another object that owns it,
usually a unique_ptr

If/when performance optimization is needed, consider
well-encapsulated uses of owning *’s and delete

(e.g., hidden inside objects).

Example: writing your own low-level data structure.

