
Programming in C++
Session 8 – Memory Management

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 33

The issues

Programs manipulate data, which must be stored somewhere.
How is the storage allocated?
How is this storage initialized?
Can the storage be reused when no longer required?

If so, how?

What is required of the programmer?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 33

The issues – Java keeps things simple. . .

Programs manipulate data, which must be stored somewhere.
How is the storage allocated?

On the heap, with new

How is this storage initialized?
With constructors – basic types to 0 by default

Can the storage be reused when no longer required?
Sure

If so, how?
With new

What is required of the programmer?
Erm. . . to call new?!?

Java: Peace!

C++: I don’t want peace – I want problems, always!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 33

Common storage modes

(This is different from scope, which is a compile-time attribute of
identifiers.)

static exists for the duration of program
execution.

local (or stack-based) exists from entry of a block or
function until its exit.

free (or dynamic, or heap-based) explicitly created, and either
explicitly destroyed, or
automatically destroyed when
no longer in use.

temporary for intermediate values in
expressions.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 33

https://staff.city.ac.uk/c.kloukinas/cpp

Static storage in C++
variables declared outside any class or function.
static class members.
static variables in functions.

(don’t use static elsewhere – it’s something completely different [*])
Variables may be initialized when defined:

// global variables
int i; // implicitly initialised to 0
int *p; // implicitly initialised to 0 = nullptr
int area = 500;
double side = sqrt(area);
double *ptr = &side;
int f(int i) {
static std::size_t times_called = 0;
return ++times_called;
}

[*] internal linkage en.cppreference.com/w/cpp/language/storage_duration

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 33

Implicit initialization of static variables

Static variables that are not explicitly initialized are implicitly initialized
to 0 converted to the type.

int i;
bool b;
double x;
char *p;

is equivalent to

int i = 0;
bool b = false;
double x = 0.0;
char *p = 0; // null pointer

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 33

Evaluation

Static storage is
simple No extra effort from the programmer

safe Storage guaranteed

inflexible Must determine limits at compile-time
wasteful Often allocate more than needed (and then, run out. . .)

Also, storage held for the entire execution, used or not

Static variables allocated even if not used

Global/static variables are thread unsafe!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 33

Local storage in C++

int f(std::size_t start, std::size_t size) {
int total = 0;
int tmp;
for (std::size_t i = start; i < size; ++i) { ... }

}

Formal function parameters: initialized from the arguments
Function/block local variables
Uninitialized variable values are undefined
Variables introduced in for loops

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 33

en.cppreference.com/w/cpp/language/storage_duration

Evaluation

Local storage is
efficient The implementation merely adjusts a stack pointer

often suitable If the data is being used in a block-structured way.
not enough What if we wish to construct some data in a function

and return it to the caller?
int foo() { int i = 3; return i; } // OK
int & bar() { int i = 3; return i; } // KO!
#include <iostream>
using namespace std;
int main() {
cout << "foo() returns " << foo() << endl;
cout << "bar() returns " << bar() << endl;
return 0;

}

Hey – what’s a “stack pointer”?
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 33

Caller creates, passes by reference?

Can’t the caller create the object and pass it to us by reference?

UML calls this an out parameter type

Possible if the size of the object is known to the caller
But if size depends on another parameter (e.g., array of length f(N),
list/tree of g(N) nodes, etc.), then it doesn’t work. . .

We need more flexibility!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 33

Free storage in C++

Class types:

{
point *p; // uninitialized pointer
p = new point; // default constructor
p = new point(1,3);
cout << p->x << ’ ’ << p->y << ’\n’;
delete p;

}

and similarly for primitive types.
Created with “new type”.
Programmer’s responsibility to delete the storage.
Attempts to access the storage after deletion are potentially
disastrous, but not checked by the language.

Houston, we’ve had a problem here. . .
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 33

Free storage in C++ – II

{
auto p = make_unique<point>();//default constructor
p = make_unique<point>(1,3);
cout << p->x << ’ ’ << p->y << ’\n’;

}

Houston, never mind. . .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 33

Dynamically allocated arrays in C++

Pointers can also address dynamically allocated arrays

{
int *arr;
arr = new int[n];
for (size_t i = 0; i < n; ++i) arr[i]=f(i) + 3;
delete[] arr;

}

Note Special deletion syntax!
Cause C++ doesn’t distinguish pointers to an int/array of ints

{ // safe:
auto arr = make_unique<int[]>(n);
for (size_t i = 0; i < n; ++i) arr[i]=f(i) + 3;

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 33

Destructors

A class C may include a destructor ˜C(), to release any resources
(including storage) used by the object.

class C {
date *today;
int *arr;

public:
C() : today(new date()), arr(new int[50]) {}

virtual ˜C() { delete today; delete[] arr; }
};

Destruction: opposite order to construction!
(same principle: destructor body needs to have a valid object)

(NOT exception safe code – check notes!)
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 33

Destructors

A class C may include a destructor ˜C(), to release any resources
(including storage) used by the object.

class C {
date *today;
int *arr;

public:
C() : today(new date()), arr(new int[50]) {}

virtual ˜C() { delete today; delete[] arr; }
};

Destruction: opposite order to construction!
(same principle: destructor body needs to have a valid object)

(NOT exception safe code – check notes!)

20
24

-1
1-

28

Programming in C++

Destructors

Exception Safety

The constructor of class C is not exception safe. . .
What will happen if the first new succeeds but the second one throws
an exception?
Then the object is not initialised – its destructor will not run and the
memory allocated by the first new will not be reclaimed (a memory
leak).
To make it exception-safe we’d need to use smart pointers:
#include <memory>
#include <utility>
using namespace std;
class C {
unique_ptr<pair<float,float>> upair;// prefer unique_ptr
shared_ptr<pair<float,float>> spair;// over shared_ptr
unique_ptr<float[]> uarr;// unique_ptr supports arrays

// as well in C++11/14 - shared_ptr only in C++17
public:

C() : upair(make_unique<pair<float,float> >(1.1, 2.2)),
spair(make_shared<pair<float,float> >(3.3, 4.4)),
uarr(make_unique<float[]>(50)) {}

virtual ˜C() {}
};
int main() {

C c1;
return 0;

}

Why virtual? Dynamic Binding!

Suppose car is a derived class of vehicle and consider the following
code fragment:

vehicle *p = new car;
...
delete p;

The destructor ˜car() will not be called unless vehicle’s
destructor is virtual.
So why aren’t destructors virtual by default?
Because that would be a little less efficient. . .

Virtual needed even if used with smart pointers

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 33

Why virtual? Dynamic Binding!

Suppose car is a derived class of vehicle and consider the following
code fragment:

vehicle *p = new car;
...
delete p;

The destructor ˜car() will not be called unless vehicle’s
destructor is virtual.
So why aren’t destructors virtual by default?
Because that would be a little less efficient. . .

Virtual needed even if used with smart pointers

20
24

-1
1-

28

Programming in C++

Why virtual? Dynamic Binding!

ATTENTION!!!

Always make the destructor virtual if there’s a
chance that the class will serve as a base class.

When there’s a virtual member function then
it’s certain that the class will serve as a base class
at some point – make the destructor virtual as
well!!!

virtual is needed even if your fields are smart
pointers. If your class will be inherited from, then
the constructor MUST be virtual, no matter
what.

virtual ˜C() {} is enough.

Even better: virtual ˜C() = default;
(if using defaults, state so!)

Construction and destruction

Storage allocated,
constructor initializes
it

Destructor is called,
storage is reclaimed

static object before main starts after main terminates
local object when the declaration is

executed
on exit from the function
or block

free object when new is called when delete is called
subobject [*] when the containing

object is created
when the containing
object is destroyed

(constructed before
the containing object is
constructed)

(deleted after the con-
taining object is de-
structed)

[*] Principle:
The constructor/destructor body needs to deal with a valid object.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 33

Example: a simple string class
#include <cstring>
class my_string {
std::size_t len; // BUG IF YOU CHANGE THE ORDER!!!
char *chars;

public:
my_string(const char *s)
: len(1+std::strlen(s)), chars(new char[len]) {
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
// more to come later ...

};

Better:

my_string(const char *s):len(1+strlen(s)), chars(0){
chars = new char[len];//"len" exists here for sure
for (std::size_t i=0; i<len; ++i) chars[i]=s[i];

}
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 33

Default constructor

We also have a default constructor making an empty string:

class my_string {
std::size_t len;
char *chars;

public:
my_string() : len(1), chars(new char[1])

{chars[0] = ’\0’;}
// ...

virtual ˜my_string() { delete[] chars; }
};

Why the new char [1] ?
Why not new char ?
Why not nullptr ?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 33

Default constructor

We also have a default constructor making an empty string:

class my_string {
std::size_t len;
char *chars;

public:
my_string() : len(1), chars(new char[1])

{chars[0] = ’\0’;}
// ...

virtual ˜my_string() { delete[] chars; }
};

Why the new char [1] ?
Why not new char ?
Why not nullptr ?

20
24

-1
1-

28

Programming in C++

Default constructor

Why?

CLASS INVARIANT: “chars points to an array of size len”

Therefore, chars cannot be initialised with new char since then it’ll not
be pointing to an ARRAY of characters – we will not be able to do
delete [] chars; in that case.

I can do delete [] nullptr; – that works fine (does nothing, just
like delete nullptr;.
But I’d be breaking the invariant, since chars would not be pointing to
an array of length len. . .

The importance of the class invariant – if you don’t know
the invariant, your code is wrong (no ifs, not buts. . .)

Initialization of objects
Initialization is not assignment: target is empty
Initialization calls some constructor, e.g.,

my_string foo = "bar";

calls the constructor my_string(char *)

Initialization from another my string object calls the
copy constructor
my_string(const my_string &other);

If no copy constructor supplied,
compiler generates a memberwise copying one

This may not always be the right thing. . .
Here:

my_string(const my_string &other)
: len(other.len), chars(other.chars) { }

But this copy constructor is PrObLeMaTiC. . .
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 33

A problem

Here are some initializations:

{
my_string empty;
my_string s1("blah blah");
my_string s2(s1); // initialized from s1
my_string s3 = s1; // initialized from s1

} // all four strings are destroyed here

After last initialization, s1, s2 & s3 all point at same array
The array will be deleted three times!

(Bad, bad karma. . .)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 33

Solution: define a copy constructor

So define a copy constructor to copy the character array:

my_string(const my_string &other)
: len(other.len),

chars(new char[other.len]){//other.len, NOT len!
for (std::size_t i = 0; i < len; ++i)
chars[i] = other.chars[i];

}

This copying (“deep copy”) is typical:
With explicit deallocation, generally unsafe to share
In this case, Java is more efficient

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 33

Assignment

Assignment (=) isn’t initialization: target already has data
Each type overloads the assignment operator
For my string it’s a member function with signature
my_string & operator= (const my_string &other);

If no assignment operator supplied,
compiler generates a memberwise copying one

my_string & operator= (const my_string &other) {
len = other.len;
chars = other.chars;
return *this; // <---- enable chaining!!!
} // chain: a = b = c; (a = (b = c));

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 33

More problems

Consider

{
my_string s1("blah blah");
my_string s2("do be do");
s1 = s2; // assignment

} // the two strings are destroyed here

Problems after assignment:
Original s1 array discarded but *NOT* deleted
Both s1 & s2 point at same array, which is deleted *TWICE*

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 33

Solution: define an assignment operator

So define an assignment operator for my string

my_string & operator= (const my_string &other) {
if (&other != this){// DON’T COPY ONTO SELF!!!

delete[] chars; // I: DESTRUCTOR ACTIONS

len = other.len; // II: COPY CONSTRUCTOR ACTIONS
chars = new char[len];
for (std::size_t i = 0; i < len; ++i)

chars[i] = other.chars[i];
}
return *this; // III: RETURN YOURSELF

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 33

Solution: define an assignment operator

So define an assignment operator for my string

my_string & operator= (const my_string &other) {
if (&other != this){// DON’T COPY ONTO SELF!!!

delete[] chars; // I: DESTRUCTOR ACTIONS

len = other.len; // II: COPY CONSTRUCTOR ACTIONS
chars = new char[len];
for (std::size_t i = 0; i < len; ++i)

chars[i] = other.chars[i];
}
return *this; // III: RETURN YOURSELF

}20
24

-1
1-

28

Programming in C++

Solution: define an assignment operator

Define an assignment operator – II

So define an assignment operator for my string

my_string & operator= (const my_string other)
// II: COPY CONSTRUCTOR ACTIONS

{
len = other.len;
std::swap(chars, other.chars);
return *this; // III: RETURN YOURSELF

} // I: DESTRUCTOR ACTIONS

The this pointer

In C++,
this is a pointer to the current object (as in Java),
So the “current object” is “*this”

class ostream {
...

public:
ostream & operator<<(const char *s) {

for (; *s != ’\0’; ++s) // (1)

*this << *s; // (2)
return *this;

}
};

(1) Looping over a C string.
(2) What does that line do?
** Why do we destroy our string parameter s by doing ++s?!?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 33

An alternative: forbid copying

If we define a private copy constructor and assignment operator,

class my_string {
private:

my_string (const my_string &s) {}

my_string & operator= (const my_string &s) {
return *this; // STILL NEED IT!!!

}
...

The compiler will not generate them, but the programmer will not
be able to use these ones
Any attempt to copy strings will result in a compile-time error
return *this; needed to satisfy the function’s return type

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 33

An alternative: forbid copying

If we define a private copy constructor and assignment operator,

class my_string {
private:

my_string (const my_string &s) {}

my_string & operator= (const my_string &s) {
return *this; // STILL NEED IT!!!

}
...

The compiler will not generate them, but the programmer will not
be able to use these ones
Any attempt to copy strings will result in a compile-time error
return *this; needed to satisfy the function’s return type

20
24

-1
1-

28

Programming in C++

An alternative: forbid copying

C++11

Since C++11 we can write:

my_string(const my_string &) = delete;
my_string & operator= (const my_string &s) = delete;

Explicitly tell the compiler (and other programmers!) that the copy
constructor/assignment operator does not exist and should not be
auto-generated.

Summary

The Gang of Three

For each class, the compiler will automatically generate the following
member functions, unless the programmer supplies them:

copy constructor: memberwise copy
assignment operator: memberwise assignment

destructor: do nothing (subobjects are destroyed
automatically)

If *NO* constructor supplied, compiler generates a default
constructor: memberwise default initialization
If defaults not what desired, define functions yourself

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 27 / 33

Summary

The Gang of Three

For each class, the compiler will automatically generate the following
member functions, unless the programmer supplies them:

copy constructor: memberwise copy
assignment operator: memberwise assignment

destructor: do nothing (subobjects are destroyed
automatically)

If *NO* constructor supplied, compiler generates a default
constructor: memberwise default initialization
If defaults not what desired, define functions yourself20

24
-1

1-
28

Programming in C++

Summary

C++11

Since C++11, it’s the Gang of Five. . .
+ Move constructor

my_string (my_string && o); // no const ,
// && instead of &

+ Move assignment operator
my_string & operator= (my_string && o);
// no const , && instead of &

Compare these with the copy constructor and (copy) assignment
operator declarations on the slide to the right (slide 28).

The move versions don’t copy the members of the other object – they
move them (i.e., steal them)!

(more on this at the last lecture)
https:
//en.cppreference.com/w/cpp/language/rule_of_three

Default Copy Constructor and Assignment Operator

XYZ(const XYZ & other)
: field1(other.field1),
field2(other.field2),
...
fieldN(other.fieldN) {

}

XYZ & operator= (const XYZ & other) {
field1 = other.field1;
field2 = other.field2;
...
fieldN = other.fieldN;

return *this;
}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 28 / 33

Default Default Constructor

XYZ()
: field1(), // if it exists
field2(), // if it exists
... // if it exists
fieldN() { // if it exists

}

Basic types don’t have a default constructor, so. . .
you get garbage.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 29 / 33

Summary, continued

If a class needs a nontrivial destructor (because it holds
resources), you probably also need to define a copy constructor
and an assignment operator, even if private
Or, = delete them, so they cannot be used.
The copy constructor for class XYZ will have signature

XYZ(const XYZ & other);

Typically, it copies any resources that would be destroyed by the
destructor

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 30 / 33

https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three

Summary, concluded

The assignment operator YOU would write should be like:
XYZ & operator= (const XYZ & other) {

if (&other != this) {// DON’T COPY ONTO SELF!!!
// PART I: DESTRUCTOR ACTIONS

// PART II: COPY CONSTRUCTOR ACTIONS

}
return *this; // PART III: RETURN YOURSELF

}

but may do something smarter (e.g., reuse instead of deleting).

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 31 / 33

Summary – Avoid pointer fields!

Use smart pointers
(unique ptr, shared ptr from <memory>)
No more need for:

Copy constructors
Assignment operators

Destructors can now be empty
(and virtual if sub-classing possible)

(check end of handouts for mystring.cc without (unsafe) & with (safe)
smart pointers)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 32 / 33

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 33 / 33

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – I

There are four main modes of storage: static, local/stack,
free/dynamic/heap, and temporary.

Static storage is the simplest and safest (used a lot in safety-critical
real-time systems) but at the same time is extremely inflexible and
wasteful.
Local storage is quite efficient and often just what we need;
sometimes though it’s not enough – we need our data to outlive the
functions that created them.
Free storage uses new to allocate objects on the heap – these
outlive the function that was active when they were created and
stay on until someone calls delete on them explicitly.

delete p; (destroy ONE object) vs delete[] p; (destroy an ARRAY
of objects)

Destructors for releasing resources – need for them to be virtual if the
class is to be sub-classed (slides 14–15).

Pay attention to the order of allocation/construction and
destructor/deallocation (slide 16).

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – II

Copy constructor – compiler always generates one if we haven’t defined
one.

Why the compiler-generated copy constructor doesn’t always do the
right thing (and how to do it ourselves): slides 19–21.

Assignment operator – compiler always generates one if we haven’t
defined one.

Why the compiler-generated assignment operator doesn’t always do the
right thing (and how to do it ourselves): slides 22–24.

See also file strings.cc (https://www.staff.city.ac.uk/
c.kloukinas/cpp/src/lab08/strings.cc) file from the lab
for another alternative implementation of the assignment operator,
that uses call-by-value and swap, so as to get the compiler to call
the copy-constructor and the destructor implicitly instead of us
re-writing the same code.

Make sure you understand how to use the this pointer and that you
understand that *this is the current object itself.

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – III

“The Gang of Three” – you need one, you need all of them:

copy constructor
assignment operator
destructor

Learn what THE COMPILER generates for them for some class XYZ.

Also learn what the usual USER-DEFINED version of the assignment
operator is for some class XYZ.

Note: (advanced) Since C++11 it’s the “Gang of Five”. . .

move constructor
move assignment operator

These “move”, i.e., steal the data, from the object that you’re using to
initialise/assign the current object instead of copying them.

https:
//en.cppreference.com/w/cpp/language/rule_of_three

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – IV

You need to do delete explicitly – what could possibly go wrong?
1 Do it too late (USE TOO MUCH MEMORY)

(in Java too)
2 Forget to do it (MEMORY LEAK)
3 Do it too soon – still using the deleted memory (UNDEFINED

BEHAVIOUR – usually crash)
4 Do it more than once (UNDEFINED BEHAVIOUR – usually crash)
5 Delete something that hadn’t been new-ed (UNDEFINED

BEHAVIOUR – usually crash)
6 Use the wrong form of delete (UNDEFINED BEHAVIOUR –

potential crash when delete[] pointer_to_an_object; or
crash/memory leak when delete pointer_to_an_array;)

ADVANCED MEMORY MANAGEMENT ISSUES:
7 When you delete an object in C++ there is an LONG CASCADE OF

DESTRUCTORS that is executed for its subobjects that can
severely impact real-time systems (especially if deleting a
container)

8 Memory fragmentation: INABILITY TO ALLOCATE MEMORY even
though there are enough free bytes; can be combatted with
specialized memory allocators

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – V

A number of garbage collectors suffer from #1 delayed collection (which
freezes your program for quite some time), unpredictability (you have no
idea when the GC will start working and can rarely control it, unlike
manual deallocation), and sometimes #8 memory fragmentation (though
some compact memory too).
There are some real-time garbage collectors but none that can solve
everybody’s problems (perfection is not of this world...)

At least Java’s GC protects you from all the other problems of C++’s
manual memory deallocation (2 – 7 and sometimes from 8).

When a GC cannot help. . .

What if you need to control when destructors (Java’s finalizers —
deprecated!!!) run?
What if you need to reclaim another resource (DB, file, etc.)?
You’d still need to do it manually in a GC-ed language. :-(

Java does this with its new “try-with-resources” statement, where the
“destructor” is called close(), see
https://docs.oracle.com/javase/tutorial/essential/
exceptions/tryResourceClose.html
The “try-with-resources” is syntactic sugar over try-finally.

https://www.staff.city.ac.uk/c.kloukinas/cpp/src/lab08/strings.cc
https://www.staff.city.ac.uk/c.kloukinas/cpp/src/lab08/strings.cc
https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – VI pointer, shared ptr

Don’t use basic pointers as fields – use smart pointers!!!

// Pointer version. String arrays SHOULD NOT BE SHARED!

// comment out next line to see why we need the copy Xtor
// & the assignment operator.
#define SAFE

// g++-14 -std=c++20 (or c++23)
#include <cstring>
#include <iostream>

class my_string {
std::size_t len;
char* chars;
my_string(int alen, const char *s)
: len(alen), chars(new char[alen]) {
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
public:
my_string(const char *s)//strlen doesn’t count the last ’\0’
: len(std::strlen(s)+1), chars(nullptr) {
my_string tmp(len, s);
std::swap(chars, tmp.chars);

}
my_string() : len(1), chars(new char[1]) {chars[0] = ’\0’;}

#ifdef SAFE
my_string(const my_string &other)
: len(other.len), chars(nullptr) {
// copy into your own internal array
my_string tmp(other.len, other.chars);
std::swap(chars, tmp.chars);

}
my_string &operator= (my_string other) {
len = other.len;
std::swap(chars, other.chars);
return *this;

}
#endif

virtual ˜my_string() // = default; // impl below used for demo
{ std::cerr << "˜my_string: "

<< (void *) chars << ’ ’
<< (chars?chars:"") << ’\n’; }

};

#include "safe-string-main.cc"

// Safe version! String arrays are SHARED!
#include <cstring>
#include <memory>
#include <iostream>

class my_string {
std::size_t len;
std::shared_ptr<char[]> chars;

public:
my_string(const char *s)
: len(std::strlen(s)+1), chars(nullptr) {
chars = std::make_shared<char[]>(len);
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
my_string() : len(1), chars(std::make_shared<char[]>(1))
{chars[0] = ’\0’;}

// shared_ptr allows sharing, so copy Xtor & assignment op
// just do shallow copy.

virtual ˜my_string()// = default; //impl below used for demo
// chars.get() returns the actual pointer.

{ std::cerr << "˜my_string: "
<< (void *) chars.get() << ’ ’
<< (chars.get()?chars.get():"")
<< ’\n’; }

};

#include "safe-string-main.cc"

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
24

-1
1-

28

Programming in C++

Next session

Final Notes – VII unique ptr, main

// Safe version! String arrays are NOT SHARED!

// g++-14 -std=c++20 (or c++23)
#include <cstring>
#include <memory>
#include <iostream>

class my_string {
std::size_t len;
std::unique_ptr<char[]> chars;
my_string(int alen, const char *s)

: len(alen), chars(std::make_unique<char[]>(alen)) {
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
public:
my_string(const char *s) // strlen doesn’t count the last ’\0’

: len(std::strlen(s)+1), chars(nullptr) {
my_string tmp(len, s);
std::swap(chars, tmp.chars);

}
my_string() : len(1), chars(std::make_unique<char[]>(1))

{ chars[0] = ’\0’; }

// unique_ptr don’t allow sharing - by default deletes copy
// Xtor & assignment op, so must do deep copying ourselves.
my_string(const my_string &other)
: len(other.len), chars(nullptr) {
// copy into your own internal array
my_string tmp(other.len, other.chars.get());
std::swap(chars, tmp.chars);

}
my_string &operator= (my_string other) {

len = other.len;
std::swap(chars, other.chars);
return *this;

}

virtual ˜my_string() // = default; // impl below used for demo
// chars.get() returns the actual pointer.

{ std::cerr << "˜my_string: "
<< (void *) chars.get() << ’ ’
<< (chars.get()?chars.get():"")
<< ’\n’; }

};

#include "safe-string-main.cc"

/*******************************
* This is safe-string-main.cc *
*******************************/

int main() {
{

my_string empty;
my_string s1("blah blah");
my_string s2(s1); // initialized from s1
my_string s3 = s1; // initialized from s1

} // all four strings are destroyed here

{
my_string s1("blah blah");
my_string s2("do be do");
s1 = s2; // assignment

} // the two strings are destroyed here

return 0;
}
/*
* If you have multiple pointer fields, then the smart pointer

* versions are safe under exceptions, while the normal pointer

* version is NOT.

*/

