1.

(a)

Module IN3013/INM173 — Object Oriented
Programming in C++

Solutions to Exercise Sheet 8

A suitable class is

class A {
public:

A(O) { cout << "creating an A\n"; }

virtual "A() { cout << "destroying an A\n"; }
s

We can test it (in a main function) by creating a local object and a dynamically
allocated one:

{

A a;

cout << "using a\n";
b
A xap;
ap = new AQ);
cout << "using *ap\n";
delete ap;

The locally allocated one is destroyed at the end of the block in which it is
declared, so the output is

creating an A
using a
destroying an A
creating an A
using *ap
destroying an A

We add a field to record to each object to record how many times the destructor
for this object has run. (If it’s more than 1, something has gone wrong.)

class A {
int destroy_count;
public:
A() : destroy_count(0) { cout << "creating an A\n"; }
virtual "AQ) {
destroy_count++;

1



cout << "destroying an A (" << destroy_count << ")\n";

};
Our class B is

class B {
A a;
public:
B() { cout << "creating a B\n"; }
virtual "B() { cout << "destroying a B\n"; }

};
Now if we test this with local allocation:
{
B b;
cout << "using b\n";
}

we get the output

creating an A
creating a B

using b

destroying a B
destroying an A (1)

Note that the filed a of type A is initialized before the body of the B constructor
is run, and that similarly it is destroyed after the body of the destructor has
run.

Switching to a dynamically allocated field:

class B {
A xap;
public:
B() : ap(new A()) { cout << '"creating a B\n"; }
virtual "B() {
cout << "destroying a B\n";
delete ap;

}s

Note the initialization of the pointer field ap in the constructor. Thus we need
to destroy the dynamically allocated object using delete in the destructor.

For the copy constructor, we create a new A object, initialized as a copy of the
other A object, namely *other.ap.

2



B(const B &other) : ap(new A(xother.ap)) {}

This uses the automatically provided copy constructor of the A class, which
simply copies across all fields. This fine for the A class, but not B.

The general form of the assignment operator is

const B & operator=(const B &other) {
if (&other != this) {
/] ...
}

return *this;

3

(This is placed inside the B class.) We do nothing when an object is assigned
to itself, and we always return the target of the assignment, *this. A simple
recipe for the bit in the middle is to do the effect of the destructor

delete ap;
followed by the effect of the constructor:

ap = new A(*other.ap);
giving the following assignment operator:

const B & operator=(const B &other) {
if (&other != this) {
delete ap;
ap = new A(*other.ap);
}
return *this;

3

However often we can combine these to get something more efficient. In the
present case, we delete an A object and then allocating a new one to receive
the copy of the other A object. A more efficient strategy is to simply reuse the
object instead of destroying it:

*ap = *other.ap;

This uses the automatically provided assignment operator of the A class, which
simply copies across all fields. Again, this fine for the A class, but not B.

This yields the following version of the assignment operator for B:

const B & operator=(const B &other) {
if (&other != this) {
*ap = *other.ap;



2.

3.

return *this;

by

The compiler will not automatically generate a default constructor, as the program-
mer has supplied a constructor. It will generate a copy constructor, which initializes
the fields memberwise:

Person(const Person &other)
name (other.name), age(other.age) {}

It will also generate an assignment operator, which assigns the fields memberwise:

Person &operator=(const Person &other) {
if (&other != this) {
name = other.name;
age = other.age;
}
return *this;

b

It will also generate an empty destructor:
“Person() {}

The copy constructor and assignment operator do exactly what we want. The empty
destructor is almost right, since the string field is a subobject and thus destroyed
automatically. The only problem is if the Person class is used as a base class. With
the automatically generated destructor, the destructors of these derived classes won’t
be called if their objects are deleted through Person pointers. To deal with this this,
we need to supply an explicit virtual destructor, even though we have nothing to
destroy:

virtual “Person() {}

(a) For variables of primitive type, there is no difference: both initialization and
assignment amount to copying the value.

(b) Objects are initialized by constructors. Initialization from another object of
the same type invokes the copy constructor. Assignment is done using the
assignment operator. When the object holds resources (e.g. storage) that must
be freed by a destructor, these are usually defined to do different things: the
copy constructor operates on an uninitialized object, while assignment is called
for an object that already has these resources, which must often be freed first.

(c¢) Constants can (indeed must) be initialized, but cannot be assigned to.

4



(d) Initialization of a reference makes it another name for an existing location.
Subsequent assignment to the reference assigns to that location. For example,
call by reference initializes a local reference parameter by making it an alias
for the variable passed as an argument. Assignment to the reference parameter
then performs assignment to that argument variable. It is also possible to have
reference variables, and the same principle applies. The following example is
taken from section 5.5 of Stroustrup’s book:

int i = 1;

int &r = 1i; // r and i now refer to the same int
int x = r; // x =1;

r = 2 /] i=2;

4. The idea here is that we will be storing a string in an array, but it may happen that
the array is longer than wee need for the number of characters in the string. However
it cannot be shorter.

So now we have two lengths: the length of the string and the length of the array, and
thus two integer fields. We need to be very clear about the role of each, so we add
a one-sentence comment describing the role of each (always a good idea with every
field of an object) and an invariant stating a relationship we will maintain:

// length of the string
int len;

// length of the chars array
int array_len;

// Invariant: len <= array_len

When we first construct a string, these two lengths will be the same, namely the
length of the C-string we are given to store.

public:
String(const char *s) : len(strlen(s)), array_len(len),
chars(new char[array_len]) {
for (int i = 0; i < len; i++)
chars[i] = s[i];

Even though the two fields are the same at this point, we will always use the field
array_len when allocating the array. Note that array_len is initialized from len,
and chars is initialized using array_len, so it is essential that len is initialized first,
followed by array_len and then chars. The order in which they are initialized is

bt



determined not by the order of the initializers in the constructor, but by the order
in which they are declared, so we have carefully declared them in that order.

The default constructor is similar; here both lengths are zero:

// default constructor
String() : len(0), array_len(0), chars(new char[array_len]) {}

As before, we need a destructor to dispose of the dynamically allocated array:

// destructor
virtual “String() { delete[] chars; }

Because the array way allocated with new[. . .], it must be destroyed with delete[],
because the system cannot distinguish a pointer to one element from a pointer to an
array.

With the copy constructor, the number of characters we have to store is the length of
the other string (not the length of the array in which it is stored). We can store this
in an array of that length, or any larger length. We choose to use the string length
for the array length:

// copy constructor
String(const String &s) : len(s.len), array_len(len),
chars(new char[array_len]) {
for (int i = 0; i < len; i++)
chars[i] = s.chars[i];

}

We could have initialized array_len as s.array_len, or indeed anything greater than
or equal to s.len.

So far the array length is always the same as the string length. The difference comes
with assignment. Previously we always deleted the array we had and allocated and
allocated a new one of the appropriate size. But if the string being assigned will fit
in the array we currently have, we can re-use our old array, but now it might not be
full, so we will need our two different lengths.

The outline of the assignment operator always looks like this:

// assignment operator
String & operator= (const String &s) {
if (&s != this) { // don’t copy onto self
// manage space and copy

b

return *this;



If the string being assigned is the same as the current object (i.e. it is being assigned
to itself) then we need do nothing. In any case, we always return the object assigned
to by reference, so one can write a chain of assignments like

sl = s2 = s83;

Now what goes in the middle bit? We want to copy the other string into an array
large enough to hold it. In general, it should have the effect of the destructor followed
by the copy constructor. But if the other string fits in the array we have, we can do
better.

Note that there are four lengths involved here, two from each object; we must be
very careful about which is appropriate at each point.

Firstly, the length of the new string will be the length of the string being assigned.
The length of the string that is being overwritten is irrelevant, and can be forgotten:

len = s.len;

Now before copying the string, we need to ensure we have room to hold it, i.e. our
current array is at least as long as the new string. If this is not the case, then we
will need to discard our array and allocate a new one of sufficient size, as before:

if (array_len < len) {
delete[] chars;
array_len = len;
chars = new char[array_len];

}

In that case, we set array_len to the new length before allocating the array. Again,
we could have set array_len to anything greater than or equal to len (for example
s.array_len) but we have opted for the smallest possible value.

Now we have an array of sufficient size to hold the string, either because it was
already big enough, or because we have just allocated a sufficiently large array. So
we can copy the other string into this array.

for (int i = 0; i < len; i++)
chars[i] = s.chars[i];

And we are finished. So here is the complete code for the assignment operator:
// assignment operator

String & operator= (const String &s) {
if (&s != this) { // don’t copy onto self



len = s.len;
// reuse the old array if possible
if (array_len < len) {
delete[] chars;
array_len = len;
chars = new char[array_len];
}
for (int i = 0; i < len; i++)
chars[i] = s.chars[i];
}

return *this;

Some people divided the whole code between two cases. That’s fine as a starting
point, but always re-examine you code to see if it can be simplified. In this case, if
the same code occurs at the end of both cases, it can be moved out of the conditional.
Similarly if the same code occurs at the start of both cases. In this case you can
move all the code out of one of the cases, so the if may be simplified.

. In the statement
sl = String("wheel");

a temporary String object is created, and initialized from the character string
"wheel", using the constructor

String(const char *s)

This object is then assigned to the variable s1, which invokes the assignment operator.
This deletes the chars array in si1, allocates a new one of length 5 and copies
the characters into it. The temporary object is then destroyed, which invokes its
destructor, which deletes the chars array in it.



