
Programming in C++
Session 9 – A generic class with dynamic allocation

Declarations and definitions
Program structure

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 36

This session

Two parts:

1 Completing memory management:
A generic class with dynamic allocation

2 Program structure & separate compilation
Revision: declarations & definitions
Separate compilation in C++

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 36

Part I

A Generic Class with Dynamic
Allocation

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 36

Writing our own vector class

Array to hold elements
(efficiency) Array often longer than #elements
Various vector operations
Array dynamically allocated, so destructor must free it
Since a non-trivial destructor, must have copy constructor &
assignment operator Gang of Three!!!
An iterator
A swap method is also useful

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 36

https://staff.city.ac.uk/c.kloukinas/cpp

A vector class

template <typename Elem>
class my_vector {

size_t vsize;//# of elements stored - "vector size"
size_t asize;//size of the array - "array size"
Elem *array;

//INVARIANT: 0<= vsize<= asize && array.size()==asize
public:

my_vector() : vsize(0), asize(1),
array(new Elem[1]) {}

size_t size() const { return vsize; }

Elem & operator[](size_t i) { return array[i]; }
};

array(new Elem[1]) – why not array(nullptr)?
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 36

A vector class

template <typename Elem>
class my_vector {

size_t vsize;//# of elements stored - "vector size"
size_t asize;//size of the array - "array size"
Elem *array;

//INVARIANT: 0<= vsize<= asize && array.size()==asize
public:

my_vector() : vsize(0), asize(1),
array(new Elem[1]) {}

size_t size() const { return vsize; }

Elem & operator[](size_t i) { return array[i]; }
};

array(new Elem[1]) – why not array(nullptr)?

20
24

-1
2-

12

Programming in C++

A vector class

array(new Elem[1]) – why not array(nullptr)?

Because of the invariant !

For the invariant vsize <= asize to hold, array must be an actual
array, otherwise asize is not defined.
And array.size() must be equal to asize.

Why not asize(0), array(new Elem [0]) ? Invariant is
satisfied.

⇒Because of the implementation of push_back on the next slide.
(and because it’d be silly – avoid 0-length arrays)

Shrinking and growing the vector

void pop_back() { vsize--; } // "forget" last elem

void push_back(const Elem & x) {
if (vsize == asize) {

asize *= 2; // Why *= 2 instead of ++? [*]
Elem *new_array = new Elem[asize];
for (size_t i = 0; i < vsize; ++i)

new_array[i] = array[i];
delete[] array;
array = new_array;

}
array[vsize] = x;
++vsize;

}

[*] try adding 1000 elements into a vector. . .
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 36

Destructor and Copy constructor

This class allocates dynamic memory, so it should reclaim it:

virtual ˜my_vector() { delete[] array; }

A non-trivial destructor ⇒ need a copy constructor & assignment
operator Gang of Three!!!

my_vector(const my_vector<Elem> & other) :
vsize(other.vsize), asize(other.asize),
array(new Elem[other.asize]) {

for (size_t i = 0; i < vsize; ++i)
array[i] = other.array[i];

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 36

Assignment operator

my_vector<Elem> &
operator=(const my_vector<Elem> & other) {

if (&other != this) {
vsize = other.vsize;
if (asize < vsize) { // Reuse if possible!

delete[] array;
asize = other.asize;
array = new Elem[asize];

}
for (size_t i = 0; i < vsize; ++i)

array[i] = other.array[i];
}
return *this;

}

REUSE!!! Compare with 8-24 & 8-31 !
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 36

⋆Solution: define an assignment operator

So define an assignment operator for my string

my_string & operator= (const my_string &other) {
if (&other != this){// DON’T COPY ONTO SELF!!!
delete[] chars; // I: DESTRUCTOR ACTIONS

len = other.len; // II: COPY CONSTRUCTOR ACTIONS
chars = new char[len];
for (std::size_t i = 0; i < len; ++i)
chars[i] = other.chars[i];

}
return *this; // III: RETURN YOURSELF

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 33

An iterator

Recall: a C++ iterator supports ==, ++, * and ->
A simple iterator for this type is “pointer to elements”:
typedef Elem *iterator; // I.e., iterator is a

// pointer to an Elem
typedef const Elem *const_iterator;

iterator begin() {return array;}
iterator end() {return array + vsize;}

const_iterator cbegin() const {return array;}
const_iterator cend() const {return array + vsize;}

}; // end of my_vector class

Alternative: define [*] a class & overload operators ++, ==, *, ->
[*] Can be an internal class !

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 36

Swap function

Designing classes?
Think how they’ll behave with standard algorithms

(so we should know the standard algorithms. . .)

The header <utility> defines a general swap function:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Works for vectors too (T is my_vector<Elem>)
But is *very* inefficient

(why?)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 36

Efficient swap function for vectors

Add a member function to the my_vector class:

void fast_swap(my_vector<Elem> & other) {
std::swap(vsize, other.vsize);
std::swap(asize, other.asize);
std::swap(array, other.array); // <3 <3 <3

}

Overload swap for vectors outside the class:

template <typename T> //"C++ template specialization"
void swap(my_vector<T> & x, my_vector<T> & y) {

x.fast_swap(y);
}

(template specialization: constraining the function parameter type
to my_vector<T> means this applies to our class only)

We’re done! :-)
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 36

Part II

Program Structure — Declarations vs
Definitions

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 36

Program structure

In C++, X (class, function, variable) must be declared before use
Can declare X, and . . .
Define it fully later

C++ programs can have millions of lines
Impossible (too slow) to recompile everything all the time

⇒ Programs are partitioned into several files for separate compilation
Common declarations and partial class definitions are placed
in header files (they serve as interfaces)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 36

Declaration before use

C++ designed for one-pass compilers: must declare entities before use

class A { ... };

class B { A *p; ... }; // OK

Defining these classes in the opposite order is illegal. Problems:
limits presentation.
prohibits recursion.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 36

Forward declarations

Solution: Declare first, and fully define later:

class A; // declare A as a type

class B { // define B
A *p; // OK - pointer size is known
...

};

class A { B b1; ... }; // fully define A - OK

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 36

Limitations

However, this is NOT allowed:

class A; // declare A

class B { // define B
A a; // don’t know the size of A here
...

};

class A { ... }; // define A

Because the size of a member must be known when it’s used

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 36

Recursive class definitions

This is allowed:

class A; // declare A

class B { // define B
A *p; // pointer size is known
...

};

class A { // define A
B b1; // size of B is known here
...

};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 36

Part III

Separate Compilation

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 36

Separate compilation

General Idea

Avoid recompiling a huge program after each change
Break it into “modules”, each with an interface

Ideally: only recompile “modules” when the interfaces they use
have changed
If a “module” implementation (but not its interface) is changed, that
“module” must be recompiled, but its clients need not be
This should be automated (e.g., with make)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 36

Separate compilation in C++

Implementations go into source files, usually ending in “.cc”
Interfaces go into header files, usually ending in “.h”

Header files are included in source files and other header files
Never duplicate declarations (include them instead)
Recompilation decisions are based on inclusion relationships and
timestamps on files

(Other suffixes: .cpp, .cxx, .hh, .hpp, .hxx, . . .)

Inclusion relationships (as used by make) — try:
g++ -MM file.cc

g++ -M file.cc

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 36

The compilation process

Compiling a source file X.cc yields an object file X.o
(like a .java file yields a .class file)

X.cc must be recompiled if it (or any of the header files it uses)
has changed more recently than X.o

(so don’t include header files unnecessarily)
Object files are linked together to make an executable program

(like an executable .jar file)
Re-compiling source files means the program must be re-linked
In Unix, this is all managed by the make command

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 36

A Makefile
COMMANDS (e.g., rm) MUST START WITH A TAB CHARACTER!!!

DIR=.
CXX=g++-14 # or CXX=g++
CXXFLAGS=-I$(DIR) -x c++ -g -std=c++23 -pedantic -Wall -Wpointer-arith \
-Wwrite-strings -Wcast-qual -Wcast-align -Wformat-security \
-Wformat-nonliteral -Wmissing-format-attribute -Winline -funsigned-char

LDFLAGS=-L$(DIR) -lcity # Linking flags
CC=$(CXX) # Use the C++ compiler as the C compiler

(ensures linking is done according to C++)
CFLAGS=$(CXXFLAGS) # C flags are now C++ flags

all: cwk cwkt

clean:
-rm *.o cwk cwkt *˜ 2> /dev/null

cwk: sample.o Makefile libcity.a
$(CXX) sample.o -o cwk $(LDFLAGS)

cwkt: cwkt.o Makefile libcityt.a
$(CXX) cwkt.o -o cwkt $(LDFLAGS)t

...

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 36

Include directives

#include includes the text of another file at that point.
To include a file from the system directories:

#include <vector>
#include <iostream>

To include a file from the local directories (-Idir1 -Idir2):
#include "point.h"

g++: You can see what the result is with -E
(-E runs only the C preprocessor on your file, doesn’t compile)

(and -c runs only the C compiler, doesn’t link)

Any file can be included, but the following rules are recommended

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 36

Part IV

2024: Lecture 9 ended here

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 36

Header files

These approximate interfaces, and may contain:

comments // what the class does

include directives #include "xyz.h"

class definitions class A { ... };

class declarations class B;

constant definitions const double pi = 3.14159;

type definitions typedef double real;

function declarations int sqr(int x);

They should not contain code, except inline function definitions.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 36

BE CAREFUL!

NEVER IN HEADER FILES!

global variable definition int counter = 0;

function definition int foo() { return 3; }

INSTEAD YOU SHOULD

DECLARE global variables extern int counter;

INLINE function definitions inline int foo() { return 3; }

Or DECLARE functions int foo();

Otherwise, global variables/functions are defined multiple times from
each source file that includes the header file & linker complains!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 36

The header file point.h, first version

// File: point.h
class point {
protected:

int _x, _y;
public:

point(int x, int y);
int x() const;
int y() const;
void move(int dx, int dy);

};

Often, a header file and source file correspond to a single class, but
there are many other possibilities.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 27 / 36

The implementation point.cc

// File: point.cc
#include "point.h"

point::point(int x, int y) : _x(x), _y(y) {}

int point::x() const { return _x; }
int point::y() const { return _y; }

void point::move(int dx, int dy) {
_x += dx; _y += dy;

}

This is why we’re so interested in defining methods outside a class!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 28 / 36

Separate compilation and templates?

NO
isocpp.org/wiki/faq/templates#templates-defn-vs-decl

C++ DOES NOT support separate compilation of template code
Generic method definitions must be included in the header file
WITH the template class definition

Wat Do?

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 29 / 36

Generic code separation

// File: pointt.h
template <typename T>
class pointt {
pointt(T _x, T _y);

};
#include "pointt.cc" // <---- includes .cc !!!
// *End* of file pointt.h

// File: pointt.cc
// *NOT* including pointt.h! <---- !!!

// Definitions for pointt
template <typename T>
pointt<T>::pointt(T _x, T _y) {

...
}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 30 / 36

https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl

Code separation: Normal vs Generic

// point.h NORMAL // pointt.h GENERIC
template <typename T>

class point { class pointt {
point(int _x, int _y); pointt(T _x, T _y);

}; };
#include "pointt.cc" // !!!

// *End* of file point.h // *End* of file pointt.h

// File point.cc // File pointt.cc
#include "point.h" // *NOT* including pointt.h!!!
// Definitions for point // Definitions for pointt

template <typename T>
point::point(int _x, int _y){ pointt<T>::pointt(T _x, T _y){
... ...

} }

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 31 / 36

Repeated inclusion

Suppose point.h is included by both line.h and polygon.h
Some drawing program might begin:

#include "line.h"
#include "polygon.h"

This includes point.h twice, causing the compiler to complain
about a repeated definition of point

Seems reasonable to expect the language to take care of this,
BUT

C++ doesn’t care about reasonable
We must add include guards to our header files

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 32 / 36

The header file point.h with a proper include guard

#ifndef POINT_H
#define POINT_H

class point {
protected:

int _x, _y;
public:

point(int x, int y);
int x() const;
int y() const;
void move(int dx, int dy);

};

#endif

Don’t use bloody #pragma’s! (non-standard/portable)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 33 / 36

Typical structure
For each “public”“modules” class Foo, two source files:

Foo.h containing the class definition, but including only very
small methods. This is the place for comments
describing the interface of the class.

Foo.cc containing the method definitions for the class
(unless the class is very simple).
This should always include Foo.h.

Include header files only if necessary:
Bar.h should ONLY include Foo.h, when Foo is needed
for defining class Bar
But when class Foo is only needed for defining methods of
Bar, then include Foo.h only in Bar.cc

Never use namespaces inside header files (namespace polution)
Instead use full names: std::string, std::ostream, etc.

Exercise: break up date.cc in this way.
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 34 / 36

Summary

In C++, things must be declared before use
Often, a partial declaration (interface) will suffice
(but the compiler needs to know how big things are)
Large programs are broken up into several source files
⇒separate compilation

Common declarations are placed in header files ,
to be included by several source files
Shared generic code must also be placed in header files

Learn how to use make
https://www.gnu.org/software/make/manual/

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 35 / 36

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 36 / 36

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – (empty)

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – (empty)

https://www.gnu.org/software/make/manual/

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – I
Why not initialize member array in my_vector’s default
constructor with nullptr? (slide 5)
Because then we’d be violating the class invariant :
vsize <= asize
If array is not pointing to an array, then asize isn’t defined.

my_vector’s assignment operator (slide 8) shows that
sometimes we can reuse resources instead of always destroying
the ones we’ve got and copying those of the other object.

Note the parameter type of the copy constructor and the
assignment operator (and the operator’s return type):

template <typename Elem>
class my_vector {
public:
my_vector(const my_vector<Elem> & o);
my_vector<Elem> &
operator=(const my_vector<Elem> & o);
...

};

The type is a generic one, as the class is generic; type
my_vector does not exist, only my_vector<Elem> exists!!!

Outside the class:
template <typename Elem>

my vector<Elem>:: my vector(const my vector<Elem> & o)
: ... {
...

}
template <typename Elem>
my_vector<Elem> &
my vector<Elem>:: operator=(const my vector<Elem> & o) {
...

}

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – II
Implementation of the iterator type for class my_vector (slide 9)

Slide 11 – the swap specialised for objects of type my_vector,
is another example of partial specialization! The type of its
arguments is still generic but now we know that it’s a
my_vector of some T.

Things need to be declared (not necessarily defined) before
they’re used – slides 13–17.

Separate compilation – CLASS DEFINITIONS with METHOD
DECLARATIONS go into the HEADER file NAME.h, while the
method IMPLEMENTATIONS into the SOURCE file NAME.cc.
See slides 27–28.

Which file should include which?

If there’s no generic code, then we include NAME.h at the
top of NAME.cc and compile the latter into NAME.o

If there is generic code, then we include NAME.cc at the
bottom of NAME.h (compiler needs to see the
implementation of the generic code to be able to instantiate
it where it’s used) but do not ask the compiler to produce
NAME.o (pointless – it’ll be empty).

ALL other files that need to know the types defined in NAME.h
include NAME.h (NEVER NAME.cc).

To avoid “multiple definition” compiler errors, we surround the
entire contents of NAME.h with include guards (*NOT* pragma’s!!!):

// File: name.h - WITHOUT generic code
#ifndef NAME_H
#define NAME_H
...
#endif

This ensures that the compiler will see the contents only the first
time NAME.h is included (when NAME_H hasn’t been defined).

// File: name.cc - WITHOUT generic code
// Get declarations
#include "name.h"
...Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – III
Things change a bit with generic code:

// File: name.h - WITH generic code
#ifndef NAME_H
#define NAME_H
...
// Compiler needs to see the implementation
// of the generic code.
#include "name.cc"
#endif

and the source file:

// File: name.cc - WITH generic code
// No include of "name.h"!
...

Afterwards NAME_H will get defined, so the contents between the
#ifndef and the #endif will not be considered again.

Separate compilation is automated with the make tool. On the
terminal type: info make
Or read the GNU documentation of make on-line:

https://www.gnu.org/software/make/manual/

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – IV
The C preprocessor (cpp) can do quite a lot of things (e.g., give
you a headache. . . – advanced, not to be examined):
en.wikibooks.org/wiki/C_Programming/
Preprocessor

X-Macros (for meta-programming with macros):
en.wikibooks.org/wiki/C_Programming/
Preprocessor#X-Macros

www.embedded.com/design/
programming-languages-and-tools/4403953/
C-language-coding-errors-with-X-macros-Part-1#

www.embedded.com/design/
programming-languages-and-tools/4405283/
Reduce-C--language-coding-errors-with-X-macros---Part-2#

www.embedded.com/design/
programming-languages-and-tools/4408127/
Reduce-C-language-coding-errors-with-X-macros--Part-3#

Hello headache! (No, I don’t understand these either. . . but that
doesn’t mean that you cannot use them!

Outta This World!!!
https://github.com/pfultz2/Cloak/wiki/
C-Preprocessor-tricks,-tips,-and-idioms

https://www.gnu.org/software/make/manual/
en.wikibooks.org/wiki/C_Programming/Preprocessor
en.wikibooks.org/wiki/C_Programming/Preprocessor
en.wikibooks.org/wiki/C_Programming/Preprocessor#X-Macros
en.wikibooks.org/wiki/C_Programming/Preprocessor#X-Macros
www.embedded.com/design/programming-languages-and-tools/4403953/C-language-coding-errors-with-X-macros-Part-1#
www.embedded.com/design/programming-languages-and-tools/4403953/C-language-coding-errors-with-X-macros-Part-1#
www.embedded.com/design/programming-languages-and-tools/4403953/C-language-coding-errors-with-X-macros-Part-1#
www.embedded.com/design/programming-languages-and-tools/4405283/Reduce-C--language-coding-errors-with-X-macros---Part-2#
www.embedded.com/design/programming-languages-and-tools/4405283/Reduce-C--language-coding-errors-with-X-macros---Part-2#
www.embedded.com/design/programming-languages-and-tools/4405283/Reduce-C--language-coding-errors-with-X-macros---Part-2#
www.embedded.com/design/programming-languages-and-tools/4408127/Reduce-C-language-coding-errors-with-X-macros--Part-3#
www.embedded.com/design/programming-languages-and-tools/4408127/Reduce-C-language-coding-errors-with-X-macros--Part-3#
www.embedded.com/design/programming-languages-and-tools/4408127/Reduce-C-language-coding-errors-with-X-macros--Part-3#
https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: C++’s GC !
A C++ technique so that resources are freed, even if exceptions,
without writing exception-handling code

(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
24

-1
2-

12

Programming in C++

Next Session

Final Notes – V

Someone who knows much better [Rob Pike; last paragraph], argued
(in 1989, so things may have changed) that most of the compilation
time is spent doing lexical analysis (breaking input into tokens).
Therefore, inclusion guards are sub-optimal, as the compiler reads
the whole header file, then discards it. So he suggested this instead:

// File: header.h
#ifndef _HEADER_H
#define _HEADER_H
#include "_header.h"
#endif

// File: _header.h
// What you’d normally place in between
// the header guards above.

You’re welcome.

[Rob Pike] “Notes on Programming in C” Feb 21, 1989
https://doc.cat-v.org/bell_labs/pikestyle

“There’s a little dance involving #ifdef’s that can prevent a file being
read twice, but it’s usually done wrong in practice - the #ifdef’s are in

the file itself, not the file that includes it. The result is often thousands
of needless lines of code passing through the lexical analyzer, which

is (in good compilers) the most expensive phase.”

https://doc.cat-v.org/bell_labs/pikestyle

	A Generic Class with Dynamic Allocation
	Program Structure — Declarations vs Definitions
	Separate Compilation
	2024: Lecture 9 ended here

