
Programming in C++
Session 10 – When things go wrong:

Exceptions and Resource management

Dr Christos Kloukinas

City St George’s, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(based on slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2024
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 1 / 30

Outline

Exceptions in C++

Resource acquisition is initialization (RAII)
A fundamental C++ technique C++’s GC !
Ensures that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code.

(Java’s try-with-resources on steroids)

RAII: a special case of the smart pointer and proxy patterns

Plus Revision!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 2 / 30

Part I

Exceptions

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 3 / 30

Failures (revision)

Method cannot meet its specification?
⇒ Communicate this to its caller!
May cause the caller to fail, and so on
But sometimes the caller can work around the failure
Might be necessary to clean up in the event of failure
Traditional (C) approach – an if on a status variable – is very
cumbersome (and often left out)
Disciplined use of exceptions makes error-handling clearer and
more robust

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 4 / 30

https://staff.city.ac.uk/c.kloukinas/cpp

Throwing an exception in C++

Any object can be thrown (even basic types)
class my_exception { ... };

throw statements typically take TEMPORARY OBJECTS
throw my_exception("Bad date");

Exceptions should be caught BY REFERENCE
This is the “best practice”
Can also be caught by value
But avoid it, since catch-by-value:

Slices derived exceptions
Requires copying (so extra memory)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 5 / 30

Catching an exception in C++

C++ has try/catch statement (as in Java)
try {

// do something that might fail
} catch (my_exception &e) { // or derived

// deal with the exception
} catch (AnotherException &ae) { // or derived

// deal with the exception
}

Like Java, exceptions may form hierarchies
A catch clause also handles any derived classes

C++ has no finally clause
(we don’t need no filthy finally clauses!)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 6 / 30

The C++ treatment of exceptions

If (inside a try block
&& there’s a matching catch clause)

Then execute the first matching catch clause

“matching” = the exception type or some base type of it
Otherwise

Exit from the current block or function
Destroying any locally allocated variables in the process, and
Continue searching for a matching try block

If the main function is exited in this way
Halt the program with an error message.

This is called unwinding the stack

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 7 / 30

Exception – What do? QUICK QUIZ!!!

At a family party: cousin Jim starts to choke on a piece of meat!
1 Catch exception & ignore it

Hide Jim in a closet & pretend nothing’s happened
2 Catch exception & log it

“Dear diary, Jim ruined the party once again. . . ” (& into a closet)
3 Catch exception & fix the problem

Help Jim spit what is choking him
4 Not catch the exception – propagate it to your caller, who might

know how to fix it
Call 999 and let ’em know someone’s choking; they’ll deal with it
(if they can)

HINT: One should do neither #1 nor #2 . . .

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 8 / 30

Clean up and rethrow

Often exception handlers are used to free resources on failure:

// acquire resource
try {

// do something that might fail
// free resource

} catch (...) { // any exception
// free resource
throw; // rethrow the exception

}

This can often be avoided, using the RAII technique
“Resource Acquisition Is Initialization”

Note on syntax:
Catch any exception: catch (...)

Rethrow an exception: throw;

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 9 / 30

Resource management

Programs acquire resources
Allocate memory, open files, create windows, acquire locks, etc.
These resources should be released

Even if there are exceptions!
Some resources are freed when a program terminates

:-)

But some are not, e.g., some kinds of lock
:-(

Releasing resources properly is tricky & easy to get wrong

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 10 / 30

A typical pattern of resource use

Resources must often be released in the opposite order to acquisition:

// acquire resource 1
// ...
// acquire resource n

// use resources

// release resource n
// ...
// release resource 1

Wait – that’s just like locally allocated data!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 11 / 30

Resource acquisition is initialization (RAII)

Introduce a resource management class with
A constructor to acquire the resource (or just to record it)
A destructor to release the resource
Possibly an access method

Locally allocate an object of this class when acquiring the resource,
and the resource will be automatically released!
Moreover, resources will be released in the correct order!

// Without RAII :-(
// acquire resource
try {
// this might fail
// now free resource

}catch (...) {//any exception
// free resource
throw; //rethrow exception

}

// With RAII :-) :-)
{
// acquire resource
try {
// this might fail

}
} // resource freed here!

//Single try in main is enough!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 12 / 30

Example: file streams

ifstream/ofstream’s constructors open streams
ifstream in("file.txt");

Their destructors close the streams
(though one can do it earlier if required)
Hence code safely like this:
{

ifstream inp("file.txt");
// read and process file

} // inp is destroyed here (IF inside a try{}!!!)

Whether control leaves the block normally or due to an exception,
the file stream will be closed.

(must have a surrounding try somewhere!)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 13 / 30

Example: storage management

This class manages the deletion of dynamically allocated point objects

class point_manager {
point *ptr;

public:
point_manager(point *p) : ptr(p) {}

˜point_manager() { delete ptr; }
point_manager(const point_manager &) = delete;
point_manager &operator=(const point_manager &)

= delete;
};

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 14 / 30

Using the point manager

Whenever a point that is only required for this block is dynamically
allocated, make a local point manager to manage it:

point *p1 = new point(20,30);
point_manager m1(p1);

point *p2 = window->get_middle();
point_manager m2(p2);

On leaving the block (normally, via return, or by an exception),
then m2 will be destroyed, which will delete p2,
and then m1, which will delete p1.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 15 / 30

Generic storage management

The standard header <memory> provided [*] a class auto ptr.
Here is a simplified version:

template <typename T> class auto_ptr {
T *_ptr;

public:
auto_ptr(T *ptr) : _ptr(ptr) {}

˜auto_ptr() { delete _ptr; }
};

(more to come later)

[*] Until C++11 – deprecated since!!!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 16 / 30

Using auto ptr – The promise

IT’S A LIE!!!
To ensure that dynamically allocated storage is reclaimed,
create a local auto ptr to manage it:

point *p = new point(20,30);
auto_ptr<point> p_ptr(p);

On leaving the block, p is automatically deleted.
One can also use auto ptr as a subobject
No need to write our own destructors!
Since all methods are inline, there is very little overhead.

IT’S A LIE!!!

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 17 / 30

More convenience

We add the following operator definitions to the auto ptr class:

T & operator*() { return *_ptr; }
T * operator->() { return _ptr; }

Then we can use the auto ptr as a proxy for the pointer:

auto_ptr<int> ip(new int);

*ip = 3;

auto_ptr<point> pp(new point(20,30));
pp->x = 4;
pp->y = 5;

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 18 / 30

Completing auto ptr

Gang of Three!
Since auto ptr has a non-trivial destructor, it requires

A copy constructor; and
An assignment operator

Only one of the copies of an auto ptr should call delete.
Might as well add a default constructor too.

Let’s do it!

template <typename T>
auto ptr() : ptr(nullptr) {}

template <typename T>
auto ptr(auto ptr<T> &other){// *** NOT const & !!!

ptr = other. ptr;
other. ptr = nullptr; // *** other loses pointer!

}
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 19 / 30

Completing auto ptr – II

template <typename T>
auto ptr<T> &
operator=(auto ptr<T> &other){// *** NOT const & !!!

if (this != &other) {
delete ptr;
ptr = other. ptr;
other. ptr = nullptr; // *** other loses pointer!

}
return *this;

}

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 20 / 30

(Smart pointers

auto ptr is a so-called “smart pointer”
It looks like a pointer, but does something extra
Some other examples:
reference counting proxy counts references to a dynamically allocated

object, and deletes it when count reaches zero
persistent data proxy reads data from a file on first use, and saves

it in the file on destruction
virtual/lazy object proxy delays creating a complex object until it is

used (and if the object is never used, avoids
creating it)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 21 / 30

The Proxy pattern)

More generally, a proxy is any object that is interposed between the
client and some other object. Some other uses:

wrapper proxy provides consistent access to foreign language data
protection proxy provides more limited access to the object, for greater

security
handle proxy represents an object in a different address space,

e.g., an operating system object, a graphical system object,
or an object on another machine

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 22 / 30

. . .

May you live
in interesting times. . .:-(

(2019: This 2011 statement did not age well at all!)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 23 / 30

C++11
1 auto_ptr deletes its pointer using delete !

So cannot manage a pointer to an array (needs delete[])
2 auto ptr’s “copy” constructor steals the other object’s pointer!

That’s not copying, that’s moving! (polite version of “stealing”)
So cannot use auto_ptr inside STL containers
(containers think they copy elements when they don’t)

C++11: Use unique ptr instead (or shared ptr)
unique_ptr offers a move constructor but no copy constructor:

unique_ptr(unique_ptr<T> && x);// rvalue reference...
unique_ptr(unique_ptr<T> & x) = delete;//reference...

You need to know how auto_ptr works, as old code uses it (BUG!)
And to understand “rvalue references” (and why we need them)
You need to learn the others for your coding
These also work with arrays by the way:

unique_ptr<int[]> array(new int[30]);

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 24 / 30

C++11
1 auto_ptr deletes its pointer using delete !

So cannot manage a pointer to an array (needs delete[])
2 auto ptr’s “copy” constructor steals the other object’s pointer!

That’s not copying, that’s moving! (polite version of “stealing”)
So cannot use auto_ptr inside STL containers
(containers think they copy elements when they don’t)

C++11: Use unique ptr instead (or shared ptr)
unique_ptr offers a move constructor but no copy constructor:

unique_ptr(unique_ptr<T> && x);// rvalue reference...
unique_ptr(unique_ptr<T> & x) = delete;//reference...

You need to know how auto_ptr works, as old code uses it (BUG!)
And to understand “rvalue references” (and why we need them)
You need to learn the others for your coding
These also work with arrays by the way:

unique_ptr<int[]> array(new int[30]);

20
24

-1
2-

13

Programming in C++

C++11

C++11 – II

Advanced – not assessed (neither is unique_ptr nor rvalue
references/move constructors).

shared_ptr:
“It’s complicated” (see stackoverflow t.ly/lXveD)
And the class documentation:
https://en.cppreference.com/w/cpp/memory/shared_ptr
Especially the constructors:
https://en.cppreference.com/w/cpp/memory/shared_ptr/
shared_ptr

!!! Avoid temporary smart pointers.
Why? See Boost t.ly/MfyGQ

Or BETTER YET use make shared
See stackoverflow t.ly/bN-lL

Further reading

Exceptions: Stroustrup 14, Meyer 12.
Resource acquisition is initialization (RAII): Stroustrup 14.4.
Smart pointers: Stroustrup 14.4.2, 11.10.

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 25 / 30

Part II

Revision

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 26 / 30

Major Differences between Java and C++

C++ allows direct access to objects!!!
[*] call-by-value & call-by-reference (session 1 and since)
operator overloading (session 3)
genericity or template classes (sessions 4–6)
[*] slicing of derived objects on copying (session 6)
memory management

local allocation of objects (sessions 1–2 and since, esp. 9–10)
pointers (sessions 5 and 6)
dynamic allocation (sessions 8–9) [*] No GC

multiple inheritance (session 7)
[*] gang of three (session 8)

[*] Rvalue references (& call-by-rvalue-reference – session 10)

[*] Because C++ allows direct access to objects. . .
Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 27 / 30

https://stackoverflow.com/questions/13061979/shared-ptr-to-an-array-should-it-be-used
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
https://www.boost.org/doc/libs/1_59_0/libs/smart_ptr/shared_ptr.htm#BestPractices
https://stackoverflow.com/questions/20895648/difference-in-make-shared-and-normal-shared-ptr-in-c

Things you should be able to do

Write simple C++ classes/functions
Use STL containers/iterators to write compact (& correct!) code
Understand how call-by-value & call-by-reference differ
The various meanings of const & know when to use it
Read programs using overloaded operators; identify which
methods/independent functions are called
Overload operators for new types

As member functions
As independent functions

(continued)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 28 / 30

More things you should be able to do

Distinguish between objects & pointers (& how each behaves)
Know how to use static, local, dynamic and temporary allocation,
appreciating their properties and distinctive features
Understand the properties of subobjects (= fields of other objects)
Use inheritance, method redefinition and abstract classes in C++

Know the order of initialisation (parents [*], fields [*],
constructor) and destruction (opposite)
[*] IN THE ORDER OF DECLARATION!!!

BE CAREFUL WITH FIELD INITIALISATION!!!
Write generic C++ classes/functions
Use the standard generic algorithms!!!

(continued)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 29 / 30

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)

Dr Christos Kloukinas (City St George’s, UoL) Programming in C++ 30 / 30

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Empty On Purpose

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Final Notes – I

Java has Exception (or some such) from which all exceptions MUST
derive.

C++ doesn’t impose such a constraint (though it does have
std::exception that you could derive from)

So you can throw/catch an object of ANY class in C++ (even basic
types – but avoid this).

Good practice: throw a TEMPORARY object!
throw my_exception("Not your lucky day!");

How can I catch it?
The same way I can receive a parameter – EITHER BY VALUE
(exception is *COPIED* and *SLICED* – BAD!) or BY REFERENCE
(GOOD!)

try {
// dangerous stuff

} catch (problem1 p1) { // catch BY VALUE - BAD! BAD! >:-(
// exception object COPIED and POTENTIALLY SLICED
// treat p1

} catch (problem2 & p2) { // catch BY REFERENCE - GOOD! :-)
// exception object NOT COPIED
// treat p2

}

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Final Notes – II

A catch clause catches all exceptions of derived classes too – be
careful to place clauses for these classes before the clauses of their
superclasses.

If no catch clause matches, then the function is terminated, destroying
all its local stack-allocated variables, and the system looks for a
matching catch clause in its caller.

As exceptions can belong to ANY class (even basic types. . .), we cannot
write catch (Exception &e) to catch any kind of exception.
Instead we need to use the ellipsis notation in C++
catch (...) matches any exception

In order to state that we want to re-throw the same exception we simply
write: throw; (EVEN when we have a name for the exception – it
makes explicit that we’re re-throwing)

Resource allocation very often uses a pattern similar to stack-based
allocation (acquire, use, release), thus the pattern:
“Resource Acquisition Is Initialization (RAII)”

Introduce a local manager object for the resource that releases the
resource in its destructor.
In this way it is released whether the code block is terminated normally
or through an exception, avoiding boiler-plate code with try/catch
clauses.

Simple example of that: point_manager (slides 14–15)

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Final Notes – III

Standard manager class: auto_ptr (slides16–20)
An example of a “smart pointer” (which are examples of the “proxy”
pattern)

auto_ptr copy constructor:

template <typename T>
auto_ptr<T>::auto_ptr(/*NO const!*/ auto_ptr<T> & other)
: _ptr(other._ptr) { other._ptr = nullptr; }

auto_ptr assignment operator:

template <typename T>
auto_ptr<T> &
auto_ptr<T>::operator=(/*NO const!*/ auto_ptr<T> & other)
{
if (&other != this) {

delete _ptr;
_ptr = other._ptr; // MOVE (STEAL) THE POINTER
other._ptr = nullptr;

}
return *this;

}

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Final Notes – IV

auto_ptr is badly broken. . .
1 It calls delete, so cannot handle arrays of objects (these need

delete [])
(OK, can always have a pointer to a vector)

2 It says it has a copy constructor but it doesn’t copy, it *moves* the
value from the other object into itself – major breakage!
Cannot use them in standard containers!!!

In C++11 auto_ptr has been deprecated and replaced by unique_ptr

You still need to learn how to implement auto_ptr and understand it
and its problems

Only then you’ll understand why we need rvalue references

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Final Notes – V

What to do when you receive an exception?
You’re at a family party and cousin Jim starts to choke on a piece of
meat!

1 Catch the exception and ignore it – hide Jim in a closet and pretend
nothing’s happened.

2 Catch the exception and log it – “Dear diary, Jim once again ruined
the party. . . ” (after having hidden Jim in a closet).

3 Catch the exception and fix the problem – Help Jim spit the piece of
meat that is choking him.

4 Not catch the exception but let it propagate instead to your caller (or
catch/rethrow), who might know how to fix it – Call 999 and let them
know there’s someone choking; they’ll deal with it (if they can).

HINT: It’s neither #1 nor #2 that you should be doing. . .

Even more things you should be able to do

Multiple inheritance – both replicated & virtual inheritance
Explain — Gang of Three

1 What the automatically generated constructors, destructors &
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”)

to safely release resources,
even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
24

-1
2-

13

Programming in C++

Even more things you should be able to do

Final Notes – VI

Further pointers:

“What should I throw?”
A temporary object.
https://isocpp.org/wiki/faq/exceptions#what-to-throw

“What should I catch?”
Catch by reference if given the choice (avoids copying).
https://isocpp.org/wiki/faq/exceptions#what-to-catch

“But MFC seems to encourage the use of catch-by-pointer; should I do
the same?” (aka When in Rome. . .)
When working with MFC yes, otherwise no as it’s not clear who’s
responsible for deleting the pointed-to object.
https:
//isocpp.org/wiki/faq/exceptions#catch-by-ptr-in-mfc

“What does throw; (without an exception object after the throw keyword)
mean? Where would I use it?”
Re-throw.
https://isocpp.org/wiki/faq/exceptions#
throw-without-an-object

“How do I throw polymorphically?”
To catch derived exceptions instead of base exceptions, make sure
you’re throwing derived exception objects! Use virtual functions.
https://isocpp.org/wiki/faq/exceptions#
throwing-polymorphically

“When I throw this object, how many times will it be copied?”
Nobody knows (zero up to some N) but the exception object must have a
copy-constructor (even if the compiler will never copy it).
https://isocpp.org/wiki/faq/exceptions#
num-copies-of-exception

Check out on StackOverflow the iterator proxy I created for implementing
copy_if_and_transform
https://stackoverflow.com/questions/23579832/
why-is-there-no-transform-if-in-the-c-standard-library/
74288551#74288551
or t.ly/1LCtT

(it tries to make *from behave differently, depending on the context)

https://isocpp.org/wiki/faq/exceptions#what-to-throw
https://isocpp.org/wiki/faq/exceptions#what-to-catch
https://isocpp.org/wiki/faq/exceptions#catch-by-ptr-in-mfc
https://isocpp.org/wiki/faq/exceptions#catch-by-ptr-in-mfc
https://isocpp.org/wiki/faq/exceptions#throw-without-an-object
https://isocpp.org/wiki/faq/exceptions#throw-without-an-object
https://isocpp.org/wiki/faq/exceptions#throwing-polymorphically
https://isocpp.org/wiki/faq/exceptions#throwing-polymorphically
https://isocpp.org/wiki/faq/exceptions#num-copies-of-exception
https://isocpp.org/wiki/faq/exceptions#num-copies-of-exception
https://stackoverflow.com/questions/23579832/why-is-there-no-transform-if-in-the-c-standard-library/74288551#74288551
https://stackoverflow.com/questions/23579832/why-is-there-no-transform-if-in-the-c-standard-library/74288551#74288551
https://stackoverflow.com/questions/23579832/why-is-there-no-transform-if-in-the-c-standard-library/74288551#74288551
https://t.ly/1LCtT

	Exceptions
	Revision

