
Programming in C++
Session 1 – Introduction

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 31

Intro

What’s this module about?

Goal Become a novice C++ programmer.
That’s actually advanced!
Hard for novice programmers.

C++ is hard
Multiple programming styles (procedural, OO, generic programming)
Language & compilers geared towards experienced programmers

Function calls are often hidden
Compiler messages can seem cryptic

Different standards: 1998, 2011 (major changes!), 2020

Please ask questions!!! (lecture/Moodle)

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 31

Intro

This module: more OO programming, in C++

Assuming that you are a reasonably skillful Java/C#/etc. programmer,
by the end of this course you should be able to

read and modify substantial well-written C++ programs
create classes and small programs in C++ that are:

Correct
Robust
Clear
Reusable

use various object-oriented features, including genericity,
inheritance and multiple inheritance

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 31

Intro

A bit of language history

1960 Algol 60: block structure, static typing
1967 Simula: Algol plus object-orientation (for simulation)
1970 C: statically typed procedural language with low-level

features
1972 Smalltalk: object-orientation (for graphical interfaces), no

static types
1985 C++: C + Object-Oriented features and (later) genericity
1995 Java: “C++ greatly simplified”

Procedural Algol 60, C, . . .
“To dress a young child you do X, Y, Z”

Object-Oriented Simula, Smalltalk, C++, Java, . . .
“To dress a grown up, you ask them to dress themselves”

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 31



Intro

A bit of language history — Part II

1972 C Procedural, static typing, low-level access
1985 C++ Your beloved (top) language C extended!

C++ compilers can compile C programs
(The Linux kernel is compiled in this way)

C++ “C is good”
1995 Java Your beloved (top) language C++ simplified!

Java compilers cannot compile C++ programs
Java “C++ is too complex”

The differences between C++ & Java are serious pain points
One needs to understand them to understand the C++ language

(good knowledge of Java not really required for this)

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 31

Design Criteria

C++ design criteria

Started as “C with Classes”
support a variety of programming styles, including object oriented
(give the programmer more choices)
powerful (give the programmer more control)
enable efficient implementation (shift some implementation
concerns to the programmer)
extension of C (machine-level access)
Often C features coexist with newer, cleaner versions.
And C++98 features coexist with C++11 & C++20 versions. . .

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 31

Design Criteria

Java design criteria

Keep things as simple as possible
object orientation
(moderate) simplicity (fewer variant ways of doing things)
robustness and security (type-safe, automatic memory allocation)
architecture-neutral (fairly high level)
syntax based on C++

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 31

Design Criteria

This session: non-OO programming in C++

This session introduces the philosophy of C++, and some simple
non-OO programs.
We will touch on the following features of C++:

Operator overloading
Constants
Initialization vs. assignment
Parameter passing by value and reference
Some library classes

All will be explored in greater detail later.

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 31



Design Criteria

The toolset
To Java C++
Compile javac -g pkg1/pkg2/.../pkgN/X.java g++ -g -c x.cpp
(notes) -g debug on -c compile only
Link/etc jar cfe prog.jar X X.class g++ -g -o prog x.o
or echo Main-Class: X > manifest.txt

jar cfm prog.jar manifest.txt X.class
(notes) e executable (“main” is in class X) -o output to
Execute java -jar prog.jar ./prog
Debug jdb -classpath prog.jar X gdb prog

stop in X.main break main
run a1 a2 a3 run a1 a2 a3
print 3+4 print 3+4
print args print argv[0]
step step

Curious javap -c X nm x.o | c++filt

A C++ program is processed by the preprocessor (cpp), the compiler
(g++), and the linker (ld) – all of these can complain.

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 31

Differences

A small C++ program (vs in Java)
/* C++: */

#include <iostream>
using namespace std;

int main(int argc
, char *argv[]) {

cout << "Hello world!\n";
return 0;

}

/* Java: */

class MyProg {
public static void main(
String[] args){
System.out
.print("Hello world!\n");

}
}

The first two lines make available names from the standard library,
like cout.
In C++ (like C), a function (main) can exist outside of any class.

Java: oh, that’s a (public) static method!

Style: C++ – lower case, Java – CamelCase

Where’s the print function call in C++?

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 31

Differences

Accessing names from standard libraries

In Java, classes are collected in packages, and accessed with
import declarations.
In C++, there are two (mostly) independent ways of controlling
access to names:
header files like iostream contain collections of related

definitions (in this case for I/O streams). A typical
program will begin with several #include lines.

namespaces like std are collections of names, which must
usually be qualified (std::cout), unless there is a
using command.
Each source file will include the above using line,
but we will not make any other use of namespaces.

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 31

Differences

Text output

cout << "Hello world!\n";

The iostream header defines three standard streams:
cin standard input (cf. Java’s System.in)

cout standard output (cf. Java’s System.out)
cerr error output (cf. Java’s System.err)

The << operator, when applied to an output stream and a string,
writes the string to the stream.
When applied to integers, it performs a left shift (as in Java): the
<< operator is overloaded.

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 31



Text output

cout << "Hello world!\n";

The iostream header defines three standard streams:
cin standard input (cf. Java’s System.in)

cout standard output (cf. Java’s System.out)
cerr error output (cf. Java’s System.err)

The << operator, when applied to an output stream and a string,
writes the string to the stream.
When applied to integers, it performs a left shift (as in Java): the
<< operator is overloaded.20

23
-1

1-
20

Programming in C++
Differences

Text output

Why do we need both cout and cerr?

We need both so that we can separate the output from the errors
into different files (or sockets), e.g., when using the bash command
shell:
program > output.txt 2> errors.txt

What’s the difference between cout and cerr? Why would one want to
use both if not splitting the output as above?

We need both because they behave differently.
When printing to cout, our output is buffered, i.e., it is placed into a
temporary area and stays there until the output buffer has been
filled. When the buffer is full, the output is sent out to wherever it is
supposed to be sent (terminal, file, network).
Unlike cout, when printing to cerr the output is not buffered – it is
printed immediately.
This is why when printing to cout we sometimes have to use
flush to tell the buffer to output whatever it has stored, even if it is
not full:
cout << "Hi"; cout.flush();
Or alternatively:
cout << "Hi" << flush;

Text output

cout << "Hello world!\n";

The iostream header defines three standard streams:
cin standard input (cf. Java’s System.in)

cout standard output (cf. Java’s System.out)
cerr error output (cf. Java’s System.err)

The << operator, when applied to an output stream and a string,
writes the string to the stream.
When applied to integers, it performs a left shift (as in Java): the
<< operator is overloaded.20

23
-1

1-
20

Programming in C++
Differences

Text output

Flushing streams – endl

Another way to flush the output stream is to use endl. We’ve seen so
far how to use the special character ’\n’ to insert a newline character
into the output. With endl we can insert a newline and at the same time
flush the output stream:

cout << "Hello, how are you?\n" // no printing yet
<< "How could I be of assistance?"
<< endl; // Add a new line & flush everything

Differences

Input and output

int i;
cout << "Type a number: " << flush;
cin >> i;
cout << i << " times 3 is " << (i*3) << ’\n’;

The >> operator reads from an input stream.
The << operator associates to the left, and returns the stream; the
above is equivalent to
(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;

It is also overloaded for int and char.
The >> operator is similar.

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 31

Input and output

int i;
cout << "Type a number: " << flush;
cin >> i;
cout << i << " times 3 is " << (i*3) << ’\n’;

The >> operator reads from an input stream.
The << operator associates to the left, and returns the stream; the
above is equivalent to
(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;

It is also overloaded for int and char.
The >> operator is similar.20

23
-1

1-
20

Programming in C++
Differences

Input and output

cout << i << " times 3 is " << (i*3) << ’\n’;// same as:
(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;

In order for this to work, the operator<< has to return an output
stream. That’s why when (cout << i) is computed we can use its
result (the modified cout (cout ′) to apply the next operator<<
with the next argument (" times 3 is ").
So:

(((cout << i) << " times 3 is ") << (i*3)) << ’\n’;
cout’ << " times 3 is "

cout’’ << (i*3)
cout’’’ << ’\n’;



Differences

Strings

#include <string>

The standard library provides a string type:

string s = "fred";
cout << s;
cin >> s; // reads a word

The + operator is overloaded on strings:

s = s + " and bill";
s = s + ’,’;

So are +=, ==, <, etc.
Unlike in Java, strings are modifiable:

s.erase(); // makes s empty

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 31

Differences

Breaking the input into words

#include <string>
#include <iostream>
using namespace std;

int main() {
string s;
while (cin >> s)

cout << s << ’\n’;
return 0;

}

The >> operator on strings reads words.
The stream returned by the >> operator can be used in a
conditional, to test if the read was successful.

(what do these words mean?)

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 31

Breaking the input into words

#include <string>
#include <iostream>
using namespace std;

int main() {
string s;
while (cin >> s)

cout << s << ’\n’;
return 0;

}

The >> operator on strings reads words.
The stream returned by the >> operator can be used in a
conditional, to test if the read was successful.

(what do these words mean?)

20
23

-1
1-

20

Programming in C++
Differences

Breaking the input into words

while (cin >> s)
“The stream returned by the >> operator can be used in a
conditional, to test if the read was successful.” ?!?!
The expression cin >> s returns the modified input stream cin’,
which is what we ask while to evaluate so as to decide whether the
loop body should be executed or not.
The C++ library has functions that allow one to translate an input
stream into a boolean – the boolean is true if the last attempt to read
from the stream succeeded, and it’s false otherwise (e.g., the input
had finished, the input is corrupted, etc.). These functions work like
when we write s1 = s2 + " Hi " + 3; in Java – there they
translate automatically the array of characters " Hi " and the
integer 3 into string objects, that they concatenate with the string
object referenced by s2 to obtain the value of the string object that
will be referenced by s1 (s1 and s2 are not objects in Java, they are
pointing to objects.).
The meaning of while (cin >> s) is:
“Try to read a word from cin into string object s and if that has
succeeded, then continue executing the body of the while loop.”

Differences

Vectors

#include <vector>

C++ has arrays, but we’ll use vectors instead (similar to ArrayList in
Java):

vector<int> vi(5); // vector of 5 ints
vector<string> si; // empty vector of strings

Vectors can be accessed just like arrays:

vi[1] = x; // vi.set(1, x); <3 Java! :-P
vi[2] = vi[1] + 3;// vi.set(2, vi.get(1) + 3); <3 <3

Vectors can also be extended:

si.push_back(s);

The current length of si is si.size()
Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 31



Vectors

#include <vector>

C++ has arrays, but we’ll use vectors instead (similar to ArrayList in
Java):

vector<int> vi(5); // vector of 5 ints
vector<string> si; // empty vector of strings

Vectors can be accessed just like arrays:

vi[1] = x; // vi.set(1, x); <3 Java! :-P
vi[2] = vi[1] + 3;// vi.set(2, vi.get(1) + 3); <3 <3

Vectors can also be extended:

si.push_back(s);

The current length of si is si.size()

20
23

-1
1-

20

Programming in C++
Differences

Vectors

Syntax seems simple but the meaning is not. . .

Expression “vi[1]” in Java would have to be written as
“vi.get(1)”, where vi would have been declared instead as a Java
pointer to an ArrayList container.

Thanks to operator overloading C++ allows us to type less (2 characters
for “[]” instead of 6 characters for “.get()”.

It also allows us to keep the syntax of arrays that we’re familiar with and
treat vectors as if they’re advanced arrays (that we can extend/shorten).

But this comes at a price – the code is not as clear now as it was in
Java. In Java it’s obvious we’re calling a function while in C++ it is not so
obvious – one has to remember that every use of an operator is actually
a function call in C++!

So vi[1] is actually vi.operator[](1).

Differences

Language notes

string is a class
vector is a template (generic) class
C++ has pointers (like in Java), but we won’t use them till later:

string s1 = "bill", s2;

declares (and initializes) string objects, not pointers.
assignments like

s1 = s2;

copy the objects (not the Java pointers!).
Note: the syntax looks like Java, but the meaning is very different.
Capitalisation: In C++ everything is lower case – words are separated
by underscores: class string, void push back

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 31

Differences

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 31

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;20
23

-1
1-

20

Programming in C++
Differences

Initialization vs. assignment

SUPER IMPORTANT!!! – I

This slides looks simple and boring – initialise some variables, assign
some variables, blah blah blah, whatever. . .
Your success in the module depends on understanding it fully – and it
ain’t easy.
It actually shows four different methods/functions.
Remember that s1, s2, and s3 are real objects in C++ – unlike Java
where they are pointers.

string s1;
/* INITIALISATION: To initialise s1, the string
constructor must be called.
Which constructor? The one taking no arguments.
So here, we call:
string()

SPECIAL NAME: ‘‘Default Constructor’’ */



Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;20
23

-1
1-

20

Programming in C++
Differences

Initialization vs. assignment

SUPER IMPORTANT!!! – II

string s2 = "bill";
/* INITIALISATION: Which constructor do we call to
initialise s2?
The one taking an array of characters:
string( const char a[] ) */

s1 = s2;
/* ASSIGNMENT: s1 and s2 are OBJECTS, not just
pointers to objects (as in Java).

So here we’re calling a FUNCTION:
string & operator=(string &o, const string &o);
Though usually we’re calling a METHOD:
string & operator=(const string &o);

SPECIAL NAME: ‘‘Assignment Operator’’ */

string s3 = s2;
/* INITIALISATION: Which constructor do we call
to initialise s3?
The one taking another object of class string:
string( const string &o )

SPECIAL NAME: ‘‘Copy Constructor’’ */

Initialization vs. assignment

Initialization of variables:

string s1;
string s2 = "bill";

Objects are always initialized; variables of primitive type aren’t.
Assignment replaces an existing value:

s1 = s2;

Initialization defines a new variable:

string s3 = s2;20
23

-1
1-

20

Programming in C++
Differences

Initialization vs. assignment

Is it initialisation or assignment?

To distinguish between initialisation and assignment you need to look at
the form of the statement.

If it’s initialisation we are just introducing a new variable, so we have to
tell the compiler what is its type.
string s1;
string s2 = "Bill";
string s3 = s2;

All initialisations of objects call a constructor of the object’s class.

When assigning a variable the variable exists already, so we do not
declare its type:
s1 = s2;

Assignments call the assignment operator: operator=

Differences

The BIG Difference
Java C++

String s; string s;
// s == null // s != null
// s is a Java *POINTER*!!! // s is an OBJECT
// nothing called // constructor called!

You can never access an object directly in Java (for safety).

C++ gives you direct access to objects (for performance/control).

Many of their core differences are a consequence of this!
Garbage collection vs Manual memory deallocation
Sharing objects by copying Java pointers vs Copying objects
Immutable strings vs Modifiable strings
Call by value vs Call by reference

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 31

The BIG Difference
Java C++

String s; string s;
// s == null // s != null
// s is a Java *POINTER*!!! // s is an OBJECT
// nothing called // constructor called!

You can never access an object directly in Java (for safety).

C++ gives you direct access to objects (for performance/control).

Many of their core differences are a consequence of this!
Garbage collection vs Manual memory deallocation
Sharing objects by copying Java pointers vs Copying objects
Immutable strings vs Modifiable strings
Call by value vs Call by reference

20
23

-1
1-

20

Programming in C++
Differences

The BIG Difference

DANGER!!!

If you don’t understand what the big difference is here, you’re in
dangerous waters.

Draw a picture of the memory for Java and another for C++.

Draw the objects in each – there is one for Java and one for C++.

The C++ object is called s – that’s all there is in the memory of C++.

The Java object has NO NAME. In Java, the name s is the name of an
object POINTER [*], and this (Java) POINTER is in another location in
memory and is pointing to the actual Java object.

Confused? Go over this again (and again, and again, . . . ) till you
have understood it – it’s super-basic and you’ll suffer if you don’t get it.

[*] Java’s “references” are pointers – that’s why when you try to use
a NULL Java “reference” you get a “NullPointerException”. You
do not get a “NullReferenceException”, do you?



Differences

Passing parameters by value

Formal parameters are new variables, initialized from the actual
parameters (a.k.a. arguments).

void f(int i) {
i = i + 5;

}

void g() {
int j = 3;
f(j); // no effect on j

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 31

Passing parameters by value

Formal parameters are new variables, initialized from the actual
parameters (a.k.a. arguments).

void f(int i) {
i = i + 5;

}

void g() {
int j = 3;
f(j); // no effect on j

}20
23

-1
1-

20

Programming in C++
Differences

Passing parameters by value

Pass by value

void f(int i) – here i is a local variable of function f, which gets
initialised with whatever we pass as argument to the function.

That’s why we can call the function with an expression as an argument:
f( 3 * 2 );

Parameter i will be initialised with the value of that expression
int i = 3*2; /* 6 */

Differences

Parameter passing in Java

In Java, all parameters are passed by value, even Java pointers.
That is, the method is given a copy of the parameter, and any
changes have no effect on the original.
If the parameter is a Java pointer, the copy points to the same
Java object, so it is possible to modify the object pointed to.
But we cannot modify the original Java pointer to make it point to
another object.

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 31

Differences

Limitations of value parameters

We might wish to change an actual parameter from inside the
function.
The actual parameter might be large (e.g. an object) and therefore
expensive to copy.
A solution (Fortran, Pascal, C++, etc) is reference parameters.
You can get a similar effect with value parameters and pointers
(C/C++).

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 31



Differences

Passing parameters by reference

A reference formal parameter is another name (an alias) for the actual
parameter.

void f(int &i) {
i = i + 5;

}

void g() {
int j = 3;
f(j); // j is updated

}

Note: There is no relationship to Java’s pointers (“references”).

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 31

Differences

Passing large values by reference

Reference parameters are also used to avoid copying large values:

int last(vector<int> &v) {
return v[v.size() - 1];

}

void g() {
vector<int> x(100);
...
int n = last(x); // don’t copy x

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 31

Differences

Constant parameters: const <3 <3 <3

We can indicate that the function doesn’t change the parameter with
the keyword const:

int last(const vector<int> &v) {
return v[v.size() - 1];

}

void g() {
vector<int> x(100);
...
int n = last(x); // don’t copy x

}

This makes programs safer, and helps the compiler.

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 31

Differences

Constants

The C++ keyword const introduces a constant:
const int days_per_week = 7;

Constants may (must!) be initialized, but cannot be assigned to.
const parameters are a special case.
C programmers: use const instead of #define, or use enum
definitions:
enum class traffic_light { red, yellow, green };
traffic_light r = traffic_light::red;

enum class colour_rgb { red, green, blue };
colour_rgb r = colour_rgb::red;

A different use of const will be mentioned later.

Use const wherever you can!

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 31



Constants

The C++ keyword const introduces a constant:
const int days_per_week = 7;

Constants may (must!) be initialized, but cannot be assigned to.
const parameters are a special case.
C programmers: use const instead of #define, or use enum
definitions:

enum class traffic_light { red, yellow, green };
traffic_light r = traffic_light::red;

enum class colour_rgb { red, green, blue };
colour_rgb r = colour_rgb::red;

A different use of const will be mentioned later.

Use const wherever you can!

20
23

-1
1-

20

Programming in C++
Differences

Constants

We should always try to use const wherever we can and only
remove it if the compiler complains that we cannot update something
because it is const (and we cannot figure another way to do what we
want without updating).
Consts improve our code — make it more robust and help the
compiler optimise further.
Other ways to restrict the code and help the compiler is to use the
more restrictive versions of things, e.g., (lecture 7) prefer
unique_ptr<T> over shared_ptr<T>, if possible.

John Carmack (founder and technical director of Id Software) had
written a blog post (back in 2013) about this — read it here:
https://web.archive.org/web/20130819160454/http:
//www.altdevblogaday.com/2012/04/26/
functional-programming-in-c/
In his Quakecon 2013 keynote he also talked about it (among other
things) — this is the relevant part:
https://www.youtube.com/watch?v=1PhArSujR_A

Differences

References

The C++ symbol & after a type defines a reference, which will be
another name (or alias) for a piece of storage.
Initialization defines the reference as an alias:
int x;
int &y = x; // there’s only one int here

person dr_jekyll;
person & mr_hyde = dr_jekyll; // only one person

Assignment assigns to the original storage:
y = 3;

is the same as assigning to x.

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 31

References

The C++ symbol & after a type defines a reference, which will be
another name (or alias) for a piece of storage.
Initialization defines the reference as an alias:

int x;
int &y = x; // there’s only one int here

person dr_jekyll;
person & mr_hyde = dr_jekyll; // only one person

Assignment assigns to the original storage:
y = 3;

is the same as assigning to x.20
23

-1
1-

20

Programming in C++
Differences

References

C++ references are almost like (const) pointers:

A reference can never be NULL - it must always refer to a legitimate
object;
Once established, a reference can never be changed so that it
refers to a different object - a const pointer;
A reference does not require any explicit mechanism to
de-reference the memory address & access data values (it’s just
an alias).

C++ references are NOT pointers.

Never state in public or write down that they are pointers.
Never say that they “point” to an object or say that they “have its
address”.
All of these demonstrate a gross misunderstanding of what a C++
reference is.
A C++ reference IS the thing it refers to. They are one and the
same.

Why use references inside a block of code? To simplify things:
int &size = tree.left.value.size;
++size;
cout << size;
equivalent to:
++(tree.left.value.size);
cout << tree.left.value.size;

Examples

An example function (from iostream)

istream & getline(istream & in, string & s) {
s.erase();
char c;
while (in.get(c) && c != ’\n’)

s += c;
return in;

}
// Use:
//string s;while ( getline(cin, s) ){cout<<s<<endl;}

Note that
get also uses pass-by-reference.
There is no copying here: the argument in is returned by
reference. (You can’t return a local by reference.)

Dr Christos Kloukinas (City, UoL) Programming in C++ 28 / 31



An example function (from iostream)

istream & getline(istream & in, string & s) {
s.erase();
char c;
while (in.get(c) && c != ’\n’)

s += c;
return in;

}
// Use:
//string s;while ( getline(cin, s) ){cout<<s<<endl;}

Note that
get also uses pass-by-reference.
There is no copying here: the argument in is returned by
reference. (You can’t return a local by reference.)

20
23

-1
1-

20

Programming in C++
Examples

An example function (from iostream)

How many things does getline return? Three – the result, the
modified parameter in and the modified parameter s.
By using reference parameters you can return multiple things.

Parameter in is passed by reference, because we need to modify the
input stream (we modify it when we call in.get(c) since we remove
one character from it).

Parameter s is passed by reference because we need again to modify
the string so as to be able to return to our caller the contents of the line
we’ve read from the input.

We cannot simply return a string from the function, because we need
to return a stream – and we need that because we want to use getline
as in the next slide, where we test the returned stream to see if
getline succeeded in reading a line or note.

Note that the returned result (istream &) is also returned by reference
to avoid returning a copy of in!

In order to return a variable by reference, the variable must not be local –
it must have been received as a reference parameter.

This is because all local variables are destroyed when a function
returns so they no longer exist to be returned themselves – only a
copy of them can be returned.

An example function (from iostream)

istream & getline(istream & in, string & s) {
s.erase();
char c;
while (in.get(c) && c != ’\n’)

s += c;
return in;

}
// Use:
//string s;while ( getline(cin, s) ){cout<<s<<endl;}

Note that
get also uses pass-by-reference.
There is no copying here: the argument in is returned by
reference. (You can’t return a local by reference.)

20
23

-1
1-

20

Programming in C++
Examples

An example function (from iostream)

(Advanced)

Since C++11, one can return an object without copying it. These
versions of the C++ language standard support moving objects.

If your class contains sub-objects of classes that are well-behaved
(string, vector<T>, etc.) then objects of your class can be
moved without you having to do anything special.
Just pass flag -std=c++20 to the compiler (this flag works for the
g++ and clang++ compilers).

Examples

Prefixing lines with their lengths

#include <iostream>
#include <string>

using namespace std;

int main() {
string s;
while (getline(cin, s))

cout << s.size() << ’\t’ << s << ’\n’;
return 0;

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 29 / 31

Don’t Panic!

Dr Christos Kloukinas (City, UoL) Programming in C++ 30 / 31



Coming next

Next session

C++ Classes: very similar to Java, but with important differences.
Reading:

Absolute C++ by Walter Savitch, Addison-Wesley Longman,
Reading, Mass, 2002. Chapter 1, sections 6.2 and 7.1.
The C++ Programming Language (3rd edition) by Bjarne
Stroustrup, Addison-Wesley Longman.

For this session: sections 2.1–3 (except 2.3.3), 3.2–6 (except 3.5.1),
3.7.1.
For next session: sections 2.5.3–4, 2.6, 10.2.1–6.

Dr Christos Kloukinas (City, UoL) Programming in C++ 31 / 31

Next session

C++ Classes: very similar to Java, but with important differences.
Reading:

Absolute C++ by Walter Savitch, Addison-Wesley Longman,
Reading, Mass, 2002. Chapter 1, sections 6.2 and 7.1.
The C++ Programming Language (3rd edition) by Bjarne
Stroustrup, Addison-Wesley Longman.

For this session: sections 2.1–3 (except 2.3.3), 3.2–6 (except 3.5.1),
3.7.1.
For next session: sections 2.5.3–4, 2.6, 10.2.1–6.

20
23

-1
1-

20

Programming in C++
Coming next

Next session

Final Notes

Make sure you understand the difference between initialisation
(TYPE VARNAME = EXPRESSION;) and assignment
(VARNAME = EXPRESSION;).
In C++ these call different methods – you need to know which case it is
to figure out which method will be called (and to understand how to write
these methods – more later).

BIG DIFFERENCE between Java and C++ – in C++ you have direct
access to objects, in Java you can only access pointers to objects.

Because of the direct access to objects, C++ supports call-by-reference
as well as call-by-value – make sure you understand the differences!
(and call-by-constant-reference. . . )
(and return-by-reference vs return-by-value. . . )



Programming in C++
Session 2 – Classes in C++

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 23

C++ source files

A C++ source file may contain:

include directives #include <iostream>

comments // what this does

constant definitions const double pi = 3.14159;

global variables int count;

function definitions int foo(int x) { ... }
class definitions class foo bar { ... };

Unlike Java, C++ requires that things are declared before use.

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 23

C++ source files

A C++ source file may contain:

include directives #include <iostream>

comments // what this does

constant definitions const double pi = 3.14159;

global variables int count;

function definitions int foo(int x) { ... }
class definitions class foo bar { ... };

Unlike Java, C++ requires that things are declared before use.20
23

-1
1-

20

Programming in C++

C++ source files

Naming – NoMoreCamels!!!

In C++ names of classes, functions, variables, constants, files, etc.
are all lower case and multiple words are separated by underscores
(“ ”).
So, never write class MyString – it should be class my string
instead.
The exception is things that have been defined in the pre-processor,
e.g., NULL (the old way of naming the null pointer – now it’s called
nullpointer).
Pre-processor? What’s that?!?! → (next note page)

C++ source files

A C++ source file may contain:

include directives #include <iostream>

comments // what this does

constant definitions const double pi = 3.14159;

global variables int count;

function definitions int foo(int x) { ... }
class definitions class foo bar { ... };

Unlike Java, C++ requires that things are declared before use.20
23

-1
1-

20

Programming in C++

C++ source files

Sidenote – The toolbox

Your source code is treated internally by a sequence of programs:
pre-processor (cpp) → C++ compiler → assembler → linker (ld)

1 The pre-processor (cpp for C-Pre-Processor). Treats all #’s.
It includes files (inserts their contents verbatim at the point where the
#include directive appears, and allows you to define constants and
macros that cause changes to your code:
#define LOCALHOST "banana.city.ac.uk"
#define MAX(a, b) (((a)<(b)) ? (b) : (a)) /* many
parens but still unsafe - try calling MAX(++i, ++j) */

Use flag -E with g++ to ask just for the preprocessor to run.

2 The compiler itself (cc1) – this one reads text without any #include’s
and compiles to assembly code.
Use flag -S with g++ to run just up to this point (pre-process & compile
only).

3 The assembler (as). Translates the assembly code into object (i.e.,
machine) code, producing a file with a suffix .o (equivalent to a .class
file in Java).
Use flag -c to run just up to this point.

4 The linker (ld – Link eDitor). Links all the object files together to
produce a standalone executable (somewhat equivalent to when
creating a standalone, executable jar file in Java).



Classes in C++

Like Java, C++ supports
classes, with public, protected and private members and methods
inheritance and dynamic binding
abstract methods and classes

but the syntax and terminology is different.
Major semantic difference: copying of objects.

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 23

The elements of a C++ class

class date {

As in Java, C++ classes contain:
fields, called members

int day, month, year;

constructors
date() ...
date(int d, int m, int y) ...

methods, called member functions
int get_day() { return day; }
...

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 23

Visibility of members and methods

Visibility is indicated by dividing the class into sections introduced by
access specifiers:

class date {
private:

int day, month, year;

public:
date() ...
date(int d, int m, int y) ...
int get_day() { return day; }
...

};

In this case, the fields are private, and the constructors and methods
are public.

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 23

Access specifiers

C++ has the same keywords as in Java, but as there are no packages,
the situation is simpler:

private visible only in this class.
protected visible in this class and its descendents.

public visible in all classes.

Access specifiers may occur in any order, and may be repeated.
An initial “private:” may be omitted.

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 23



Constant member functions

Recall that the const keyword is used for values that cannot be
changed once initialized:

const int days_per_week = 7;
int last(const vector<int> &v) { ... }

We can indicate that the member function get day() doesn’t change
the state of the object by changing its declaration to

int get_day() const { return day; }

This will be checked by the compiler.
Advice: add const where appropriate.

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 23

Constructors

Objects are initialized by constructors.
class date {
public:

date(); // today’s date
date(int d, int m);
date(int d, int m, int y);
...

};

A constructor with no arguments is called a default constructor.
If no constructors are supplied, the compiler will generate a
default constructor.

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 23

Constructors

Objects are initialized by constructors.
class date {
public:

date(); // today’s date
date(int d, int m);
date(int d, int m, int y);
...

};

A constructor with no arguments is called a default constructor.
If no constructors are supplied, the compiler will generate a
default constructor.20

23
-1

1-
20

Programming in C++

Constructors

What do we need a default constructor for?

There are cases where there are valid default values for an object – then
we should offer a default constructor that initialises the object with the
default values.

There are equally cases where there are no good default values – then
we should not offer a default constructor.

It is a design issue – you need to think before programming one.

One additional thing you need to think of is whether you’d like to be able
to declare arrays of objects of that class:
some_class array[3];

When declaring arrays there is no way to pass arguments to the
constructor of the array elements – the only constructor that is available
to the constructor for initialising the array elements is the default
constructor.
This means that if there is no default constructor then we cannot
declare arrays of objects of that class like we’ve done above.
Note: Since C++14 we can use array initialisers to bypass this
shortcoming:
some_class array[3] = { o1, o2, o3 };

This way we’re initialising the array elements using the copy
constructor [*], copying o1 into array[0], o2 into array[1], and o3
into array[2].
[*] Or the move constructor if it exists and it’s safe to apply it. . .

Initialization and assignment of objects

Unlike basic types, objects are always initialized.

date today; // uses default constructor
// NOTE: NO PARENTHESES!!!

date christmas(25, 12);

Initialization as a copy of another object:

date d1 = today;
date d2(today); // equivalent

Assignment of objects performs a copy, member-by-member:

d1 = christmas;

These are the defaults; later we shall see how these may be
overridden.

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 23



Initialization and assignment of objects

Unlike basic types, objects are always initialized.

date today; // uses default constructor
// NOTE: NO PARENTHESES!!!

date christmas(25, 12);

Initialization as a copy of another object:

date d1 = today;
date d2(today); // equivalent

Assignment of objects performs a copy, member-by-member:

d1 = christmas;

These are the defaults; later we shall see how these may be
overridden.

20
23

-1
1-

20

Programming in C++

Initialization and assignment of objects

If we had written date today(); then the compiler would have
thought that we want to declare (but not define) a FUNCTION called
today, which takes no parameters and returns a date object. . .

Using objects

Declaring object variables:

date today;
date christmas(25, 12); // Reminder: book tickets...

In C++ (unlike Java) these variables contain objects (not pointers to
objects) and they are already initialized.
Methods are invoked with a similar syntax to Java:

cout << today.get_day();
christmas.set_year(christmas.get_year() + 1);

Except that in C++ today is an. . . OBJECT.

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 23

Qualification in C++ and Java

Java uses dot for all qualification, while C++ has three different
syntaxes:

C++ Java
object.field (no equivalent) Cannot access objects in Java!

pointer->field Java “reference”.field Java “reference” = C++ pointer !
Class::field Class.field

(no equivalent) package.Class

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 23

Temporary objects
We can also use the constructors to make objects inside expressions:

cout << date().get_day();
1 A temporary, anonymous date object is created and initialized

using the default constructor;
2 The method get day() is called on the temporary object;
3 The result of the method is printed; and
4 The temporary object is discarded (destructor called).

(Can do similarly in Java with new, but relies on GC.)
Another example:

date d;
...
d = date(25, 12);

A temporary date object is created and initialized using the
date(int,int) constructor, copied into d using the assignment
operator, and then discarded (destructor called).

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 23



Temporary objects
We can also use the constructors to make objects inside expressions:

cout << date().get_day();
1 A temporary, anonymous date object is created and initialized

using the default constructor;
2 The method get day() is called on the temporary object;
3 The result of the method is printed; and
4 The temporary object is discarded (destructor called).

(Can do similarly in Java with new, but relies on GC.)
Another example:

date d;
...
d = date(25, 12);

A temporary date object is created and initialized using the
date(int,int) constructor, copied into d using the assignment
operator, and then discarded (destructor called).

20
23

-1
1-

20

Programming in C++

Temporary objects

Important

You must be able to describe the order of calls and be precise:

cout << date().get_day();

1 A temporary date object is created and initialized using the default
constructor ;

2 The method get day() is called on the temporary object ;

3 The result of the method is printed; and

4 The temporary object is discarded (destructor called).

d = date(25, 12);

A temporary date object is created and initialized using the
date(int,int) constructor, copied into d using the assignment
operator, and then discarded (destructor called).
(Advanced) Since C++11, the temporary object will be moved into d
using the move assignment operator, i.e., its contents will be
“stolen” by d (the compiler will consider it as no longer being used),
before being discarded (destructor called).

Initializing members

Members are initialized by constructors, not in their declarations.
(it’s legal to give default values since C++11)

class date {
int day, month, year;

public:
date() : day(current_day()),

month(current_month()),
year(current_year()) {}

date(int d, int m, int y) :
day(d), month(m), year(y) {}

...
};

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 23

Initializing members

Members are initialized by constructors, not in their declarations.
(it’s legal to give default values since C++11)

class date {
int day, month, year;

public:
date() : day(current_day()),

month(current_month()),
year(current_year()) {}

date(int d, int m, int y) :
day(d), month(m), year(y) {}

...
};

20
23

-1
1-

20

Programming in C++

Initializing members

Why do we need to initialise members with the constructor list?
Because all objects need to have been properly constructed before
they’re used and the members are used by the body of the class’s
constructor.
If we don’t initialise them explicitly at the constructor list, then the
compiler will insert there calls to their default constructors (if these
exist. . . )
Try to compile this:

class A { public: A(int i){} }; // no default constructor

class B { public: B(int i){} }; // no default constructor

class AB {
A a;
B b;

public:
AB() { // Implicitly calls A’s and B’s default constructors
return ;

}
};

int main() {
AB ab;
return 0;

}

Initializing subobjects

Initializers supply constructor arguments:

class event {
date when;
string what;

public:
event(string name) : what(name) {}

event(string name, int d, int m) :
what(name), when(d, m) {}

...
};

If no initializer is supplied, the default constructor is used.
What happens to when at the first constructor?
When is its constructor called and which constructor is that?

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 23



Two ways to define methods

Methods can be defined in class definitions.
int get_day() const { return day; }

C++ compilers treat these as inline functions: they try to expand
the bodies of the functions where they are called.
It is also possible to merely declare a method in a class
definition,

int get_day() const;

and give the full definition outside the class :
int date:: get day() const { return day; }

Because this is outside the class, we must qualify the function
name with the class name (date::).
Underlined parts must match the original declaration exactly.

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 23

The date class minus the method definitions

class date {
private:

int day, month, year;

public:
date();
date(int d, int m);
date(int d, int m, int y);

int get_day() const;
int get_month() const;
int get_year() const;

};

Note that this falls short of an ideal interface, as all members (even
private ones) must be included.

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 23

The deferred method definitions

At a later point, outside of any class, we can define the methods.
To state which class they belong to, they are qualified with “date::”.

date::date() : day(current_day()),
month(current_month()),
year(current_year()) {}

date::date(int d, int m, int y) :
day(d), month(m), year(y) {}

int date::get_day() const { return day; }

Advice: place only the simplest method bodies in the class.

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 23

Differences with Java

Various minor syntactic differences.

In C++ we have variables of object type :
Initialization and assignment involves copying
(or moving – advanced [*]).
Use (const) references to avoid copying.

Inheritance (session 6):
Copying from derived classes involves slicing.
Method overriding:

In Java method overriding is the default;
In C++ you have to ask for it
(more when discussing static vs dynamic binding).

(session 5) C++ also has pointers (similar to Java “references”).

[*] You can copy someone’s notes or you can move (i.e., steal) them. . .

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 23



Properties (revision)

pre-condition a condition that the client must meet to call a method.
post-condition a condition that the method promises to meet,

if the pre-condition was satisfied. (pre → post [*])
invariant a condition of the state of the class,

which each method can depend upon when starting
and must preserve before exiting.

Properties should always be documented.
Where possible, they should be checked by the program.

[*] a → b = ¬a ∨ b so it’s true when a is false, independently of what b is.

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 23

Properties are SUPER-important!

The job of each constructor is to establish the class invariant .

Each method depends on the invariant being true when it’s called ;

And must preserve the invariant right before it returns .
A method can also have a pre-condition, for example:
vector v must have at least k + 1 elements before calling v[k].
A method can also have a post-condition, for example:
vector’s size() always returns a non-negative integer.

These are your guide to designing correct code.
If you don’t know what your class invariant and method
pre/post-conditions are, then your code is wrong .
It takes practice to come up with good ones (and correct ones).
Aim for simplicity!

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 23

C-style assertions

Properties to be checked at runtime can be written using assert:
#include <cassert>
.
.
.
assert(position < size);

If the condition is false, the program will halt, printing the source
file and line number of the assertion that failed.
It is possible to turn off assertion checking (Stroustrup 24.3.7.2),
but don’t!

Be like NASA: test what you fly and fly what you test

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 23

Assertions or Exceptions?

What should one use – assertions?

assert( 1 <= month && month <= 12 );

Or exceptions?

if ( !( 1 <= month && month <= 12 ) )
throw runtime_error("month out of range\n");

Exceptions!

Assertions are enabled during development but are usually meant
to be disabled in the release code – exceptions remain in the
release code.
Exceptions allow the program to release resources, while
assertions don’t – so need exceptions to release resources.

Not only locally – also in the functions that may have called the
current one.

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 23



Next session: Operator overloading

Another kind of polymorphism: overloading is resolved using static
types.
Any of the C++ operators may be overloaded, and often are.
An overloaded operator may be either a member function (where
the object is the first argument) or an independent function.
example: textual I/O of objects, by overloading the >> and <<
operators.

Reading for this session:
Savitch 1, 6.2, 7.1
(or Stroustrup 2.5.3-4, 2.6, 10.1-6)
(or Horstmann 8)

(Plus, [Stroustrup 24.3.7.2] for how to turn assertions off)
Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 23

Next session: Operator overloading

Another kind of polymorphism: overloading is resolved using static
types.
Any of the C++ operators may be overloaded, and often are.
An overloaded operator may be either a member function (where
the object is the first argument) or an independent function.
example: textual I/O of objects, by overloading the >> and <<
operators.

Reading for this session:
Savitch 1, 6.2, 7.1
(or Stroustrup 2.5.3-4, 2.6, 10.1-6)
(or Horstmann 8)

(Plus, [Stroustrup 24.3.7.2] for how to turn assertions off)

20
23

-1
1-

20

Programming in C++

Next session: Operator overloading

Final Notes – II

Invariant: What doesn’t change.
Constructors have one goal; to establish the invariant (i.e., make that
property true). The methods should then keep it true when they
terminate.

Constant member functions: int get_day() const
{ return day; }

pre-/post-conditions and invariants:

A pre-condition is a property that needs to hold for a method to
work correctly, e.g., the deposit amount should be non-negative.
We can check it at the start of the method if we want to make sure
that we’re not being called with wrong values or when the object is
not able to offer the services of that method (you don’t call a
takeaway when they’re closed).
We can throw an exception if it’s violated.
This is called defensive programming (e.g., Java checks that array
indices are not out-of-bounds).
In some cases, we simply document it and don’t check for it – it’s
the caller’s obligation to ensure it’s true (and they may get garbage
or crash the program if it isn’t – C++ doesn’t check array indices, it’s
your problem!).

A post-condition is a property that a method promises to the caller after
it has completed executing, as long as the pre-condition was true when it
started executing.
Otherwise the method promises nothing – all bets are off.

We can check for it right before returning, e.g., the deposit method
can check that the new balance is equal to the old balance plus the
deposit amount.
We can throw an exception if it’s violated or try to repair the error.
Sometimes we document it because it’s too expensive to check,
e.g., checking if we’ve indeed sorted an array can take a lot of time,
so may want to only do it during testing, not in normal operation.

An invariant is a property that never changes (”in-variant”).
It should hold immediately after the constructors (that’s their main
goal!!!), and hold immediately after any non-const member function, e.g.,
the balance should always be non-negative.

It’s difficult to identify invariants (and to get them right) but it’s them
that actually help us to design correct and robust code.
We usually start by observing what the different constructors try to
achieve – that gives us a glimpse into how the invariant might look
like.
We can then look at the code of each method to see if they
preserve the invariant, i.e., if the invariant was true before the
method, will it be true after it as well?

When thinking of pre-/post-conditions and invariants, and when doing
code testing we need to think of all possible values – not just the ones
we like.
If we receive numbers as input, always check for -1, 0, 1.
Just because you call a parameter amount, it doesn’t mean that it’s a
positive number – it could be anything.

Next session: Operator overloading

Another kind of polymorphism: overloading is resolved using static
types.
Any of the C++ operators may be overloaded, and often are.
An overloaded operator may be either a member function (where
the object is the first argument) or an independent function.
example: textual I/O of objects, by overloading the >> and <<
operators.

Reading for this session:
Savitch 1, 6.2, 7.1
(or Stroustrup 2.5.3-4, 2.6, 10.1-6)
(or Horstmann 8)

(Plus, [Stroustrup 24.3.7.2] for how to turn assertions off)

20
23

-1
1-

20

Programming in C++

Next session: Operator overloading

Final Notes – I

What looks like writing to memory (initialisation: string s = "Hi";
and assignment: s = s + " there";) is in fact a function call
(initialisation: constructor, assignment: assignment operator, i.e.,
operator=).

This is because in C++ you access objects directly.
So you need to be able to distinguish between initialisation and
assignment, as things are not what they look like!

Default constructor: date() – no parameters; it initialises the object
with default values.

The default constructor date() will be created by the compiler if
you define NO constructors at all. This will try to call the default
constructors of your class’ fields (if they exist – this may cause a
compilation error).
It’ll still leave fields of basic types uninitialised. . . :-(
(cause there’s no default constructor for basic types. . . )

Copy constructor: date(const date &o) – single parameter, which
is (a const reference to) another object of the same class.
It initialises your object as a copy of the other object o.

The copy constructor will be created by the compiler if you don’t
define it yourself (even if you’ve defined other constructors).
This will try to call the copy constructors of your class’ fields.



Programming in C++
Session 3 – Overloading

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 27

Polymorphism

Code that works for many types.
subtype polymorphism (dynamic binding) - session 7

The version executed is determined dynamically. (Savitch
14,15; Stroustrup 12; Horstmann 14)

ad-hoc polymorphism (overloading) – this session
The version executed is determined statically from the
types of the arguments (Savitch 8.1; Stroustrup 7.4,11;
Horstmann 13.4)

parametric polymorphism (genericity) – next session
A single version, parameterized by types, is used (Savitch
16.1–2; Stroustrup 13.2–3; Horstmann 13.5)

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 27

Overloading

Term symbol is overloaded. . .
A single symbol has multiple meanings.
The meaning of a particular use is statically determined by the types of
its arguments.
The following may be overloaded in C++:

constructors (as in Java) – often useful.
member functions (or methods, as in Java) – a dubious (and
dangerous) feature.
independent functions – ditto.
operators – heavily used in the standard libraries.
Operator overloading makes for concise programs, but overuse
may impair readability.

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 27

Implicit conversions and overloading

Recall that numeric types may be implicitly converted, e.g. given a
definition

void f(double x) { ... }

it is legal to write f(1), because 1, of type int can be implicitly
converted to double. (Later: similar situation with inheritance of
class types.)
Now suppose there was another definition

void f(int n) { ... }

If we call f(1), the best (most specific) definition is selected, i.e.
the one closest to the call type.

So, to be explicit - say which you really want: f(1.0)
or even better f( double(1) )

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 27



Ambiguity

Given the definitions

void f(int i, double y) { ... }
void f(double x, int j) { ... }

the following is rejected by the the compiler:

f(1, 2); // ambiguous!

We could get around this by also defining

void f(int i, int j) { ... }

Then every application would have a best match.

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 27

Ambiguity

Given the definitions

void f(int i, double y) { ... }
void f(double x, int j) { ... }

the following is rejected by the the compiler:

f(1, 2); // ambiguous!

We could get around this by also defining

void f(int i, int j) { ... }

Then every application would have a best match.20
23

-1
1-

20

Programming in C++

Ambiguity

You’re writing programs for PEOPLE first!

So, DOCUMENT THEM!

f( int(1), double(2) );

OverRidingLoading – Write fewer if’s with OOP!
Overriding – compare:

void move(person p) {
if (p isA driver) {
} else if (p isA cyclist) {
} else if (p isA pilot) {
} else { //*DEFAULT* }

class person {//*DEFAULT*
void move(){...} }

class driver :person{
void move(){...} }

class cyclist :person{
void move(){...} }

class pilot :person{
void move(){...} }

Overloading – compare:
void f( x ) {
if (x isA double) {
} else if (x isA float) {
} else if (x isA int) {
} else {assert(0);}//*ERROR*

void f(double x) {...}
void f(float x) {...}
void f(int x) {...}
//*NO* (runtime) *ERROR*!!!

They allow us to write if/then/else’s better – the compiler does it!
Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 27

Overloaded equality

In C++, we can compare values of built-in types:

int i;
if (i == 3) ... // [*]

We can also compare objects:

string s1, s2;
if (s1 == s2) ...

And similarly for vectors.
The == operator is overloaded :
special definitions have been given for string, vector and many
other types.

[*] Prefer (3 == i), because “if (i = 3)” is valid C++ (and it’s
always true. . . )

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 27



Expanding overloaded operators

An operator can be either an independent function or a member
function, in each case with a special name starting with operator:
Binary operators An expression a == b could mean either of

operator==(a, b) (independent function)
a.operator==(b) (member function)

a is the implicit 1st argument!
Unary operators An expression ! a could mean either of

operator!(a) (independent function)
a.operator!() (member function)

As with ordinary overloading, there must be a unique best match.

a.method(b, c, d) is in reality: method(a, b, c, d)

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 27

Comparing points

class point {
int _x, _y;

public:
point(int x, int y) : _x(x), _y(y) { }

int x() const {return _x;}//p1.x();p1 as if const
int y() const {return _y;}

// p1 == p2; stands for p1.operator==( p2 );
bool operator==( const point &p) const {

return _x == p._x && _y == p.y();
}// methods can read private fields

};
Use const as much as possible.
Put it in by default, only remove it if you (really) need to.
If you need a non-const version, see if you can also provide a
const one (for use with constant objects).

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 27

An alternative definition

We could instead have defined an independent function:

// p1 == p2; now stands for operator==( p1, p2 );
bool operator==(const point &p1, const point &p2){
return p1.x() == p2.x() && p1.y() == p2.y();
}

In either case we can then write

point p1, p2;
...
if (p1 == p2)

...
if (p1 == point(0, 0)) // temporary object

// (only works if second parameter is *const*)
...

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 27

A note on types

The language does not enforce any constraints on the argument
types and return type of operator==, or any other operator.
It is conventional that the arguments have the same type and the
result type is bool.
It is also conventional that the == operator should define an
equivalence relation.
Departing from these conventions is permitted by the language,
but will be very confusing for anyone trying to understand your
code (including a future you).

Equivalence Relation R:
x R x Reflective
x R y → y R x Symmetric
x R y ∧ y R z → x R z Transitive

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 27



Other comparison operators

The <utility> header file (which is included by <string>,
<vector> and other data types) defines

a != b as !(a == b)
a > b as b < a
a <= b as !(b < a)
a >= b as !(a < b)

So usually we need only define == and <, but we can also define the
others if required.

You need to declare:

using namespace std::rel_ops;

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 27

Operators available for overloading

Only built-in operators can be overloaded:

unary ˜ ! + - & * ++ -- ++ --

binary + - * / % ˆ & | << >>
+= -= *= /= %= ˆ= &= |= <<= >>=
== != < > <= >= && ||
= , ->* -> () []

Their precedence and associativity can’t be changed, so the
expressions

a + b + c * d (a + b) + (c * d)

are always equivalent, no matter how the operators are overloaded.
++a; is a.operator++();
a++; is a.operator++(int);//dummy argument (ignored)
Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 27

Output of built-in types

Consider

cout << "Total = " << sum << ’\n’;

This is equivalent to

((cout << "Total = ") << sum) << ’\n’;

The operator << is overloaded in iostream, not in the C++
language.
It associates to the left.
It is defined as a member function of ostream, and returns the
modified ostream.

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 27

The << operator
The built-in meaning of << is bitwise left shift of integers, so that
the expression 5 << 3 is equal to 40.
It associates to the left, so 5 << 2 << 1 is also equal to 40.
It was selected for stream output for its looks. Luckily it associated
the right way.
Different overloadings of the same symbol need not have related
meanings, or even related return types.

Bitwise left shift
5 << 0 101 = 5
5 << 1 1010 = 10
5 << 2 10100 = 20
5 << 3 101000 = 40

x<<y = x ∗ 2y
x>>y = x ∗ 2−y = x/2y

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 27



The ostream class
class ostream {
public:

ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(float n);
ostream& operator<<(double n);
...

};

In the string header file an independent function:

ostream& operator<<(ostream &out, const string &s);

Why not define it as a member function???

ostream& operator<<(ostream &out);

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 27

The ostream class
class ostream {
public:

ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(float n);
ostream& operator<<(double n);
...

};

In the string header file an independent function:

ostream& operator<<(ostream &out, const string &s);

Why not define it as a member function???

ostream& operator<<(ostream &out);

20
23

-1
1-

20

Programming in C++

The ostream class

Why not define printing string objects as a member function?

The writer of the string class cannot modify the ostream class.
So if they want to declare it as a member function they can only do so
within the class string.

But then the meaning of the operator changes – instead of writing
cout << s; we would have to write s << cout; – not what we want!

Do you understand why we’d have to write s << cout; to print a
string s on cout if we’d have defined operator<< as a member
function of class string?
If you do not, start reading again from slide “Expanding overloaded
operators” (slide 8) – repeat until it’s clear.

Output of a user-defined type

class point { int _x, _y;
public:
point(x, y) : _x(x), _y(y) { }
int x() const { return _x; }
int y() const { return _y; }

};

The output operator for points is defined as a non-member function:

ostream& operator<<(ostream &s, const point &p) {
return s << ’(’ << p.x() << ’,’ << p.y() << ’)’;

}

Again – why as a non-member function ???

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 27

Output of a user-defined type – ATTENTION!!!
1 Always output to the ostream parameter (s), NOT to cout/cerr!!!

cout/cerr might not exist!
May want to print to a socket, a string buffer. . .

2 Always return the stream received as parameter
To enable chaining: cout << a << b;

3 Return type and the parameters should all be references – the
object should be a const reference.

We need to change the ostream (so a reference) and we want to
avoid copying the object (so a const reference).

4 We NEVER print a newline at the end!
Some may need to print more things before the newline.

5 We output the bare minimum – nothing more!
Never print things such as:
“The point object is (3,4)”

6 We keep the output simple and easy to READ BACK.
We must be able to eat our own dog food!

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 27



Using various versions of the << operator

Suppose we have an expression a << b, where a has type A, and b
has type B. Then the relevant definition of << could be either

a method of class A taking one argument of type B:
ReturnType A::operator<<(B x)

or an independent function (not a method in a class) taking two
arguments of types A and B:

ReturnType operator<<(A x, B y)
For example the following uses a mixture of these:

point p(2,3);
cout << "The point is " << p << ’\n’;

Can you identify which occurrences of the << operator are
independent functions and which are member functions?

(Hint: Think which types were already known to whomever wrote the
ostream class.)

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 27

On accessing private state

An accidental consequence of the way operators are defined in C++:
An operator defined as a member function has access to the
private and protected fields of its first argument, but not its second
(when the second is an object of a different class).
Sometimes this is not what we want (e.g. for << and >> of
user-defined types).
One work-around is to declare the operator as a friend of the
second class.
Even better to use a helper member function:
class point {
public:
ostream& print_on(ostream &s) {
return s << ’(’ << _x << ’,’ << _y << ’)’; }

};
ostream& operator<<(ostream &s, const point &p) {
return p.print_on(s); }

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 27

Input of built-in types

Input is almost the mirror image of output:

int x, y, z;
cout << "Please type three numbers: ";
cin >> x >> y >> z;

Again >> is overloaded: it knows what to look for based on the
type of its argument.
It also associates to the left, and returns an istream.
By default, >> will skip white space before the item; in this mode
you will not see a space, newline, etc.

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 27

The istream class

class istream : virtual public ios {
public:

istream& operator>>(char &c);
istream& operator>>(unsigned char &c);
istream& operator>>(int &n);
istream& operator>>(unsigned int &n);
istream& operator>>(long &n);
istream& operator>>(float &n);
istream& operator>>(double &n);
...

};

In the string header file, as an independent function:

istream& operator>>(istream &in, string &s);

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 27



The state of an istream

The following methods of istream test its state:
bool eof() the end of the input has been seen.
bool fail() the last operation failed.
bool good() the next operation might succeed.

(Equivalent to ! eof() && ! fail().)
bool bad() the stream has been corrupted: data has been lost

(data was read but not stored in an argument).
(Implies fail(), but not vice-versa.)

A test “if (s)” is equivalent to “if (! s.fail())”

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 27

Input of a user-defined type
istream& operator>>(istream &s, point &p) {
int x, y;
char lpar, comma, rpar;

if (s >> lpar) { //met EOF (End Of File)

if ((s >> x >> comma >> y >> rpar) &&
(lpar == ’(’ && comma == ’,’ && rpar == ’)’))

p = point(x, y); // *constructor*, not setters!
else

s.setstate(ios::badbit); //read failed

}
return s;

}

When “if (s >> lpar)” fails, that means there is no more input.
We have not read any data so far, so have not corrupted the input.
Therefore, we simply return the input stream.

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 27

Input of a user-defined type – ATTENTION!!!
1 Always read from the stream received as parameter – NEVER cin!

cin may not exist!
May want to read from a file/buffer/socket. . .

2 Always return the stream received as parameter
To allow checking for input success.
To allow for chaining.

3 Return and all parameters should be references (non-const).
4 Set the badbit if there’s a problem (i.e., you’ve read something but

cannot use it to set your object) – failing to read anything at all
because of an EOF is NOT a problem.

5 Always read what you print – always (so, keep the format simple!).
6 NEVER use getline() – you’re corrupting the stream!
7 NEVER read into a string and parse that – stream corruption!
8 NEVER, EVER print anything!
9 Prefer constructors over setter member functions.

Avoid setters altogether – not very OO. Same with getters. . .
Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 27

Getters/Setters – Why Not
Avoid getters

Objects should be asked to do tasks themselves:
point1.move(3,5);
shape2.scale(.5);
employee3.clock_in(log_register); etc.
When you’re using getters, you end up doing the task yourself using
the state data you got.
But that’s procedural, not OO programming. . .

Avoid setters
Object’s state should only change because of actions they ’ve
performed on your behalf , not because you’ve done a task and
are now giving them the results.
Don’t spoon-feed your objects – they can take care of themselves.
Setters need to preserve the class invariance.
Much easier to get this right once (in the constructors) and re-use
the constructors from that point on.

Delegate! “What can I ask an object of this class to do for me?”

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 27



Next session

Genericity (parametric polymorphism)
Template classes and functions in C++.
Reading: Savitch 16.1–2; Stroustrup 13.2–3; Horstmann 13.5.
Introducing the Standard Template Library: some container
classes.
Reading: Savitch 19.1; Stroustrup 16.2.3,16.3; Horstmann 13.5.

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 27

Next session

Genericity (parametric polymorphism)
Template classes and functions in C++.
Reading: Savitch 16.1–2; Stroustrup 13.2–3; Horstmann 13.5.
Introducing the Standard Template Library: some container
classes.
Reading: Savitch 19.1; Stroustrup 16.2.3,16.3; Horstmann 13.5.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes

a + b, can be either a.operator+(b) or operator+(a, b). All
methods receive the current object (*this) as their implicit first
argument.

Avoid friend functions – use helper methods.
“Treat your friend as if he might become an enemy.” – Publilius Syrus,
85-43 BC.

Output: Read again slides 17–18. Repeat.

Input: Read again slides 24–25. Repeat.

More on Operators:
https://www.cplusplus.com/doc/tutorial/operators/

More on Operator overloading:
https://en.cppreference.com/w/cpp/language/operators

More on friends: https://isocpp.org/wiki/faq/friends



Programming in C++
Session 4 – Genericity, Containers

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 27

Polymorphism

Code that works for many types.

ad-hoc polymorphism (overloading)
subtype polymorphism (dynamic binding)
parametric polymorphism (genericity)

See also:

Savitch, sections 16.1–2 and 19.1.
Stroustrup, chapter 13 (sections 2 and 3)
Horstmann, section 13.5

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 27

A problem of reuse

Often an operation looks much the same for values of different
types.
This situation is common with operations on container types, such
as vectors, lists, stacks, trees, tables, etc.
For example reversing a vector looks much the same whatever the
types of the elements.
Reuse: separate what varies (the type of the elements) from what
doesn’t (the code), and reuse the latter.
Instead of writing many similar versions, we will write one generic
implementation (parameterized by type), and reuse it for various
types.

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 27

Swapping arguments

Swapping a pair of integers:

void swap(int & x, int & y) {
int tmp = x; x = y; y = tmp;

}

x & y are references, i.e., aliases of real objects - so what does swap
do? Copies CONTENTS !!!
Swapping a pair of strings is very similar:

void swap(string & x, string & y) {
string tmp = x; x = y; y = tmp;

}

And so on for every other type.
Idea: make the type a parameter, and instantiate it to int, string or
any other type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 27



A generic swapping procedure

Instead of the preceding versions, we can write:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Here T is a type parameter. When we use this function, T is
instantiated to the required type:

int i, j;
swap(i, j); // T is int
string s, t;
swap(s, t); // T is string

but in each use T must stand for a single type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 27

A generic swapping procedure

Instead of the preceding versions, we can write:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Here T is a type parameter. When we use this function, T is
instantiated to the required type:

int i, j;
swap(i, j); // T is int
string s, t;
swap(s, t); // T is string

but in each use T must stand for a single type.

20
23

-1
1-

20

Programming in C++

A generic swapping procedure

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

What is the interface of class T we use here?

In T tmp = x; we introduce a new variable of type T and initialise it
with x.
This calls the copy constructor of class T – can you see why it’s that
constructor?
T( const T & o );

In x = y; we are assigning y into x.
This calls the assignment operator of class T.
T & operator=( const T & o );
// form 1 - member function (*almost always*)

In y = tmp; we are assigning tmp into y.
This calls the assignment operator of class T again.
T & operator=( const T & o );

You should be able to understand why these functions are called. If
not, please post on Moodle.

Writing generic code

Prefix the function (or class) with
template <typename T>

and then T stands for a type, which will be supplied when the
function or class is used.
You can equivalently use class instead of typename (and some
old compilers do not recognize typename).
Multiple parameters are also permitted:

template <typename Key, typename Value>

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 27

Reversing a vector of integers

void reverse(vector<int> & v) {
int l = 0;
int r = v.size()-1;
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Reversing a vector of strings is the same, except for string instead of
int as the element type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 27



A generic reversal procedure

Instead of the preceding versions, we can write:

template <typename Elem>
void reverse(vector<Elem> & v) {

int l = 0; // unsigned is better
int r = v.size()-1;// but size_t is *best*
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Possible strategy: write a specific version and then generalize.
Note: We didn’t just change all int’s to Elem!!!

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 27

A generic reversal procedure

Instead of the preceding versions, we can write:

template <typename Elem>
void reverse(vector<Elem> & v) {

int l = 0; // unsigned is better
int r = v.size()-1;// but size_t is *best*
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Possible strategy: write a specific version and then generalize.
Note: We didn’t just change all int’s to Elem!!!

20
23

-1
1-

20

Programming in C++

A generic reversal procedure

Actually, the type of the indices shouldn’t have been int

They’re supposed to hold non-negative values, so they should be
unsigned

And since they need to represent the length of an array, they should
actually have been std::size_t, according to the C++ standard.

std::size_t is an unsigned integer type, that is long enough to hold
the length of an array (unsigned int might not be long enough).

template <typename Elem>
void reverse(vector<Elem> & v) {

std::size_t l = 0;
std::size_t r = v.size()-1;
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Well-known (*very* well-known!) C++ experts claim that
std::size_t was defined wrongly in the standard and should have
been a signed type, since that would have avoided a number of bugs
when writing loops (comparison of signed and unsigned values and
the fact that unsigned variables loop when over/under-flowing, while
signed variables don’t loop).
As such, they advise to use int instead of size_t. But doing so is
going to produce compilation warnings. Compilation warnings are an
indication that your code is incorrect (indeed it will be if the
array/vector has more elements than an int can index).
To resolve this, avoid writing loops that use an ”integer” index – prefer
to use range-based for loops instead where applicable:
en.cppreference.com/w/cpp/language/range-for
Here we need two index (offset really) values, so a range-based for
loop is not applicable – we need to use the begin and end iterators
instead (more on these when we consider pointers) – see next note.

A generic reversal procedure

Instead of the preceding versions, we can write:

template <typename Elem>
void reverse(vector<Elem> & v) {

int l = 0; // unsigned is better
int r = v.size()-1;// but size_t is *best*
while (l < r) {

swap(v[l], v[r]);
++l; // *prefer* over l++
--r; // *prefer* over r--

}
}

Possible strategy: write a specific version and then generalize.
Note: We didn’t just change all int’s to Elem!!!

20
23

-1
1-

20

Programming in C++

A generic reversal procedure

Looping using iterators instead of offsets:

template <typename Elem> // now impl works for lists too!
void reverse(vector<Elem> & v) {

auto l = begin(v);
auto r = end(v);
// r points one element *after* the right target.
while (l != r) {

if (l == --r) return;
swap(*l, *r); // *iterator = element
++l; // *prefer* over l++

}
}

See p. 173 of Stepanov’s “Elements of Programming”
elementsofprogramming.com/
Even better – use one of the standard C++ algorithms if applicable!
en.cppreference.com/w/cpp/algorithm

Hey, can you print the array elements in reverse order here? (see
code commented out at the bottom)
coliru.stacked-crooked.com/a/2c2dc58a2c81fc8c

Using the generic procedure

We can call reverse with vectors of any type, and get a special
version for that type:

vector<int> vi;
vector<string> vs;
...
reverse(vi); // Elem = int
reverse(vs); // Elem = string

This works for any type:

vector<vector<int> > vvi;
...
reverse(vvi); // Elem = vector<int>

(reversing a vector of vectors may seem expensive but a vector’s swap
has been optimised)

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 27



Implementation methods

Code sharing: a single instance of the generic code is generated, and
shared between all uses. This requires a common
representation for types, and is often used in functional
languages.
In Java too: Object.

Instantiation (or specialisation): an instance of the code is generated
for each specific type given as an argument, possibly
avoiding unused instances (C++).
Caution: these methods are only instantiated (and fully
checked) when used.

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 27

Another example

Testing whether a value occurs in a vector (algo std::find):

template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v){

// v & x are const - cannot modify them!!!
for ( std::size t i = 0; i < v.size(); ++i)
if (v[i] == x)

return true;
return false;

}

The generic definition of member only makes sense
1 If the operator == is defined for Elem.
2 And if operator== promises not to modify v[i] or x.
3 And if operator[] promises not to modify v
4 And if size promises not to modify v. . .

⇒How can you optimise member ? (apart from using std::find instead)
Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 27

Another example

Testing whether a value occurs in a vector (algo std::find):

template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v){

// v & x are const - cannot modify them!!!
for ( std::size t i = 0; i < v.size(); ++i)

if (v[i] == x)
return true;

return false;
}

The generic definition of member only makes sense
1 If the operator == is defined for Elem.
2 And if operator== promises not to modify v[i] or x.
3 And if operator[] promises not to modify v
4 And if size promises not to modify v. . .

⇒How can you optimise member ? (apart from using std::find instead)

20
23

-1
1-

20

Programming in C++

Another example

What will happen if we write if (v[i] = x) instead of
if (v[i] == x)?
Parameter v has been declared as a const reference, so the compiler
will catch the error – use const as much as possible!

How can you optimise the loop? It keeps computing v.size() on each
iteration.

Optimisation 1:
template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v) {
size_t i = v.size();
if (0 == i) return false; // no elements
for (i -= 1; 0 < i ; --i) // backwards search

if (v[i] == x) return true;
return (v[0] == x); // v[0] exists: v.size() != 0
}

Optimisation 2: Best because simplest.
template <typename Elem>
bool member(const Elem & x, const vector<Elem> & v) {
for (size_t i = 0, limit = v.size(); i < limit; ++i)

if (v[i] == x) return true;
return false;
}

Since v is const the compiler might be able to optimise the original code – use const as much as possible!
Note: Elem x does not promise the compiler that we’ll treat v as a constant inside member.
const Elem & x does promise that (and avoids copying potentially large objects).

Bounded genericity

Sometimes a generic definition makes use of functions or member
functions that are not defined for all types (e.g. member uses ==).
In C++, this is checked when the definition is specialized for some
type. (Unused functions are not specialized.)
In some other languages, T might be constrained to be a subtype
of a class that provides the required operations, e.g., in Java:
List< ? extends Serializable > myList;

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 27



Bounded genericity

Sometimes a generic definition makes use of functions or member
functions that are not defined for all types (e.g. member uses ==).
In C++, this is checked when the definition is specialized for some
type. (Unused functions are not specialized.)
In some other languages, T might be constrained to be a subtype
of a class that provides the required operations, e.g., in Java:
List< ? extends Serializable > myList;

20
23

-1
1-

20

Programming in C++

Bounded genericity

Since C++20, one can use concepts to provide bounds for the
generic types: en.cppreference.com/w/cpp/concepts

A generic class

The following class is defined in <utility>:

template <typename A, typename B>
class pair {
public:

A first; // Members are
B second; // public!

pair(const A& a, const B& b) :
first(a), second(b) {}

};

Some pair objects:

pair<int, int> p(3, 4);
pair<int, string> n(12, "twelve");

Note we must specify the type arguments (unlike generic functions).
Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 27

A generic class

The following class is defined in <utility>:

template <typename A, typename B>
class pair {
public:

A first; // Members are
B second; // public!

pair(const A& a, const B& b) :
first(a), second(b) {}

};

Some pair objects:

pair<int, int> p(3, 4);
pair<int, string> n(12, "twelve");

Note we must specify the type arguments (unlike generic functions).

20
23

-1
1-

20

Programming in C++

A generic class

Why not use a vector<int> p = {3, 4}; instead of
pair<int, int> p(3,4);?

Apples ’n’ oranges. . .
When using a vector you are stating that all its elements are of the
same type.
When using a pair you are stating that the two elements are of
different types, even if they happen to be represented by the same
basic type.
Number of apples and number of oranges – this cannot be stored in a
vector.
Plus – a vector allows enlarging/reducing its size, while a pair always
has exactly two elements.

A pair is more efficient than a vector (less space, faster).

Why not use a int p[2] = {3, 4}; instead of
pair<int, int> p(3, 4);?

Apples ’n’ oranges. . . (a vector is a generalisation of an array)

Have you noticed the initializer list constructors?
vector<int> p1 = {3, 4}; int p2[2] = {3, 4};
https://www.cplusplus.com/reference/initializer_
list/initializer_list/

Container classes in the STL

The Standard Template Library is part of the C++ standard library, and
provides several template classes, including

Containers
Sequences

vector
deque
list

Associative Containers
set
map

Iterators
See en.cppreference.com/w/cpp/container

Just taught you about deque and set! :-)

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 27



The vector class
template <typename T>
class vector {
public:
vector();
vector(size_t initial_size);
size_t size() const;
void clear();
const T & operator[](size_t offset) const;//The Good

T & operator[](size_t offset) ;//& the Bad
const T & front() const { return operator[](0); }

T & front() { return operator[](0); }
const T & back() const{return operator[](size()-1);}

T & back() {return operator[](size()-1);}
void push_back(const T & x);
void pop_back();

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 27

The vector class
template <typename T>
class vector {
public:
vector();
vector(size_t initial_size);
size_t size() const;
void clear();
const T & operator[](size_t offset) const;//The Good

T & operator[](size_t offset) ;//& the Bad
const T & front() const { return operator[](0); }

T & front() { return operator[](0); }
const T & back() const{return operator[](size()-1);}

T & back() {return operator[](size()-1);}
void push_back(const T & x);
void pop_back();

};

20
23

-1
1-

20

Programming in C++

The vector class

Why do we return a T &?
So that we can assign into the returned value.
That’s why we can write v[i] = 3; – what operator[] returns is a
reference, so it’s assignable.

Note that for the compiler, v[i] is actually v.operator[](i)

Another container: lists

A list is a sequence of items of the same type, that may be
efficiently modified at the ends.
We may access the first or last elements, add elements at either
end and remove elements from either end.
All these operations are fast, independently of the size of the list.
Lists are implemented as linked structures, using pointers.
Other uses of lists require iterators (covered next session).

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 27

The list class
template <typename T> class list {
public:

list();
size_t size() const;
void clear();
const T & front() const ; // The Good

T & front() ; // & the Bad
void push_front(const T & x);
void pop_front();
const T & back() const ; // The Good

T & back() ; // & the Bad
void push_back(const T & x);
void pop_back();

};

Missing: operator[] – too slow with lists!
(just like push/pop_front is too slow with vectors)

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 27



Using a list
Reversing the order of the input lines:

list<string> stack;
string s;
while (getline(cin, s))

stack.push_back(s);
while (stack.size() > 0) {

cout << stack.back() << ’\n’;
stack.pop_back();

}

Can we implement this with vectors?
Yes – vectors support back, push_back, and pop_back.
What if we had used push_front and pop_front instead?
No.

⇒ Use APIs that are supported by most containers,
to make it easy to change the container.

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 27

Commonality between STL containers (pre C++20!)

push back, size, back and pop back common to list and
vector

Use vectors instead? Only a small change is required!
Those common methods could have been inherited from a
common parent class, but the STL designers decided not to. The
various STL classes use common names, but this commonality is
not enforced by the compiler (it is since C++20! – concepts!).
It is not possible to use subtype polymorphism with STL
containers (but is possible with other container libraries).

How come?
Because the use of subtype polymorphism (a.k.a. inheritance) has
an extra cost.
(Non-overridable member functions are faster than overridable
ones – more when we look at inheritance)

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 27

Requirements on containers in the STL

A Container has methods
size_t size() const;
void clear();

with appropriate properties.
A Sequence has these plus

T & front() const;
T & back() const;
void push_back(const T & x);
void pop_back();

But Container, Sequence, etc. are not C++ (in C++20 they are!): they
do not appear in programs, and so cannot be checked by compilers.

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 27

Some STL terminology

The STL documentation uses the following terms:
A concept is a set of requirements on a type (e.g., an interface).
Examples are Container, Sequence and Associative Container.
A type that satisfies these properties is called a model of the
concept.
For example, vector is a model of Container and Sequence.
A concept is said to be a refinement of another if all its models
are models of the other concept.
For example, Sequence is a refinement of Container.

Remember that all this is outside the C++ language.
Note: The C++ standard committee has made concepts part of the
language and thus testable by the compilers. (since C++20)
See standard ones:
https://en.cppreference.com/w/cpp/named_req

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 27



New template classes from old

Often template classes are built using existing template classes. The
following is defined in <stack>:

template <typename Item>
class stack {

vector<Item> v;
public:

bool empty() const { return v.size() == 0; }
void push(const Item & x) { v.push_back(x); }
const Item & top() const { return v.back(); }

Item & top() { return v.back(); }
void pop() { v.pop_back(); }

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 27

Defining methods outside the class

As with ordinary classes, we can defer the definition of methods:

template <typename Item>
class stack {

vector<Item> v;
public:

Item & top();
...

};

The method definition must then be qualified with the class name,
including parameter(s):

template <typename Item>
Item & stack<Item>::top() { return v.back(); }

Note: The class name is stack<Item> *NOT* stack !!!
Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 27

Defining methods outside the class

As with ordinary classes, we can defer the definition of methods:

template <typename Item>
class stack {

vector<Item> v;
public:

Item & top();
...

};

The method definition must then be qualified with the class name,
including parameter(s):

template <typename Item>
Item & stack<Item>::top() { return v.back(); }

Note: The class name is stack<Item> *NOT* stack !!!

20
23

-1
1-

20

Programming in C++

Defining methods outside the class

Note that the full name of the class is stack<Item> as stack is a
generic class.
So it’s
Item & stack<Item>::top() {...
and not
Item & stack::top() {...

Also note that the definition needs to be preceded again by
template <typename Item>, just like the original class, because the
class name contains a type parameter.
So it’s

template <typename Item>
Item & stack<Item>::top() { return v.back(); }

and not just

Item & stack<Item>::top() { return v.back(); }

Maps

A map is used like an vector, but may be indexed by any type:

map<string, int> days;
days["January"] = 31;
days["February"] = 28;
days["March"] = 31;
...
string m;
cout << m << " has " << days[m] << " days\n";
cout << "There are " << days.size() << " months\n";

This is a mapping from strings to integers.

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 27



The map class

template <typename Key, typename Value>
class map {
map();

size_t size() const;
void clear();

size_t count(Key k); // 0 or 1
Value & operator[](Key k); //NOTE THE RETURN TYPE!!!

};

WARNING! The expression m[k] creates an entry for k if none
exists in m already. (return type is a reference!)
Checking if an entry for k exists already? ⇒ Use m.count(k)
[ What does “days[m]” mean? Or “days["March"]=31;”? ]

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 27

The map class

template <typename Key, typename Value>
class map {

map();

size_t size() const;
void clear();

size_t count(Key k); // 0 or 1
Value & operator[](Key k); //NOTE THE RETURN TYPE!!!

};

WARNING! The expression m[k] creates an entry for k if none
exists in m already. (return type is a reference!)
Checking if an entry for k exists already? ⇒ Use m.count(k)
[ What does “days[m]” mean? Or “days["March"]=31;”? ]

20
23

-1
1-

20

Programming in C++

The map class

What does “days[m]” mean?
days[m] ≡ days.operator[]( m )

days["March"]= 31 ≡ days.operator[]("March")= 31;

Why does m[k] create an entry for k if none exists in m already?
Because operator[] needs to be able to return a reference to an
existing element (it returns Value & !).

Summary

Generic code is parameterized by a type T, and does the same
thing for each type.
To use a generic class, we supply a specific type, which replaces
each use of T in the definition.
One way to write a generic class is to write it for a specific type,
and then generalize.
The Standard Template Library includes many useful template
classes.
The STL has a hierarchical organization, but does not use class
inheritance (because inheritance introduces extra costs).
STL uses concepts instead (compiler checked since C++20)

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 27

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 27



Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes – I

Humans shouldn’t have to write the same code over and over for
parameters of type int, char, float, big_huge_object, etc. We
have the right to say it once and have it work for any type (any type that
makes sense): GENERIC PROGRAMMING

// this is a code *template* - T is some name type
template <typename T>
void swap( T & x, T & y ) {// x & y of the same type T
T tmp = x; // calls T’s copy-constructor:
// T(const T &other)

x = y; // calls T’s assignment operator:
//T & operator=( const T & b ) // "method"

y = tmp; // assignment operator again:
//T & operator=( const T & b)
}

See also: “Template Classes in C++ tutorial”
(https://www.cprogramming.com/tutorial/templates.html)

Strategy: write normal code, then generalize it (easier to debug this
way!)

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes – II
Java vs C++ implementation strategies (slide 10):

Java produces one version, where T has been replaced by Object
(a pointer to any kind of object) or a class that’s sufficiently generic.

Good:
Java checks your generic code (*).
Java doesn’t suffer code-bloat – only one version of the code
in the program.

Bad:
Java doesn’t take advantage of the type parameter to
specialize the code for that specific type.

In C++ generic code is instantiated, specialized, and checked when
it’s used – otherwise it’s ignored (and so are the bugs in it).

Good:
Type-specific optimized code!
Checks at compile time that the type parameter works with this
code! (The Java compiler does check but also adds a number
of run-time casts (*) – so you can get a run-time exception in it
due to type incompatibility, he, he, he...)

Bad:
No checks when the code isn’t used.
Code-bloat – one version for each type parameter.

(*) “Type erasure” (https://docs.oracle.com/javase/
tutorial/java/generics/erasure.html), which leads to a
number of “Java restrictions on generic code”
(https://docs.oracle.com/javase/tutorial/java/
generics/restrictions.html). (advanced – not to be assessed
– for curious cats only)

Next session

Arrays and pointers in C++ (Savitch 10.1; Stroustrup 5.1–3,
Horstmann 9.7): a low-level concept we usually avoid.
Iterators: classes that provide sequential access to the elements
of containers.
Iterators in the STL (Savitch 17.3,19.2; Stroustrup 19.1–2) are
analogous to pointers to arrays.

20
23

-1
1-

20

Programming in C++

Next session

Final Notes – III

vector, list, commonality between STL containers (slides 19–21 –
STL container “inheritance” done manually, for increased speed)

new template classes from old (slide 22),

syntax for defining generic member functions outside their generic class
(slide 23), and maps (slides 24–25)



Programming in C++
Session 5 – Pointers and Arrays

Iterators

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023Dr Christos Kloukinas (City, UoL) Programming in C++
https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 26

Introduction

Pointers and arrays: vestiges of C that survive in C++ (Savitch
10.1; Stroustrup 5.1–3; Horstmann 9.7).
Iterators: objects that provide sequential access to the elements
of containers (Savitch 17.3 and 19.2; Stroustrup 19.2).
The interface offered by STL iterators is based on an analogy with
pointers and arrays.
The STL provides a number of generic functions that operate on
iterators. In the STL, these are called algorithms.

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 26

Pointers and arrays

C’s arrays, pointers and pointer arithmetic survive in C++.
Arrays are mostly superseded by vectors.
C/C++ pointers support arithmetic, but this is little used in C++.
Many uses of pointers are superseded by references, but they still
have their uses:

Subtype polymorphism.
Dynamically allocated objects (sessions 8 and 9).
Dynamic data structures.
Legacy interfaces.
Accessing hardware directly.

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 26

Pointers in C and C++

Pointer variables are declared with *
int *ip;

This does not initialize the pointer.
The address of a piece of storage, obtained with &, is a pointer:

int i;
ip = &i;

Pointers are dereferenced with *
*ip = *ip + 3;

In general, * and & are inverses.
& the address-of operator
* the dereference operator

Note: Beware of multiple variable definitions!

int *ip1, ip2; // ip1 is a pointer, ip2 is an int

Why? *ip1 is an int – so is ip2. The * operator binds with the
name, not the type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 26



Pointers vs References
Given the definition of two integer variables: int i = 3, j = 4;

References Pointers
Declaration int &ref = i; int *pointr = &i;
Reading the integer cout << ref; cout << *pointr;
Assigning the integer ref = 5; *pointr = 5;
Using another integer N/A pointr = &j;

pointr is an actual variable, allocated somewhere in memory.
A ref is more like a const pointer (int * const r = &i;),
with an easier interface (no * and &), and the additional assertion
that r != nullptr.

_______ (On a 16 bit computer:)
1024 | 3 | i, ref
1040 | 4 | j
1056 | 1024 | pointr (holds the address of i)
1072 | ... | (other - possibly garbage)
1088 | ... | (other - possibly garbage)

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 26

Undefined pointers

The storage pointed to by a pointer may become undefined. There
will be no warning from the compiler or runtime system:

int *p;
{

int i = 5;
p = &i;

} // i ceases to exist
*p = 3; // undefined behaviour

Like a telephone number that has gone out of use – calling it
doesn’t reach anyone (or may reach another person).

It is the programmer’s responsibility to ensure that the pointer points
at something valid whenever it is dereferenced.

BTW, local variable pointers are not initialized (no basic type is).
⇒ p’s initial value is garbage .

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 26

Null pointers

The value 0 in pointer types is distinct from any address.
int *ip = 0;

cf. null in Java.
Since C++11 one should use nullptr instead of 0 – avoid
using NULL (comes from C).
Pointers that are global variables are initialized to nullptr

Again, pointers that are local variables are not initialized.

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 26

More pointers
The following declaration

const int *p;
means that things pointed to by p cannot be changed through p
(but p itself can be changed.)

Read it from right to left till the *, then left to right:
“p is a pointer (*) to a constant (const) integer (int).”

It is possible to have pointers to pointers:
int i;
int *p1 = &i;
int **p2 = &p1;
int ***p3 = &p2;

These may be qualified with const in various ways:

int * p1;// a pointer to an int
const int * p2;// a pointer to a const int

int * const p3;// a const pointer to an int
const int * const p4;// a const pointer to a const int

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 26



More pointers
The following declaration

const int *p;
means that things pointed to by p cannot be changed through p
(but p itself can be changed.)

Read it from right to left till the *, then left to right:
“p is a pointer (*) to a constant (const) integer (int).”

It is possible to have pointers to pointers:
int i;
int *p1 = &i;
int **p2 = &p1;
int ***p3 = &p2;

These may be qualified with const in various ways:

int * p1;// a pointer to an int
const int * p2;// a pointer to a const int

int * const p3;// a const pointer to an int
const int * const p4;// a const pointer to a const int

20
23

-1
1-

20

Programming in C++

More pointers

int * * p1;// a pointer to a pointer to an int
const int * * p2;// ???

int * const * p3;// ???
int * * const p4;// ???

const int * const * p5;// ???
const int * * const p6;// ???

int * const * const p7;// ???
const int * const * const p8;// ???

Pointers to objects

Given a class

class point {
public:

int x, y;
point (int xx, int yy) : x(xx), y(yy) {}

};

We can refer to members as follows:

point my_point(2, 3);
point *p = &my_point;
cout << (*p).x << ’\n’;

or equivalently as

cout << p->x << ’\n’;

and similarly for member functions.
Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 26

Arrays

We have already used vectors, but C++ also has arrays, which are
fixed in size:

int arr[40];
for (std::size_t i = 0; i < 40; ++i)

arr[i] = arr[i] + 5;

Unlike Java, there is no check that the index is in bounds.
Advice:

Use vector<T> instead when the size is unknown
With a fixed size use array<T> instead!

(Help the compiler – it’ll pay you back!)

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 26

Arrays

We have already used vectors, but C++ also has arrays, which are
fixed in size:

int arr[40];
for (std::size_t i = 0; i < 40; ++i)

arr[i] = arr[i] + 5;

Unlike Java, there is no check that the index is in bounds.
Advice:

Use vector<T> instead when the size is unknown
With a fixed size use array<T> instead!

(Help the compiler – it’ll pay you back!)20
23

-1
1-

20

Programming in C++

Arrays

We can find the length of an array using the sizeof function:
int l = sizeof(arr) / sizeof(int);
Only works if arr is the name of the array, not if it’s a pointer. . .

sizeof(Name of the array)
/ sizeof(Type of the elements)



Pointers and arrays

When assigning or initializing from an array, a pointer to the first
element is copied, not the array:

int arr[40];
int *p = arr; // What’s arr ???

Now *p is equivalent to arr[0], and indeed to *arr.
The following are all equivalent:

arr[0] = arr[0] + 5;
*p = *p + 5;
*arr = *arr + 5;

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 26

Parameter passing

Parameter passing is a form of initialization, so an array

int arr[40];

can be passed as a pointer parameter:

void f(int *p) { ... }

Functions that really take a pointer to a single element look the same.
(pointer passing less common in C++ than in C, thanks to references)

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 26

Parameter passing

Parameter passing is a form of initialization, so an array

int arr[40];

can be passed as a pointer parameter:

void f(int *p) { ... }

Functions that really take a pointer to a single element look the same.
(pointer passing less common in C++ than in C, thanks to references)

20
23

-1
1-

20

Programming in C++

Parameter passing

But it might be used if we want to:

re-use a C library; or

write a C++ library that may be used by C programs as well.

C-style strings

In C, strings are stored in char arrays, with the end of the string
marked by a ’\0’ character.

char name[]="Bill";//array of 5 chars
char *name2="Fred";//pointer to a *const* array of 5 chars

Often char * indicates a C-style string, e.g.,
int main(int argc, char **argv);

C++’s string type is much safer.
A C-style string can be used where a string is expected, and is
automatically converted.
That’s done with constructor string(char *s);

If you need a C-style string for some legacy interface, use the
method c str() of string.
For example, string s; char *p = s.c_str(); foo(p);

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 26



Pointer arithmetic
When p has type T *, and points to the i th element of an array of Ts:

T arr[N];
T *p = arr + i; // MUST: i < N !

Then:
p + k is a pointer to the (i + k )th element.
++p is equivalent to p = p+1
p - k is a pointer to the (i − k )th element.
--p is equivalent to p = p-1
p[k] is equivalent to *(p+k)

Again, there are no checks that anything is in bounds.
Can also subtract two pointers (ptrdiff_t), which should be pointers
to the same array (*NOT* checked of course. . . ).
T *p1 = arr + i; // MUST: i < N !
T *p2 = arr + j; // MUST: j < N !
ptrdiff_t diff = p2 - p1; // = j - i

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 26

A Game!!!

Consider:

int arr[] = {1, 2, 3, 4, 5};
int *p = arr;

Which are legal , which are illegal?
1 p[2]
2 2[p]
3 p + 2 ONLINE QUIZ NOW! t.ly/zZDlQ
4 arr[2]
5 2[arr]
6 arr + 2

???
What do the legal ones mean?

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 26

Looping over an array

Given an array of integers:

int arr[40];

The following are (functionally) equivalent:
Using indices (slower):

for (std::size_t i = 0; i < 40; ++i)
arr[i] = arr[i] + 5;

Using pointers (faster):
int *end = arr + 40;
for (int *p = arr; p != end; ++p)

*p = *p + 5;
Notes:

arr + 40 SHOULDN’T be dereferenced.
Pointer loop is faster! (why?)

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 26

Iterators

Iterators are objects providing sequential access to container elements

The Java interface is analogous to a linked list or a stream:
public interface java.util.Iterator {

boolean hasNext();
Object next();
void remove(); // not always supported

}

C++ STL iterators are modelled after array pointers

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 26



Iterators in the STL

Iterating over a list of strings:

list<string> names;
...
for (list<string>::iterator p = names.begin();

p != names.end(); ++p)
cout << *p << ’\n’;

Sequences include a type iterator and two iterators:
begin() positioned at the start of the sequence, and

end() positioned just past the end of the sequence.
Each iterator supports the operators ==, ++ and *.

For int *p we now have list<int>::iterator p.
What about const int *p ?
list<int>:: const iterator p (one word, with a hyphen)
c.begin()/c.end() become c.cbegin()/c.cend()

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 26

Iterators in the STL

Iterating over a list of strings:

list<string> names;
...
for (list<string>::iterator p = names.begin();

p != names.end(); ++p)
cout << *p << ’\n’;

Sequences include a type iterator and two iterators:
begin() positioned at the start of the sequence, and

end() positioned just past the end of the sequence.
Each iterator supports the operators ==, ++ and *.

For int *p we now have list<int>::iterator p.
What about const int *p ?
list<int>:: const iterator p (one word, with a hyphen)
c.begin()/c.end() become c.cbegin()/c.cend()

20
23

-1
1-

20

Programming in C++

Iterators in the STL

Prefer using begin(container) and end(container)

Instead of container.begin() and container.end()

The former form works with arrays as well; *and*
It selects container.begin() or container.cbegin()
automatically, depending on whether container is const or not.

A variation: typedefs

In C++ we can define new names for types using typedef:

typedef int time;
typedef char * cstr;
typedef deque<string> phrase;
typedef vector<vector<double> > matrix;

(We can also do this in C, but only outside functions.)
With typedef we can introduce an abbreviation for the iterator type:

typedef list<string>::iterator iter;
for (iter p = begin(names), e = end(names);

p != e; ++p)
cout << *p << ’\n’;

// Or *better*: USE auto!
for (auto p = begin(names), e = end(names);

p != e; ++p)
cout << *p << ’\n’;

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 26

The analogy

C STL – C++98
array arr container c
pointer p iterator p
start pointer arr start iterator c.begin()/cbegin()
end pointer arr + LENGTH end iterator c.end()/cend()
increment ++p ++p
dereference *p *p

Since C++11 – One API for all!
array arr container c
pointer p iterator p
start pointer begin(arr) start iterator begin(c)
end pointer end(arr) end iterator end(c)
increment ++p ++p
dereference *p *p

begin(c) returns a const/non-const iterator as appropriate! :-)
Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 26



Iterator is a concept

Iterator is an STL concept, not a C++ class.
All iterators support the same operations in the same way:

Switching representations is relatively easy.
Generic code can be written using these operations.

Special kinds of iterators support more operations.
Checking is done when generic code is instantiated.

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 26

Iterator concepts in the STL

Different containers have different kinds of iterator, belonging to a
hierarchy of iterator concepts:
Input Iterator supports ==, ++, (unary) * and ->

e.g., the iterator of forward list (née slist, see
issue: https://stackoverflow.com/a/6885508)

Bidirectional Iterator supports all these as well as --
e.g., the iterator of list.

Random Access Iterator supports all these as well as <, +, - and [],
which should behave similarly to operations on pointers.
e.g., the iterator of vector or deque.

Why isn’t < supported for input/bidirectional iterators?
What does iter[3] stand for?

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 26

A generic function

template <typename Iterator, typename Elem>
int count(Iterator start,

Iterator finish, const Elem & v) {
int n = 0;

for (Iterator p = start; p != finish; ++ p)
if ( * p == v)

n++;
return n;

}

There are several type requirements here (checked at instantiation):
Iterator must be at least an input iterator type;
Iterator must be an iterator with element type Elem; and
The Elem type must support == .

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 26

Using the generic count function

The count function is defined in <algorithm>.
Here is an example of its use:

list<string> names;
string s;
....
std::size_t n = count(begin(names), end(names), s);
cout << s << " occurs " << n << " times\n";

In the above use,
Iterator is list<string>::iterator
Elem is string.

Check <algorithm> out! en.cppreference.com/w/cpp/algorithm

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 26



Iterating over associative containers
A map associates keys with values.
The iterator of a map produces pairs of key and value.
If p is a map<K, V> iterator, then *p has type pair<const K, V>.

map<string, int> table;//How to print map’s elements?
...
typedef map<string, int>::iterator Iter;
for (Iter p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (auto p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (const auto &pr : table) // range for
cout << pr.first << " -> " << pr.second << ’\n’;//Or

for_each(begin(table), end(table),
[](const auto &pr) { // a lambda function
cout << pr.first << " -> " << pr.second << ’\n’;

});// for_each can be ***PARALLELIZED***!!!

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 26

Iterating over associative containers
A map associates keys with values.
The iterator of a map produces pairs of key and value.
If p is a map<K, V> iterator, then *p has type pair<const K, V>.

map<string, int> table;//How to print map’s elements?
...
typedef map<string, int>::iterator Iter;
for (Iter p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (auto p = begin(table); p != end(table); ++p)
cout << p->first << " -> " << p->second << ’\n’;//Or

for (const auto &pr : table) // range for
cout << pr.first << " -> " << pr.second << ’\n’;//Or

for_each(begin(table), end(table),
[](const auto &pr) { // a lambda function

cout << pr.first << " -> " << pr.second << ’\n’;
});// for_each can be ***PARALLELIZED***!!!

20
23

-1
1-

20

Programming in C++

Iterating over associative containers

#include <string>
#include <iostream>
#include <algorithm>
#include <execution>

std::map<std::string, int> table;
std::for_each(std::execution::par_unseq,

//instance of parallel_unsequenced_policy
std::begin(table), // start from.
std::end(table), // end before.
// a lambda (anonymous) function
[](const auto &pair) {

std::cout << pair.first
<< " -> "
<< pair.second
<< std::endl;

});// std::for_each ***PARALLELIZED***!!!

Check out en.cppreference.com/w/cpp/algorithm/reduce

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>).
pointers most useful for dynamic binding & structures.

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators provide sequential access to the elements of containers.
STL iterators look like pointers (++, *, -> etc).
Many generic functions use iterators.
After the reading week:
inheritance in C++.
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)
Genericity and inheritance.

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 26

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>).
pointers most useful for dynamic binding & structures.

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators provide sequential access to the elements of containers.
STL iterators look like pointers (++, *, -> etc).
Many generic functions use iterators.
After the reading week:
inheritance in C++.
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)
Genericity and inheritance.

20
23

-1
1-

20

Programming in C++

Summary

(Area left empty on purpose)



Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>).
pointers most useful for dynamic binding & structures.

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators provide sequential access to the elements of containers.
STL iterators look like pointers (++, *, -> etc).
Many generic functions use iterators.
After the reading week:
inheritance in C++.
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)
Genericity and inheritance.

20
23

-1
1-

20

Programming in C++

Summary

Final Notes – I:

Pointers are used with operators & (address-of) and * (dereference).

& returns the memory address where a variable/object(/function. . . )
can be found.
* takes an address and returns the item at that address.

Pointers are declared as
type * p = nullptr; // Not 0/NULL!!! C++11
Such declarations are read right-to-left: “p is a pointer (*) to a type”. So
given some integer i:

const int * p1 = &i;
p1 is a pointer to a constant int (can point to another integer j but
cannot be used to modify any of them)
int j = 3;
*p1 = 4; // attempt to modify i - invalid
p1 = &j; // attempt to point elsewhere - valid

int * const p2 = &i;
p2 is a constant pointer to an int (cannot point to another integer
but *can* be used to modify the integer it’s pointing at)
int j = 3;
*p2 = 4; // attempt to modify i - valid
p2 = &j; // attempt to point elsewhere - invalid

const int * const p3 = &i;
p3 is constant pointer to a constant int (cannot point to another
integer nor be used to modify the integer it’s pointing at)
int j = 3;
*p3 = 4; // attempt to modify i - invalid
p3 = &j; // attempt to point elsewhere - invalid

We can have pointers to pointers (to represent things like
multi-dimensional arrays):
int ** pp1 = &p1;

pp1 is a pointer to a pointer to an int (or pp1 is a double pointer to
an int).
const can be sprinkled around quite freely as before:
int * const * const pp2 = &p1;
Read it right-to-left: pp2 is a constant pointer to a constant
pointer to an int.

The null pointer is nullptr since C++11 – use that instead of 0 or
NULL (C language). See an article on “enums and nullptr in C++11”
(https://www.cprogramming.com/c++11/c+
+11-nullptr-strongly-typed-enum-class.html),

An array’s name can be used as a pointer to the first element of the
array. int arr[40]; int *p = arr;

Pointers support arithmetic operators (slide 14). Incrementing a pointer
takes you to the next address that represents an object of the type you’re
pointing at (so it’s address+1 for a char, address+4 for a 32 bit int,
address+432 for an object that’s 432 bytes long, etc.)

Array elements can be accessed with pointers (more efficient than
indexes – slide 16):

for (int *p = arr, *end = arr+40; p != end; ++p)
*p = *p + 5;

This pattern is extremely important – it’s how we use iterators to go
over container elements.
(Why more efficiently than indexes? Check slide 14 to see what arr[i]
is translated to)

Each container defines two types: iterator and const_iterator:

vector<int>::iterator i1; // ---> int *p1;
list<float>::const_iterator i2; // ---> const float *p2;

The looping pattern:

for (vector<int>::iterator
p = begin(vi), end = end(vi); p != end; ++p)

*p = *p + 5;

Learn how to write generic functions that take iterators (slide 23)

Summary

Some features inherited from C:

arrays mostly superseded by vector<T> (& array<T>).
pointers most useful for dynamic binding & structures.

Mostly superseded by references & smart pointers
(unique ptr<T>, shared ptr<T>, weak ptr<T>)

Iterators provide sequential access to the elements of containers.
STL iterators look like pointers (++, *, -> etc).
Many generic functions use iterators.
After the reading week:
inheritance in C++.
(Savitch 14, 15 and 16.3; Stroustrup 12; Horstmann 14)
Genericity and inheritance.

20
23

-1
1-

20

Programming in C++

Summary

Final Notes – II:

Also learn to use auto when your compiler supports C++11:
The looping pattern:

for (auto p = begin(vi), end = end(vi);
p != end;
++p) {

*p = *p + 5; // LEARN THIS!!!
}

Functions begin(c) and end(c) work when c is either a
container or an array (C++11), while c.begin() and c.end()
only work with containers – use the former form rather than the
latter.
Both functions return the correct iterator (const or not) depending
on whether c is const or not: watch out for this – might cause
compilation errors if you try to store it in the wrong iterator variable:
void print( const vector<int> & v ) {
// for (vector<int>::const_iterator // CORRECT

for (vector<int>::iterator // ERROR
p = begin(v),
end = end(v);

p != end;
++p)

cout << *p << ’ ’;
}
Crash course on auto:

int i = 3;
auto j = i; /* j is also an int, initialized as a

copy of i */
auto && k = i; /* k is a *reference* to an int (&& is

not a typo - use that with auto) */
const auto && m = i; /* m is a constant reference to

an int */
More on auto: https://www.cprogramming.com/c++11/c+
+11-auto-decltype-return-value-after-function.
html
More on rvalue references (&&):
https://www.cprogramming.com/c++11/
rvalue-references-and-move-semantics-in-c++11.
html
(advanced – not to be examined. First time I read this I had to go
and lie down – haven’t read it again since. . . ).

File copy-string.cc (*) contains four different implemen-
tations of a function that copies a source (s) C-style string
(e.g., an array of characters) into a target (t) C-style string.

Version strcpy3 is the canonical one – once you’ve
understood why/how it works, your understanding of point-
ers should be quite good (and of the difference between i++
and ++i).
(*) https://www.staff.city.ac.uk/c.kloukinas/cpp/
session-05/copy-string.cc

// *** The ONE, TRUE strcpy!!! ***
void strcpy3(const char *s, char *t) {
while ((*t++ = *s++)) /* extra parentheses added

to get rid of warning */
; /* do nothing in the body - loop condition

does the job */
}
/*
* Source: Kernighan & Ritchie, The C Programming
* Language, 2nd Edition, Prentice Hall PTR, 1988,
* p. 106
*
* strcpy: copy s(ource) into t(arget).
* ASSUMPTION: t(arget) has enough space for the
* string inside s(source)!
*/



Programming in C++
Session 6 – Inheritance in C++

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 24

The most important slide of the lecture

Why use inheritance?

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 24

Reasons for Inheritance (revision)

Implementation Re-Use Bad-ish. . .
new classes extend existing classes with additional fields and
methods, and can override the definitions of existing methods.

Interface/Type Hierarchies (Is-A relations [*]) Good!
the new class is also a subtype of the old: its objects can be used
wherever objects of the old class can (subtype polymorphism) with
the appropriate method selected by dynamic binding.
abstract classes declare methods without defining them: the
methods are defined in subclasses.

[*] vs Has-A relations:
A car Is-A vehicle.
A car Has-A steering wheel.

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 24

Inheritance in C++

The basic concept is similar to Java, but
different syntax
objects of subclasses may be assigned to object variables of
superclasses, by slicing off the extra parts.
interactions with:

overloading
pointers
template classes

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 24



Inheritance syntax in Java and C++

in Java:
public class holiday extends date {

in C++:
class holiday : public date {

we will always use public inheritance.
C++ terminology: date is a base class;
holiday is a derived class.
multiple inheritance (in C++):

class child : public parent1, public parent2 {

there are no interfaces in C++.

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 24

A base class

Recall the class date from session 2:

class date {
int day, month, year;

public:
date(); // today’s date
date(int d, int m);
date(int d, int m, int y);
int get_day() const { return day; }
int get_month() const { return month; }
int get_year() const { return year; }

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 24

Inheritance and initialization

The members of base class(es) are initialized similarly to subobjects:

class holiday : public date {
string name;

public:
holiday(string n) : date(), name(n) {}

holiday(string n, int d, int m) :
date(d, m), name(n) {}

string get_name() const { return name; }
};

Members of the base class can’t be initialized directly:
use constructor date

(can only use it in the initialisation list!)

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 24

Order of initialization – IMPORTANT!

Initialization is done in the following order:
1 constructors for base classes
2 members (in order of declaration) – WARNING!!! BE CAREFULL!!!
3 body of constructor

Principle: The constructor body needs a fully initialised object!

Danger:
Order of initializers has *NO* effect,
only declaration order matters!

So: Initialise members with order-independent expressions

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 24



Initialization and assignment

As in Java, we can initialize and assign from descendent (derived)
classes, but here objects are copied, not references:

holiday h("Anzac Day", 25, 4);
date d = h;

initializes d as a copy of the date part of h.
d = h;

copies the date part of h into d.
In both cases, the object is sliced .

Note: Call-by-value initialises a new variable, so it also involves
copying (and slicing).

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 24

Method overriding in Java and C++

The default in C++ is the opposite to that in Java:
in Java:

final int non_redefinable_method() { ... }
int redefinable_method() { ... }

abstract int undefined_method();

in C++:
int non_redefinable_method() { ... }

virtual int redefinable_method() { ... }
virtual int undefined_method() = 0;

The latter is called a pure virtual function.
When a method is declared virtual in a base class, it is also
virtual in derived classes (the keyword there is optional).

Why is it the opposite?

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 24

Method overriding in Java and C++

The default in C++ is the opposite to that in Java:
in Java:

final int non_redefinable_method() { ... }
int redefinable_method() { ... }

abstract int undefined_method();

in C++:
int non_redefinable_method() { ... }

virtual int redefinable_method() { ... }
virtual int undefined_method() = 0;

The latter is called a pure virtual function.
When a method is declared virtual in a base class, it is also
virtual in derived classes (the keyword there is optional).

Why is it the opposite?

20
23

-1
1-

20

Programming in C++

Method overriding in Java and C++

It’s the opposite because non-redefinable member functions are faster
than redefinable (virtual) ones. (C++’s #1 aim is speed!)

Redefinable member functions are actually pointers to functions – at run
time the code has to dereference the pointer held in the class
information of the current object to figure out which code to execute.

This also explains the bizarre syntax for abstract (pure virtual) member
functions:
“ = 0” means that the function pointer is the nullptr, i.e., there’s no
respective code for it!

Method overriding

Overridable methods must be declared virtual:

class date {
...
virtual string desc() const { ... }

};

Overriding in a derived class:

class holiday : public date {
...
virtual string desc() const {

return name + " " + date::desc();
}

};

Note: Qualify with the class name to get the base version.
Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 24



Static and dynamic binding
Given functions

void print_day1(date d) {
cout << "It’s " << d.desc() << ’\n’;

}

void print_day2(date &d) {
cout << "It’s " << d.desc() << ’\n’;

}

then

holiday xmas("Christmas", 25, 12, 2004);
print_day1(xmas); // It’s 25/12/2004
print_day2(xmas); // It’s Christmas 25/12/2004

Why the different behaviour?!
(the answer is on slide 9)

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 24

Static and dynamic binding
Given functions

void print_day1(date d) {
cout << "It’s " << d.desc() << ’\n’;

}

void print_day2(date &d) {
cout << "It’s " << d.desc() << ’\n’;

}

then

holiday xmas("Christmas", 25, 12, 2004);
print_day1(xmas); // It’s 25/12/2004
print_day2(xmas); // It’s Christmas 25/12/2004

Why the different behaviour?!
(the answer is on slide 9)

20
23

-1
1-

20

Programming in C++

Static and dynamic binding

Dynamic Binding

In order to get dynamic binding we need:

1 a type hierarchy (inheritance)

2 some virtual member functions

3 references or pointers to objects
(so that the compiler isn’t sure what the real object type is)

Abstract classes

A class containing a pure virtual function is abstract, though this is not
marked in the syntax.

class pet {
protected:

string _name;
public:

pet(string name) : _name(name) {}
virtual string sound() const = 0;
virtual void speak() const {

cout << _name << ": " << sound() << "!\n";
}

};

As in Java, abstract classes may not be instantiated, so no variable
may have type pet, but we can declare a reference (or a pointer).

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 24

Derived classes

class dog : public pet {
public:

dog(string name) : pet(name) {}
string sound() const { return "woof"; }
void speak() const { // virtual is optional

pet::speak();
cout << ’(’ << _name << " wags tail)\n";

}
};

class cat : public pet {
public:

cat(string name) : pet(name) {}
virtual string sound() const { return "miao"; }

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 24



Subtype polymorphism and dynamic binding

We cannot pass pets by value, but we can pass them by reference:

void speakTwice(const pet &a_pet) {
a_pet.speak();
a_pet.speak();

}

Then we can write

dog a_dog("Fido");
speakTwice(a_dog);
cat a_cat("Tiddles");
speakTwice(a_cat);

Why can’t we pass a pet by value to speakTwice ?

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 24

Subtype polymorphism and dynamic binding

We cannot pass pets by value, but we can pass them by reference:

void speakTwice(const pet &a_pet) {
a_pet.speak();
a_pet.speak();

}

Then we can write

dog a_dog("Fido");
speakTwice(a_dog);
cat a_cat("Tiddles");
speakTwice(a_cat);

Why can’t we pass a pet by value to speakTwice ?

20
23

-1
1-

20

Programming in C++

Subtype polymorphism and dynamic binding

Because

call-by-value involves creating a new local object that is initialised using
the original parameter (see slide 9); and

a_pet is an abstract class, so we cannot instantiate it. . .

Caution: inheritance and overloading
class A {

virtual void f(int n, Point p) { ... }
};

Now suppose we intend to override f in a derived class, but make a
mistake with the argument types:

class B : public A {
void f(Point p, int n) { ... }

};

f will be accepted as a definition of a new and different member
function.

Even forgetting a single const or changing a * to a & means it’s a
different function!

class B : public A {
void f(Point p, int n) override { ... }

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 24

Caution: inheritance and overloading
class A {

virtual void f(int n, Point p) { ... }
};

Now suppose we intend to override f in a derived class, but make a
mistake with the argument types:

class B : public A {
void f(Point p, int n) { ... }

};

f will be accepted as a definition of a new and different member
function.

Even forgetting a single const or changing a * to a & means it’s a
different function!

class B : public A {
void f(Point p, int n) override { ... }

};

20
23

-1
1-

20

Programming in C++

Caution: inheritance and overloading

How can you protect yourself against such mistakes?

Since C++11 there’s a new keyword override that you can use to
state that you’re trying to override a member function of one of your
base classes:

class B : public A {
void f(Point p, int n) override { ... }
// Now the compiler catches the error

};

There’s also a keyword final to state that derived classes should
not be allow to further override the member function:

class A {
virtual void f(int n, Point p) { ... }
virtual int g(Point p) const { ... }

};
class B : public A {
void f(int n, Point p) override { ... }
int g(Point p) const final { ... }

};



Which version is selected?

If more than one overloaded function or method matches, the best
(most specific) is chosen:

class pet {};
class cat : public pet {};

void wash(pet &x) { ... }
void wash(cat &x) { ... }

int main() {
cat felix;
wash(felix);// both functions match; second is used

}

Overload: STATIC (i.e., compile-time) decision
Override: DYNAMIC (i.e., run-time) decision

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 24

OverLoading
Riding – Write fewer if’s with OOP!

Overloading – STATIC/COMPILATION TIME:
void f( pet & x ) {
if (x isA cat) {}
else if (x isA dog) {}
else if (x isA hamster) {}
else {assert(0);}//*ERROR*

void f(cat &x) {...}
void f(dog &x) {...}
void f(hamster &x) {...}
//*NO* (runtime) *ERROR*!!!

Overriding – DYNAMIC/RUN TIME: (only need inheritance for this)

void move(person &p) {
if (p isA driver) {}
else if (p isA cyclist) {}
else if (p isA pilot) {}
else { //*DEFAULT* } }

class person {//*DEFAULT*
virtual void move(){...} }

class driver :person{
void move(){...} }

class cyclist :person{
void move(){...} }

class pilot :person{
void move(){...} }

Write better if/then/else’s – let the compiler do it!
Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 24

Pointers and subtyping

Pointers to derived classes are subtypes of pointers to base classes
(i.e., if I can point to a base class, I can also point to a derived class):

cat felix;
pet *p = &felix;

No slicing occurs here, because pointers are copied not objects
(a memory address is the same size as another memory address):

p->speak(); // miao

The speak method uses the virtual method sound, which is defined in
the cat class, and selected by dynamic binding (see slides 6–13).

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 24

Containers of pointers

Often a container holds pointers to a base type:

vector<pet *> pets;
cat felix("Felix");
dog fido("Fido");
pets.push_back(&felix);
pets.push_back(&fido);

When we access elements of the vector, dynamic binding is used:

for (std::size_t i = 0; i < pets.size(); ++i)
pets[i]->speak(); // miao, woof

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 24



Introducing dynamic allocation

Typically the number of things in the collection is unpredictable.
So allocate objects dynamically (as in Java):

cat *cp = new cat("tiddles");
pets.push_back(cp);

Here the pointer cp is local, but the object it points at is on the
heap (so it outlasts the current block).
Major difference: in C++ the programmer is responsible for
deallocation, but we’ll ignore that till session 8.
Better (C++11):

#include <memory>
vector<shared_ptr<pet>> pets;
// shared_ptr<cat> cp = make_shared<cat>("Tom");//Old
auto cp = make_shared<cat>("Tom");//New, simpler!!!
pets.push_back(cp);

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 24

Templates and subtyping (I)

When cat is a subtype of pet,
cat * IS a subtype of pet *, but

vector<cat *> IS NOT a subtype of vector<pet *>!

Why not? Consider this code fragment:

vector<cat *> cats;
vector<pet *> *p = &cats; // illegal
dog fido;
p->push_back(&fido); // would be trouble

See Stroustrup 13.6.3(3rd ed.)/27.2.1(4th ed.) for more.

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 24

Templates and subtyping (II)

It is possible to inherit from a template class
template <typename T>
class history { ... };

template <typename T>
class my_history : public history<T> { ... };

The parameters need not be the same
class browser_history : history<string> { ... };

template <typename T>
class pointer_history : history<T *> { ... };

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 24

Templates and subtyping (II)

It is possible to inherit from a template class
template <typename T>
class history { ... };

template <typename T>
class my_history : public history<T> { ... };

The parameters need not be the same
class browser_history : history<string> { ... };

template <typename T>
class pointer_history : history<T *> { ... };20

23
-1

1-
20

Programming in C++

Templates and subtyping (II)

Why not

template <typename T>
class browser_history : history<string> { ... };

???
Because borwser_history is NOT a template class, it simply
inherits from a (specialised) template class.



Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 24

Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

20
23

-1
1-

20

Programming in C++

Next session: multiple inheritance

(area left empty on purpose)

Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

20
23

-1
1-

20

Programming in C++

Next session: multiple inheritance

(area left empty on purpose)

Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

20
23

-1
1-

20

Programming in C++

Next session: multiple inheritance

(area left empty on purpose)



Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

20
23

-1
1-

20

Programming in C++

Next session: multiple inheritance

Final Notes – I

Inheritance is used for:
1 Code re-use (bad, bad, bad! That’s why Java allows us to inherit

from at most one class)
2 Defining type-hierarchies through the IsA relation between types:

car Is-A vehicle, cat Is-A pet (good, good, good! That’s why Java
allows us to inherit from as many interfaces as we want)

Inheritance is required if we need *dynamic binding*, i.e., code that
behaves differently at run-time depending on the real type of the objects
involved.

For dynamic binding we also need to use references or pointers
(they keep the real type of the objects and don’t cause slicing to
happen).
And of course we need some member functions to be virtual,
otherwise the compiler will plug-in direct calls to the superclass
member functions (static binding) instead of checking the object’s
real type and using dynamic binding.

Slicing: If we try to assign an object of a derived class (like holiday) into
an object of a base class (like date), then there’s not enough room for all
the information, so we need to slice the object of the derived class - we
throw away its new members and keep just the members of the base
class.

We can initialize the base class part of a derived object by calling the
constructor of the base class in the initialization list of the derived
object’s constructor (only there can we call it):
holiday(string n, int d, int m) : date(d, m), name(n) {}

Initialization order:
1 Constructors of base classes
2 Constructors of members
3 Body of constructor of the derived class

Principle: The constructor body needs a fully initialised object!
The destruction follows the opposite order (destructor body, destructors
of members, destructors of base classes).

Principle: The destructor body needs a fully initialised object! (same principle)

Overriding behaviour: The base class must have declared the member
function as virtual for us to be able to override it in the derived class:
virtual string desc() const {...}

Pure virtual member functions (aka abstract methods):
virtual string sound() const = 0; // no code!

Virtual functions are essentially pointers (to functions).
Pure virtual (abstract) functions are null (nullptr) pointers (no
code to point to). That should explain the bizarre syntax (= 0).
A class with at least one pure virtual member function is an abstract
class - cannot instantiate it (but we can have references and
pointers to it – for dynamic binding, see below).
A class with no members (fields) and all of its member functions
pure virtual is equivalent to a Java interface.
If your class has a virtual function then it probably needs a virtual
destructor.

Next session: multiple inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises the question of what
to do when the base classes conflict.
Reading: Stroustrup 15.2

20
23

-1
1-

20

Programming in C++

Next session: multiple inheritance

Final Notes – II

Static vs Dynamic binding - check out slide 12.

Function print_day1 uses call-by-value (so the real object
passed is copied and sliced in order to initialize the local parameter
and the function always operates on a date object).
Function print_day2 uses call-by-reference (so the real object is
passed without copying/slicing, initializing the local reference
parameter to refer to it whatever it may be, and the function
operates on any kind of date object).
To get dynamic binding, i.e., different behaviour at runtime
depending on the real type of an object, one needs two things:

To have virtual member functions, which have been overriden
in derived classes (the implementation of the different
behaviour according to the type of the object)
To allow these virtual member functions to be selected
dynamically at runtime, by passing objects either by reference
or by pointer. Otherwise (i.e., in pass-by-value) static binding
is used.

Java has super(...); to call the same method in the parent class. A
C++ class may have multiple parent (base) classes, so to call one of
their member functions that we’ve overridden, we must name the base
class explicitly:

class dog : public pet {
void speak() const override

/* "override" - C++11 keyword to show that we want
to override some base class’ speak */ {
pet::speak(); // call pet’s speak
cout << ’(’ << _name << " wags tail)\n";

}
};

Containers of pointers:

Want to have a collection of objects but your class doesn’t have a
default constructor?
Want to avoid copying objects around?
Want to store different sub-types of some base class and get
dynamic binding when you use them (and avoid slicing them)?

Then use a container of pointers – slide 20.

Beware that vector< cat * > isn’t a sub-type of
vector< pet * >, even though cat * is a sub-type of pet *
when cat is a sub-type of pet (slides 22–23).

Inheritance and templates: slides 22–23. Partial specialization
(PointerHistory partially specializes the type of History to be a
pointer to some still unknown type T).

More on template specialization (and partial specialization)
www.cprogramming.com/tutorial/template_
specialization.html
Did you notice in the template specialization article that a template
parameter does not have to be a typename?
Welcome to Template Meta-Programming
www.codeproject.com/Articles/3743/
A-gentle-introduction-to-Template-Metaprogramming
No need to thank me.
(DEFINETELY *NOT* IN THE SCOPE OF THE MODULE/EXAM!)

And some interesting further reading that may help you better
understand how virtual member functions work (and don’t work
sometimes) – not part of the exam but highly helpful:

Vee Table https://wiki.c2.com/?VeeTable
Fragile Binary Interface Problem https:
//c2.com/cgi/wiki?FragileBinaryInterfaceProblem



Programming in C++
Session 7 – Multiple Inheritance

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 26

Major Differences between Java and C++

These are the main pain points to understand C++ [*]
(why did Java “simplify” them?)

call-by-reference (session 1 and since)
operator overloading (session 3)
genericity or template classes (sessions 4–6)
memory management

local allocation of objects (sessions 1–2 and since)
pointers (sessions 5–6)
dynamic allocation & de-allocation (sessions 8–9)

multiple inheritance (this session)

[*] (and to answer in job interviews)

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 26

Multiple Inheritance

In many object-oriented languages, including C++ and Eiffel, a
class may derive from more than one base class.
Java supports a common special case: a class may extend only
one class, but may implement any number of interfaces.
Multiple inheritance is very useful, but raises some questions:

What if both happen to define the same names?
What if both derive from a common class?

Both these are implementation (code reuse) problems,
nothing to do with the type hierarchies.

That’s why interfaces (i.e., abstract classes) don’t have problems. . .

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 26

The simple case

A common, simple, use of multiple inheritance to combine two
essentially unrelated classes:

class read write : public reader, public writer { An IS-A relation.
...

};
We can also combine classes using sub-objects:

class chess game : public window { An IS-A relation.
protected:

board board; A HAS-A relation.
...

};
Key question: should the new class be usable by clients of the old?
That is, do we need an IS-A relation (yes) or a HAS-A relation (no) ?
This question is about the type relation – nothing to do with code reuse.

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 26



An asymmetrical case

Often a class extends a concrete base class and an abstract one,
using the concrete class to implement the undefined methods from the
second class, and possibly a bit more:

class active_grid : public grid,
public button_listener {

public:
void mouse_pressed(button_event & e) {

// use grid stuff
}

};

Java supports only this special case.

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 26

Name clashes (ambiguity)

What if two base classes define the same name?

class A { public: int f(); };

class B { public: int f(); };

class AB : public A, public B {
public:

int g() {
return f() + 1; // which one?

}
};

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 26

Possible solutions

The language chooses one, using some rule (some LISP dialects).
The language permits the programmer to rename methods of a
base class in a derived class, thus avoiding the clash (Eiffel).
The programmer must explicitly qualify the names with the class
from which they come (C++).

Renaming the methods in the original classes is often not an option, as
they may be part of a library or fixed interface.

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 26

Ambiguity resolution by qualification
In C++, ambiguous names must be qualified:

class A { public: int f() {return 1;} };
class B { public: int f() {return 2;} };
class AB : public A, public B {
public:
int f() { return 3; }
int g() {
return A::f() + B::f() + f() + 1; // 7

}
};
void fa( A &a ){ cout << a.f() << endl; }
void fb( B &b ){ cout << b.f() << endl; }
...

AB ab;
fa(ab); // prints what? why?
fb(ab); // prints what? why?

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 26



Ambiguity resolution by qualification
In C++, ambiguous names must be qualified:

class A { public: int f() {return 1;} };
class B { public: int f() {return 2;} };
class AB : public A, public B {

public:
int f() { return 3; }
int g() {

return A::f() + B::f() + f() + 1; // 7
}

};
void fa( A &a ){ cout << a.f() << endl; }
void fb( B &b ){ cout << b.f() << endl; }

...
AB ab;
fa(ab); // prints what? why?
fb(ab); // prints what? why?

20
23

-1
1-

20

Programming in C++

Ambiguity resolution by qualification

Will print 1 & 2 respectively, because f is NOT virtual!

So there’s no dynamic binding – compiler chooses the appropriate f
statically (at compilation time), by considering the interface of the object.

If A’s f() was virtual, then fa() would print 3 if its argument was of
class AB. . .

What if f was virtual only inside class A?

Replicated base classes

class storable { int width; ... };

class transmitter : public storable { ... };

class receiver : public storable { ... };

class radio : public transmitter,
public receiver { ... };

A radio object will contain two distinct storable components,
and thus two versions of each member.
All references to storable members in radio must be qualified
with either transmitter or receiver.

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 26

Replicated base classes, graphically

storable storable

transmitter receiver

radio

Memory view:

storable
transmitter stuff

storable
receiver stuff

radio stuff
radio1.transmitter::width != radio1.receiver::width

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 26

Virtual functions in the base class

class storable {
public:

virtual void write() = 0;
};

class transmitter : public storable {
public:

virtual void write() { ... }
};

class receiver : public storable {
public:

virtual void write() { ... }
};

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 26



Overriding virtual methods

A virtual function in the replicated base class can be overridden:

class radio : public transmitter,
public receiver {

public:
virtual void write() {

transmitter::write();
receiver::write();
// write extra radio stuff

}
};

The use of the base class versions, plus a bit more, is common.

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 26

Virtual inheritance (sharing)

Suppose we want:

window

win with menu win with border

painter

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 26

Virtual base class

If we write

class window { ... };

class win with border : public virtual window {...};
class win with menu : public virtual window {...};

class painter : public win_with_border,
public win_with_menu { ... };

Then a painter object includes a single window.
Class window is a virtual base class of class painter.

Virtual method – you have a pointer to the method.
Pure virtual method (= 0) means a nullptr pointer (no code)

⇒ Virtual base class – you have a pointer to it!
(just like “virtual memory” in OSs uses indirection to real memory)

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 26

Virtual inheritance – Memory view

shared window w
window *wptr = &w
win with menu stuff
window *wptr = &w

win with border stuff
painter stuff

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 26



Constructors
class window {
public:

window(int i) { ... }
};
class win_with_border : public virtual window {
public:

win_with_border() : window(1) { ... }
};
class win_with_menu : public virtual window {
public:

win_with_menu() : window(2) { ... }
};

PROBLEM: The base classes of painter want to initialise the
common window object in a different way – they don’t know it’s shared!
SOLUTION: Ignore them – class painter is the one best placed to
decide how the common window object should be initialised.

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 26

Constructors for a virtual base class

The class in the hierarchy that knows that a common virtual base class
is shared decides how to construct it (intermediate classes don’t know
if the virtual base class is shared or not).

class painter : public win_with_border,
public win_with_menu {

public:
painter(int i) : window(i),

win_with_border(),
win_with_menu() { ... }

...
};

Avoids conflicts between intermediate class constructors
Language ensures each constructor is called exactly once

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 26

Ensuring other methods are called only once

When the virtual base class has a method redefined by each class?

class window {
public:

virtual void draw() {
// draw window

}
};

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 26

Drawing, first attempt

class win_with_border : public virtual window {
public:

virtual void draw() {
window::draw();
// draw border

}
};

class win_with_menu : public virtual window {
public:

virtual void draw() {
window::draw();
// draw menu

}
};

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 26



Disaster!!!

But then if we write:

class painter : public win_with_border,
public win_with_menu {

void draw() {
win_with_border::draw();
win_with_menu::draw();
// draw painter stuff

}
};

The window gets drawn twice!

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 26

Solution: auxiliary methods

We put the drawing of the extra stuff in a method of its own:

class win_with_border : public virtual window {
protected:

void own_draw() { ... }
public:

virtual void draw() {
window::draw();
own_draw();

}
};

And similarly for win with menu.

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 26

Calling each method once

class painter : public win_with_border,
public win_with_menu {

protected:
void own_draw();

public:
void draw() {

window::draw();
win_with_border::own_draw();
win_with_menu::own_draw();
own_draw();

}
};

Then each part is drawn exactly once.

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 26

Virtual inheritance: Summary

Good news: Virtual inheritance is a rare case.
Even better: Language ensures constructors called exactly once.
Bad: Code Re-use Kills
If a method is defined in the virtual base class and overridden in
more than one derived class (a rare case), considerable care is
required to ensure that each method is called exactly once.
If a method is pure virtual in the virtual base class, the issue does
not arise (because the derived versions cannot call it).
If the method is overridden in only one branch, the issue does not
arise (because only that version need be called).

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 26



I/O stream classes

class ios {
// private state

public:
bool good() const { ... }
bool eof() const { ... }
bool fail() const { ... }
bool bad() const { ... }

};

class istream : virtual public ios { ... };

class ostream : virtual public ios { ... };

class iostream : public istream, public ostream {};

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 26

Stream class hierarchy

ios

istream ostream

istringstream ifstream ostringstream ofstreamiostream

stringstream fstream

The state of ios is not duplicated.
Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 26

Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs:
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . . )
5 (And freeing things the wrong way. . . )
6 (And freeing things that were not created with new. . . )

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique_ptr<T>, shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.
Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 26

Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs:
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . . )
5 (And freeing things the wrong way. . . )
6 (And freeing things that were not created with new. . . )

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique_ptr<T>, shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.

20
23

-1
1-

20

Programming in C++

Next session: memory management

Final Notes – I:

Multiple inheritance is a major difference between Java and C++.

Java doesn’t allow it – inheriting fields and code from multiple
classes is problematic:

What if multiple parent classes define the same fields or
functions?
What if multiple parent classes inherit from a common class
themselves?

Both these problems are caused by code reuse, not by introducing
a type hierarchy.
That’s why in Java you can inherit from only one class and
. . . multiple interfaces (that don’t have any code).
C++ allows multiple inheritance – it gives you all the tools you need
to solve the issues (enough rope to hang yourself. . . ).

Sometimes you can avoid inheritance altogether – the key question to
ask is:
Should class A be usable at all settings where class B is usable?
If so, then A should inherit from B (A Is-A B). Otherwise A can simply
contain a B (A Has-A B).

Name ambiguity is resolved by qualification:
ClassName::MemberName()



Next session: memory management
Both Java and C++ have dynamic/heap allocation (new), but

In Java, heap objects are automatically recycled when no
longer needed.
In C++, this is the programmer’s responsibility.

In C++, we can have these kinds of bugs:
1 Freeing too late: overusing memory
2 Forgetting to free: memory leak
3 Freeing things twice: mysterious program crashes
4 (And freeing things prematurely. . . )
5 (And freeing things the wrong way. . . )
6 (And freeing things that were not created with new. . . )

Alternative strategies:
Use local allocation instead (not always appropriate).
Use C++11 smart pointers:
unique_ptr<T>, shared_ptr<T>, weak_ptr<T>

Reading: Stroustrup section 10.4, Savitch 10.3, Horstmann 13.2.

20
23

-1
1-

20

Programming in C++

Next session: memory management

Final Notes – II:

Two types of multiple inheritance:

Replicated inheritance:
// struct’s a class with everything public.
struct A {int x;};
class B: public A {};
class C: public A {};
class D: public B, public C {};
int main() {
D d1;
d1.B::x = 1; // assign d1’s x from the B side
d1.C::x = 2; // assign d1’s x from the C side
// restricted view of d1 - B interface (B & ...)
B & b_view_of_d1 = d1;
// restricted view of d1 - C interface (C & ...)
C & c_view_of_d1 = d1;
return c_view_of_d1.x - b_view_of_d1.x; // 1

}
D contains two copies of A – one from the B side and one from the
C side (like persons having two grandfathers – one from their
mother’s side and one from their father’s side).
Virtual inheritance:
#include <cassert>
struct A {int x;};
class B: virtual public A {}; // virtual public =
class C: public virtual A {}; // public virtual
class D: public B, public C {};
int main() {
D d1;
d1.B::x = 1; assert( d1.B::x == d1.C::x && d1.B::x == 1 );
d1.C::x = 2; assert( d1.B::x == d1.C::x && d1.B::x == 2 );
B &b_view_of_d1 = d1;
C &c_view_of_d1 = d1;
assert( b_view_of_d1.x == c_view_of_d1.x );
assert( b_view_of_d1.x == 2 );
return c_view_of_d1.x - b_view_of_d1.x; // 0

}
D contains only one copy of A – the B and C side have virtual A’s.

Compiler ensures constructors work as expected (only called once).
You need auxiliary methods to get this version of inheritance
work for other methods.



Programming in C++
Session 8 – Memory Management

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 31

The issues

Programs manipulate data, which must be stored somewhere.
How is the storage allocated?
How is this storage initialized?
Can the storage be reused when no longer required?

If so, how?

What is required of the programmer?

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 31

The issues – Java keeps things simple. . .

Programs manipulate data, which must be stored somewhere.
How is the storage allocated?

On the heap, with new

How is this storage initialized?
With constructors – basic types to 0 by default

Can the storage be reused when no longer required?
Sure

If so, how?
With new

What is required of the programmer?
To call new

Java: Peace!

C++: I don’t want peace. I want problems, always!

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 31

Common storage modes

(This is different from scope, which is a compile-time attribute of
identifiers.)

static exists for the duration of program
execution.

local (or stack-based) exists from entry of a block or
function until its exit.

free (or dynamic, or heap-based) explicitly created, and either
explicitly destroyed, or
automatically destroyed when
no longer in use.

temporary for intermediate values in
expressions.

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 31



Static storage in C++
variables declared outside any class or function.
static class members.
static variables in functions.
Don’t use static elsewhere – it’s something completely different [*]

Variables may be initialized when defined:

// global variables
int i; // implicitly initialised to 0
int *p; // implicitly initialised to 0 = nullptr
int area = 500;
double side = sqrt(area);
double *ptr = &side;
int f( int i ) {
static std::size_t times_called = 0;
return ++times_called;
}

[*] internal linkage en.cppreference.com/w/cpp/language/storage_duration

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 31

Implicit initialization of static variables

Static variables that are not explicitly initialized are implicitly initialized
to 0 converted to the type.

int i;
bool b;
double x;
char *p;

is equivalent to

int i = 0;
bool b = false;
double x = 0.0;
char *p = 0; // null pointer

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 31

Evaluation

Static storage is
simple No extra effort from the programmer.

safe Storage is guaranteed.

inflexible Must determine limits at compile-time.
wasteful We often allocate more than needed. Also, the storage is

held for the entire execution, even if it is not being used.

Static function/class variables are allocated even if not
used

Global/static variables are thread unsafe!

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 31

Local storage in C++

int f(std::size_t start, std::size_t size) {
int total = 0;
int tmp;
for (std::size_t i = start; i < size; ++i) { ... }

}

Formal parameters of a function: initialized from the actual
parameters.
Variables local to a function or block, optionally initialized. The
value of an uninitialized variable is undefined.
Variables introduced in for loops.

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 31



Evaluation

Local storage is
efficient The implementation merely adjusts a stack pointer

often suitable If the data is being used in a block-structured way.
not enough What if we wish to construct some data in a function and

return it to the caller?
int foo() { int i = 3; return i; } // OK
int & bar() { int i = 3; return i; } // KO!
#include <iostream>
using namespace std;
int main() {
cout << "foo() returns " << foo() << endl;
cout << "bar() returns " << bar() << endl;
return 0;

}

Hey – what’s a “stack pointer”?
Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 31

Free storage in C++

Class types:

point *p; // uninitialized pointer
p = new point; // default constructor
p = new point(1,3);
cout << p->x << ’ ’ << p->y << ’\n’;
delete p;

and similarly for primitive types.
Created with “new type”.
Programmer’s responsibility to delete the storage.
Attempts to access the storage after deletion are potentially
disastrous, but not checked by the language.

Houston, we’ve had a problem here. . .

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 31

Dynamically allocated arrays in C++

A pointer can also address a dynamically allocated array:

int *arr;
arr = new int[n];
for (std::size_t i = 0; i < n; ++i)

arr[i] = f(i) + 3;
delete[] arr;

Note the special syntax for deletion syntax, which is required because
C++ doesn’t distinguish a pointer to an int from a pointer to an array
of ints.

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 31

Destructors

A class C may include a destructor ˜C(), to release any resources
(including storage) used by the object.

class C {
date *today;
int *arr;

public:
C() : today(new date()), arr(new int[50]) {}

virtual ˜C() { delete today; delete[] arr; }
};

Destructors of base classes are called in the opposite order to
constructors

(same principle: destructor body needs to have a valid object)

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 31



Destructors

A class C may include a destructor ˜C(), to release any resources
(including storage) used by the object.

class C {
date *today;
int *arr;

public:
C() : today(new date()), arr(new int[50]) {}

virtual ˜C() { delete today; delete[] arr; }
};

Destructors of base classes are called in the opposite order to
constructors

(same principle: destructor body needs to have a valid object)

20
23

-1
1-

27

Programming in C++

Destructors

Exception Safety

The constructor of class C is not exception safe. . .
What will happen if the first new succeeds but the second one throws
an exception?
Then the object is not initialised – its destructor will not run and the
memory allocated by the first new will not be reclaimed (a memory
leak).
To make it exception-safe we’d need to use smart pointers:
#include <memory>
#include <utility>
using namespace std;
class C {
unique_ptr<pair<float,float>> upair;// prefer unique_ptr
shared_ptr<pair<float,float>> spair;// over shared_ptr
unique_ptr<float[]> uarr;// unique_ptr supports arrays

// as well in C++11/14 - shared_ptr only in C++17
public:

C() : upair(make_unique<pair<float,float> >(1.1, 2.2)),
spair(make_shared<pair<float,float> >(3.3, 4.4)),
uarr(make_unique<float[]>(50)) {}

virtual ˜C() {}
};
int main() {

C c1;
return 0;

}

Why virtual? Dynamic Binding!

Suppose car is a derived class of vehicle and consider the following
code fragment:

vehicle *p = new car;
...
delete p;

The destructor ˜car() will not be called unless vehicle’s
destructor is virtual.
So why aren’t destructors virtual by default?
Because that would be a little less efficient. . .

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 31

Why virtual? Dynamic Binding!

Suppose car is a derived class of vehicle and consider the following
code fragment:

vehicle *p = new car;
...
delete p;

The destructor ˜car() will not be called unless vehicle’s
destructor is virtual.
So why aren’t destructors virtual by default?
Because that would be a little less efficient. . .20

23
-1

1-
27

Programming in C++

Why virtual? Dynamic Binding!

ATTENTION!!!

Always make the destructor virtual if there’s a
chance that the class will serve as a base class.

When there’s a virtual member function then
it’s certain that the class will serve as a base class
at some point – make the destructor virtual as
well!!!

virtual is needed even if your fields are smart
pointers. If your class will be inherited from, then
the constructor MUST be virtual, no matter
what.

virtual ˜C() {} is enough.

Even better: virtual ˜C() = default;
(if using defaults, state so!)

Construction and destruction

Storage allocated,
constructor initializes
it

Destructor is called,
storage is reclaimed

static object before main starts after main terminates
local object when the declaration is

executed
on exit from the function
or block

free object when new is called when delete is called
subobject [*] when the containing

object is created
when the containing
object is destroyed

(constructed before
the containing object is
constructed)

(deleted after the con-
taining object is de-
structed)

[*] Principle:
The constructor/destructor body needs to deal with a valid object.

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 31



Example: a simple string class
#include <cstring>
class my_string {
std::size_t len; // BUG IF YOU CHANGE THE ORDER!!!
char *chars;

public:
my_string(const char *s)
: len(std::strlen(s)), chars(new char[len]) {
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
// more to come later ...

};

Better:

my_string(const char *s) : len(strlen(s)), chars(0) {
chars = new char[len];
for (std::size_t i=0; i<len; ++i) chars[i]=s[i];

}
Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 31

Default constructor

We also have a default constructor making an empty string:

class my_string {
std::size_t len;
char *chars;

public:
my_string() : len(0), chars(new char[0]) {}

// ...

virtual ˜my_string() { delete[] chars; }
};

Why the new char [ 0 ] ?
Why not new char ?
Why not nullptr ?

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 31

Default constructor

We also have a default constructor making an empty string:

class my_string {
std::size_t len;
char *chars;

public:
my_string() : len(0), chars(new char[0]) {}

// ...

virtual ˜my_string() { delete[] chars; }
};

Why the new char [ 0 ] ?
Why not new char ?
Why not nullptr ?

20
23

-1
1-

27

Programming in C++

Default constructor

Why?

CLASS INVARIANT: “chars points to an array of size len”

Therefore, chars cannot be initialised with new char since then it’ll not
be pointing to an ARRAY of characters – we will not be able to do
delete [] chars; in that case.

I can do delete [] nullptr; – that works fine (does nothing, just
like delete nullptr;.
But I’d be breaking the invariant, since chars would not be pointing to
an array of length len. . .

More reasonable code would have been:

my_string() : len(1), chars(new char[1]) {*chars = ’\0’;}

Code in slide used to highlight the importance of the class invariant!

Initialization of objects
Initialization is not assignment: the target is empty.
Initialization invokes a constructor with arguments of the
appropriate type, e.g.,

my_string foo = "bar";
invokes the above constructor: my_string(char *)
Initialization from another my string object invokes the
copy constructor , which is a constructor with signature

my_string(const my_string &s);
If no copy constructor is supplied for a class, the compiler will
generate one that does a memberwise copy.
This may not always be the right thing. . .

Here:

my_string(const my_string &s)
: len(s.len), chars(s.chars) { }

But this copy constructor is problematic. . .
Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 31



A problem

Here are some initializations:

{
my_string empty;
my_string s1("blah blah");
my_string s2(s1); // initialized from s1
my_string s3 = s1; // initialized from s1

} // all four strings are destroyed here

After the last initialization, s1, s2 and s3 all point at the same
array of characters.
The array will be deleted three times!

(Bad, bad karma. . . )

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 31

Solution: define a copy constructor

We define a copy constructor to copy the character array:

my_string(const my_string &s) :
len(s.len),
chars(new char[s.len]) { // s.len, NOT len!

for (std::size_t i = 0; i < len; ++i)
chars[i] = s.chars[i];

}

This copying (“deep copy”) is typical:
With explicit deallocation, it is generally unsafe to share.
In this case, Java is more efficient.

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 31

Assignment

Assignment (=) isn’t initialization: target already has data
Each type overloads the assignment operator
For my string it’s a member function with signature

my_string & operator= (const my_string &s);

If no assignment operator is supplied for a class, the compiler will
generate one that does a memberwise copy.
The compiler’s code for it is

my_string & operator= (const my_string &s) {
len = s.len;
chars = s.chars;
return *this; // <---- enable chaining!!!

} // chain: a = b = c; (a = (b = c));

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 31

More problems

Consider

{
my_string s1("blah blah");
my_string s2("do be do");
s1 = s2; // assignment

} // the two strings are destroyed here

Problems:
The original array pointed to by s1 is discarded without being
deleted.
After the assignment, both s1 and s2 point at the same array of
characters, which is thus deleted twice.

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 31



Solution: define an assignment operator

We define an assignment operator inside the my string class:

my_string & operator= (const my_string &s) {
if (&s != this) { // DON’T COPY ONTO SELF!!!

delete[] chars; // I: DESTRUCTOR ACTIONS

len = s.len; // II: COPY CONSTRUCTOR ACTIONS
chars = new char[len];
for (std::size_t i = 0; i < len; ++i)

chars[i] = s.chars[i];
}
return *this; // III: RETURN YOURSELF

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 31

The this pointer

In C++,
this is a pointer to the current object (as in Java),
So the “current object” is “*this”

class ostream {
...

public:
ostream & operator<<(const char *s) {
for ( ; *s != ’\0’; ++s) // (1)
*this << *s; // (2)

return *this;
}

};
(1) Looping over a C string.
(2) What does that line do?
** Why do we destroy our string parameter s by doing ++s?!?

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 31

An alternative: forbid copying

If we define a private copy constructor and assignment operator,

class my_string {
private:

my_string (const my_string &s) {}

my_string & operator= (const my_string &s) {
return *this; // STILL NEED IT!!!

}
...

The compiler will not generate them, but the programmer will not
be able to use these ones.
Any attempt to copy strings will result in a compile-time error.
The return *this; is needed to satisfy the function’s return
type.

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 31

An alternative: forbid copying

If we define a private copy constructor and assignment operator,

class my_string {
private:

my_string (const my_string &s) {}

my_string & operator= (const my_string &s) {
return *this; // STILL NEED IT!!!

}
...

The compiler will not generate them, but the programmer will not
be able to use these ones.
Any attempt to copy strings will result in a compile-time error.
The return *this; is needed to satisfy the function’s return
type.

20
23

-1
1-

27

Programming in C++

An alternative: forbid copying

C++11

Since C++11 we can write:

my_string(const my_string &) = delete;
my_string & operator= (const my_string &s) = delete;

Explicitly tell the compiler (and other programmers!) that the copy
constructor/assignment operator does not exist and should not be
auto-generated.



Summary

The Gang of Three

For each class, the compiler will automatically generate the following
member functions, unless the programmer supplies them:

copy constructor: memberwise copy
assignment operator: memberwise assignment

destructor: do nothing (subobjects are destroyed
automatically)

If no constructor is supplied, the compiler will generate a default
constructor: memberwise default initialization.
If these defaults are not what we want, these functions must be
defined.

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 31

Summary

The Gang of Three

For each class, the compiler will automatically generate the following
member functions, unless the programmer supplies them:

copy constructor: memberwise copy
assignment operator: memberwise assignment

destructor: do nothing (subobjects are destroyed
automatically)

If no constructor is supplied, the compiler will generate a default
constructor: memberwise default initialization.
If these defaults are not what we want, these functions must be
defined.20

23
-1

1-
27

Programming in C++

Summary

C++11

Since C++11, it’s the Gang of Five. . .
+ Move constructor

my_string ( my_string && o); // no const ,
// && instead of &

+ Move assignment operator
my_string & operator= ( my_string && o);
// no const , && instead of &

Compare these with the copy constructor and (copy) assignment
operator declarations on the slide to the right (slide 26).

The move versions don’t copy the members of the other object – they
move them (i.e., steal them)!

(more on this at the last lecture)
https:
//en.cppreference.com/w/cpp/language/rule_of_three

Default Copy Constructor and Assignment Operator

XYZ( const XYZ & other)
: field1(other.field1),
field2(other.field2),
...
fieldN(other.fieldN) {

}

XYZ & operator= ( const XYZ & other) {
field1 = other.field1;
field2 = other.field2;
...
fieldN = other.fieldN;

return *this;
}

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 31

Default Default Constructor

XYZ()
: field1(), // if it exists
field2(), // if it exists
... // if it exists
fieldN() { // if it exists

}

Basic types don’t have a default constructor, so. . .
you get garbage.

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 31



Summary, continued

If a class needs a nontrivial destructor (because it holds
resources), you probably also need to define a copy constructor
and an assignment operator, even if private
Or, = delete them, so they cannot be used.
The copy constructor for class XYZ will have signature

XYZ(const XYZ & other);

Typically, it copies any resources that would be destroyed by the
destructor

Dr Christos Kloukinas (City, UoL) Programming in C++ 28 / 31

Summary, concluded

The assignment operator YOU would write should be like:
XYZ & operator= (const XYZ & other) {
if (&other != this) {// DON’T COPY ONTO SELF!!!

// PART I: DESTRUCTOR ACTIONS

// PART II: COPY CONSTRUCTOR ACTIONS

}
return *this; // PART III: RETURN YOURSELF

}

but may do something smarter (e.g., reuse instead of deleting).

Dr Christos Kloukinas (City, UoL) Programming in C++ 29 / 31

Summary – Avoid pointer fields!

Use smart pointers
(unique ptr, shared ptr from <memory>)
No more need for:

Copy constructors
Assignment operators

Destructors can now be empty
(and virtual if sub-classing possible)

(check end of handouts for mystring.cc without (unsafe) & with (safe)
smart pointers)

Dr Christos Kloukinas (City, UoL) Programming in C++ 30 / 31

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

Dr Christos Kloukinas (City, UoL) Programming in C++ 31 / 31



Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Final Notes – I

There are four main modes of storage: static, local/stack,
free/dynamic/heap, and temporary.

Static storage is the simplest and safest (used a lot in safety-critical
real-time systems) but at the same time is extremely inflexible and
wasteful.
Local storage is quite efficient and often just what we need;
sometimes though it’s not enough – we need our data to outlive the
functions that created them.
Free storage uses new to allocate objects on the heap – these
outlive the function that was active when they were created and
stay on until someone calls delete on them explicitly.

delete p; (destroy ONE object) vs delete[] p; (destroy an ARRAY
of objects)

Destructors for releasing resources – need for them to be virtual if the
class is to be sub-classed (slides 12–13).

Pay attention to the order of allocation/construction and
destructor/deallocation (slide 14).

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Final Notes – II

Copy constructor – compiler always generates one if we haven’t defined
one.

Why the compiler-generated copy constructor doesn’t always do the
right thing (and how to do it ourselves): slides 17–19.

Assignment operator – compiler always generates one if we haven’t
defined one.

Why the compiler-generated assignment operator doesn’t always do the
right thing (and how to do it ourselves): slides 20–22.

See also file strings.cc (https://www.staff.city.ac.uk/
c.kloukinas/cpp/src/lab08/strings.cc) file from the lab
for another alternative implementation of the assignment operator,
that uses call-by-value and swap, so as to get the compiler to call
the copy-constructor and the destructor implicitly instead of us
re-writing the same code.

Make sure you understand how to use the this pointer and that you
understand that *this is the current object itself.

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Final Notes – III

“The Gang of Three” – you need one, you need all of them:

copy constructor
assignment operator
destructor

Learn what THE COMPILER generates for them for some class XYZ.

Also learn what the usual USER-DEFINED version of the assignment
operator is for some class XYZ.

Note: (advanced) Since C++11 it’s the “Gang of Five”. . .

move constructor
move assignment operator

These “move”, i.e., steal the data, from the object that you’re using to
initialise/assign the current object instead of copying them.

https:
//en.cppreference.com/w/cpp/language/rule_of_three

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Final Notes – IV

You need to do delete explicitly – what could possibly go wrong?
1 Do it too late (USE TOO MUCH MEMORY)

(in Java too)
2 Forget to do it (MEMORY LEAK)
3 Do it too soon – still using the deleted memory (UNDEFINED

BEHAVIOUR – usually crash)
4 Do it more than once (UNDEFINED BEHAVIOUR – usually crash)
5 Delete something that hadn’t been new-ed (UNDEFINED

BEHAVIOUR – usually crash)
6 Use the wrong form of delete (UNDEFINED BEHAVIOUR –

potential crash when delete[] pointer_to_an_object; or
crash/memory leak when delete pointer_to_an_array;)

ADVANCED MEMORY MANAGEMENT ISSUES:
7 When you delete an object in C++ there is an LONG CASCADE OF

DESTRUCTORS that is executed for its subobjects that can
severely impact real-time systems (especially if deleting a
container)

8 Memory fragmentation: INABILITY TO ALLOCATE MEMORY even
though there are enough free bytes; can be combatted with
specialized memory allocators



Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Final Notes – IV

A number of garbage collectors suffer from #1 delayed collection (which
freezes your program for quite some time), unpredictability (you have no
idea when the GC will start working and can rarely control it, unlike
manual deallocation), and sometimes #8 memory fragmentation (though
some compact memory too).
There are some real-time garbage collectors but none that can solve
everybody’s problems (perfection is not of this world...)

At least Java’s GC protects you from all the other problems of C++’s
manual memory deallocation (2 – 7 and sometimes from 8).

When a GC cannot help. . .

What if you need to control when destructors (Java’s finalizers —
deprecated!!!) run?
What if you need to reclaim another resource (DB, file, etc.)?
You’d still need to do it manually in a GC-ed language. :-(

Java does this with its new “try-with-resources” statement, where the
“destructor” is called close(), see
https://docs.oracle.com/javase/tutorial/essential/
exceptions/tryResourceClose.html
The “try-with-resources” is syntactic sugar over try-finally.

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Empty page – Check next!

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Empty page – Check next!

Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Empty page – Check next!



Next session

Destructors, copy constructors, assignment operators and
template classes.
Program structure and separate compilation
Include files in C++

Reading: Savitch section 11.1, Stroustrup chapter 9.

20
23

-1
1-

27

Programming in C++

Next session

Final Notes – V

Don’t use basic pointers as fields – use smart pointers!!!

// Unsafe version!
#include <cstring>
#include <iostream>
class my_string {
std::size_t len;
char *chars;

public:
my_string(const char *s)
: len(std::strlen(s)), chars(0) {
chars = new char[len];
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
my_string() : len(1), chars(new char[1]) {*chars = ’\0’;}

virtual ˜my_string() { delete[] chars; // print below used for demo
std::cerr << "˜my_string\n"; }

};

int main() {
{

my_string empty;
my_string s1("blah blah");
my_string s2(s1); // initialized from s1
my_string s3 = s1; // initialized from s1

} // all four strings are destroyed here

{
my_string s1("blah blah");
my_string s2("do be do");
s1 = s2; // assignment

} // the two strings are destroyed here

return 0;
}

// Safe version!
#include <cstring>
#include <memory>
#include <iostream>

class my_string {
std::size_t len;
std::shared_ptr<char[]> chars;

public:
my_string(const char *s)
: len(std::strlen(s)), chars(0) {
chars = std::make_shared<char[]>(len);
for (std::size_t i=0; i<len; ++i) chars[i] = s[i];

}
my_string() : len(1), chars(std::make_shared<char[]>(1)) {*chars = ’\0’;}

virtual ˜my_string() // = delete; // impl below used for demo
{ std::cerr << "˜my_string\n"; }

};

int main() {
{

my_string empty;
my_string s1("blah blah");
my_string s2(s1); // initialized from s1
my_string s3 = s1; // initialized from s1

} // all four strings are destroyed here

{
my_string s1("blah blah");
my_string s2("do be do");
s1 = s2; // assignment

} // the two strings are destroyed here

return 0;
}



Programming in C++
Session 9 – A generic class with dynamic allocation

Declarations and definitions
Program structure

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 35

This session

Two parts:

1 Completing memory management: a generic class with dynamic
allocation

2 Program structure and separate compilation
Revision: declarations and definitions
Separate compilation in C++

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 35

Part I

Generic Class with Dynamic Allocation

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 35

Writing our own vector class

An array to hold the elements
(efficiency) Array often longer than needed for the elements held
Implement various vector operations
The array is dynamically allocated, so must free it in a destructor
Because we have a non-trivial destructor, we also need a copy
constructor and an assignment operator Gang of Three!!!
An iterator
A swap method is also useful

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 35



A vector class

template <typename Elem>
class my_vector {
size_t vsize;//# of elements stored - "vector size"
size_t asize;//size of the array - "array size"
Elem *array;

//INVARIANT: 0<= vsize<= asize && array.size()==asize
public:
my_vector() : vsize(0), asize(1),

array(new Elem[1]) {}

size_t size() const { return vsize; }

Elem & operator[](size_t i) { return array[i]; }
};

array(new Elem[1]) – why not array(nullptr)?
Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 35

A vector class

template <typename Elem>
class my_vector {

size_t vsize;//# of elements stored - "vector size"
size_t asize;//size of the array - "array size"
Elem *array;

//INVARIANT: 0<= vsize<= asize && array.size()==asize
public:

my_vector() : vsize(0), asize(1),
array(new Elem[1]) {}

size_t size() const { return vsize; }

Elem & operator[](size_t i) { return array[i]; }
};

array(new Elem[1]) – why not array(nullptr)?

20
23

-1
2-

04

Programming in C++

A vector class

array(new Elem[1]) – why not array(nullptr)?

Because of the invariant !

For the invariant vsize <= asize to hold, array must be an actual
array, otherwise asize is not defined.
And array.size() must be equal to asize.

Why not asize(0), array(new Elem [0]) ? Invariant is
satisfied.

⇒Because of the implementation of push_back on the next slide.
(and because it’d be silly – avoid 0-length arrays)

Shrinking and growing the vector

void pop_back() { vsize--; }

void push_back(const Elem & x) {
if (vsize == asize) {

asize *= 2; // Why *= 2 instead of ++? [*]
Elem *new_array = new Elem[asize];
for (size_t i = 0; i < vsize; ++i)

new_array[i] = array[i];
delete[] array;
array = new_array;

}
array[vsize] = x;
++vsize;

}

[*] try adding 1000 elements into a vector. . .
Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 35

Destructor and Copy constructor

This class allocates dynamic memory, so it should reclaim it:

virtual ˜my_vector() { delete[] array; }

Because we have a non-trivial destructor, we also need a copy
constructor and assignment operator. Gang of Three!!!

my_vector(const my_vector<Elem> & other) :
vsize(other.vsize), asize(other.asize),
array(new Elem[other.asize]) {

for (size_t i = 0; i < vsize; ++i)
array[i] = other.array[i];

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 35



Assignment operator

my_vector<Elem> &
operator=(const my_vector<Elem> & other) {

if (&other != this) {
vsize = other.vsize;
if (asize < vsize) { // Reuse if possible!

delete[] array;
asize = other.asize;
array = new Elem[asize];

}
for (size_t i = 0; i < vsize; ++i)

array[i] = other.array[i];
}
return *this;

}

REUSE!!! Compare with 8-21 & 8-26 !
Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 35

An iterator

Recall that in C++, an iterator is a type that supports ==, ++, * and ->.
A simple iterator for this type is pointers to elements:
typedef Elem *iterator; // I.e., iterator is a

// pointer to an Elem
typedef const Elem *const_iterator;

iterator begin() {return array;}
iterator end() {return array + vsize;}

const_iterator cbegin() const {return array;}
const_iterator cend() const {return array + vsize;}

}; // end of my_vector class

An alternative is to define a class (*), and overload the ++, ==, * and
-> operators.
(*) Can be an internal class !

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 35

Swap function

When designing classes we should think how they’ll behave with
standard algorithms
(so we should know the standard algorithms. . . )

The header <utility> defines a general swap function:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Works for vectors too (T is my_vector<Elem>)
But is *very* inefficient

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 35

Efficient swap function for vectors

Add a member function to the my_vector class:

void fast_swap(my_vector<Elem> & other) {
std::swap(vsize, other.vsize);
std::swap(asize, other.asize);
std::swap(array, other.array);

}

Define an overloading of swap for vectors outside the class:

template <typename T> //"C++ template specialization"
void swap(my_vector<T> & x, my_vector<T> & y) {

x.fast_swap(y);
}

(constraining the parameter type to my_vector<T> means this
applies to our class only)

We’re done! :-)
Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 35



Part II

Program Structure — Declarations vs
Definitions

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 35

Program structure

In C++, X (class, function, variable) must be declared before use
Can declare X, and . . .
Define it fully later

C++ programs can have millions of lines
Impossible (too slow) to recompile everything all the time

⇒ Programs are partitioned into several files for separate compilation
Common declarations and partial class definitions are placed
in header files (they serve as interfaces)

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 35

Declaration before use

C++ designed for one-pass compilers: must declare entities before use

class A { ... };

class B { A *p; ... }; // OK

Defining these classes in the opposite order is illegal. Problems:
limits presentation.
prohibits recursion.

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 35

Forward declarations

Solution: Declare first, and fully define later:

class A; // declare A as a type

class B { // define B
A *p; // OK - pointer size is known
...

};

class A { B b1; ... }; // fully define A - OK

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 35



Limitations

However, this is NOT allowed:

class A; // declare A

class B { // define B
A a; // don’t know the size of A here
...

};

class A { ... }; // define A

Because the size of a member must be known when it’s used

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 35

Recursive class definitions

This is allowed:

class A; // declare A

class B { // define B
A *p; // pointer size is known
...

};

class A { // define A
B b1; // size of B is known here
...

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 35

Part III

Separate Compilation

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 35

Separate compilation

General Idea

Avoid recompiling a huge program after each change
Break it into “modules”, each with an interface

Ideally: only recompile modules when the interfaces they use
have changed
If a module implementation (but not its interface) is changed, that
module must be recompiled, but its clients need not be
This should be automated (e.g., with make)

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 35



Separate compilation in C++

Implementations go into source files, usually ending in “.cc”
Interfaces go into header files, usually ending in “.h”

Header files are included in source files and other header files
Never duplicate declarations (include them instead)
Recompilation decisions are based on inclusion relationships and
timestamps on files

(Other suffixes: .cpp, .cxx, .hh, .hpp, .hxx, . . . )

Inclusion relationships (as used by make) — try:
g++ -MM file.cc

g++ -M file.cc

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 35

The compilation process

Compiling a source file X.cc yields an object file X.o
(like a .java file yields a .class file)
X.cc must be recompiled if it (or any of the header files it uses)
has changed more recently than X.o
(so don’t include header files unnecessarily)
Object files are linked together to make an executable program
(like an executable .jar file)
Re-compiling source files means the program must be re-linked
In Unix, this is all managed by the make command

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 35

A Makefile
# COMMANDS (e.g., rm) MUST START WITH A TAB CHARACTER!!!

DIR=.
# CXX=g++-13 # or CXX=g++
CXXFLAGS=-I$(DIR) -x c++ -g -std=c++23 -pedantic -Wall -Wpointer-arith \
-Wwrite-strings -Wcast-qual -Wcast-align -Wformat-security \
-Wformat-nonliteral -Wmissing-format-attribute -Winline -funsigned-char

LDFLAGS=-L$(DIR) -lcity # Linking flags
CC=$(CXX) # Use the C++ compiler as the C compiler

# (ensures linking is done according to C++)
CFLAGS=$(CXXFLAGS) # C flags are now C++ flags

all: cwk cwkt

clean:
-rm *.o cwk cwkt *˜ 2> /dev/null

cwk: sample.o Makefile libcity.a
$(CXX) sample.o -o cwk $(LDFLAGS)

cwkt: cwkt.o Makefile libcityt.a
$(CXX) cwkt.o -o cwkt $(LDFLAGS)t

...

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 35

Include directives

#include includes the text of another file at that point.
To include a file from the system directories:

#include <vector>
#include <iostream>

To include a file from the local directories (-Idir1 -Idir2):
#include "point.h"

g++: You can see what the result is with -E
(-E runs only the C preprocessor on your file, doesn’t compile)

(and -c runs only the C compiler, doesn’t link)

Any file can be included, but the following rules are recommended

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 35



Header files

These approximate interfaces, and may contain:

comments // what the class does

include directives #include "xyz.h"

class definitions class A { ... };
class declarations class B;

constant definitions const double pi = 3.14159;

type definitions typedef double real;

function declarations int sqr(int x);

They should not contain code, except inline function definitions.

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 35

BE CAREFUL!

NEVER IN HEADER FILES!

global variable definition int counter = 0;

function definition int foo() { return 3; }

INSTEAD YOU SHOULD

DECLARE global variables extern int counter;

INLINE function definitions inline int foo() { return 3; }

Or DECLARE functions int foo();

Otherwise, global variables/functions are defined multiple times from
each source file that includes the header file & linker complains!

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 35

The header file point.h, first version

class point {
protected:

int _x, _y;
public:

point(int x, int y);
int x() const;
int y() const;
void move(int dx, int dy);

};

Often, a header file and source file correspond to a single class, but
there are many other possibilities.

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 35

The implementation point.cc

#include "point.h"

point::point(int x, int y) : _x(x), _y(y) {}

int point::x() const { return _x; }
int point::y() const { return _y; }

void point::move(int dx, int dy) {
_x += dx; _y += dy;

}

This is why we’re so interested in defining methods outside a class!

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 35



Separate compilation and templates?

NO
isocpp.org/wiki/faq/templates#templates-defn-vs-decl

C++ DOES NOT support separate compilation of template code
Generic method definitions must be included in the header file
WITH the template class definition

Wat Do?

Dr Christos Kloukinas (City, UoL) Programming in C++ 28 / 35

Generic code separation

// File: pointt.h
template <typename T>
class pointt {
pointt(T _x, T _y);

};
#include "pointt.cc" // <---- includes .cc !!!
// *End* of file pointt.h

// File: pointt.cc
// *NOT* including pointt.h! <---- !!!

// Definitions for pointt
template <typename T>
pointt<T>::pointt(T _x, T _y) {
...

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 29 / 35

Code separation: Normal vs Generic

// point.h NORMAL // pointt.h GENERIC
template <typename T>

class point { class pointt {
point(int _x, int _y); pointt(T _x, T _y);

}; };
#include "pointt.cc" // !!!

// *End* of file point.h // *End* of file pointt.h

// File point.cc // File pointt.cc
#include "point.h" // *NOT* including pointt.h!!!
// Definitions for pointt // Definitions for pointt

template <typename T>
point::point(int _x, int _y){ pointt<T>::pointt(T _x, T _y){
... ...

} }

Dr Christos Kloukinas (City, UoL) Programming in C++ 30 / 35

Repeated inclusion

Suppose point.h is included by both line.h and polygon.h
Some drawing program might begin:

#include "line.h"
#include "polygon.h"

This includes point.h twice, causing the compiler to complain
about a repeated definition of point

Seems reasonable to expect the language to take care of this,
BUT

C++ doesn’t care about reasonable
We must add include guards to our header files

Dr Christos Kloukinas (City, UoL) Programming in C++ 31 / 35



The header file point.h with an include guard

#ifndef POINT_H
#define POINT_H

class point {
protected:

int _x, _y;
public:

point(int x, int y);
int x() const;
int y() const;
void move(int dx, int dy);

};

#endif

Don’t use bloody #pragma’s! (non-standard/portable)

Dr Christos Kloukinas (City, UoL) Programming in C++ 32 / 35

Typical structure
For each class Foo, two source files:

Foo.h containing the class definition, but including only very
small methods. This is the place for comments
describing the interface of the class.

Foo.cc containing the method definitions for the class
(unless the class is very simple).
This should always include Foo.h.

Include header files only if necessary:
Bar.h should ONLY include Foo.h, when Foo is needed
for defining class Bar
But when class Foo is only needed for defining methods of
Bar, then include Foo.h only in Bar.cc

Never use namespaces inside header files (namespace polution)
Instead use full names: std::string, std::ostream, etc.

Exercise: break up date.cc in this way.
Dr Christos Kloukinas (City, UoL) Programming in C++ 33 / 35

Summary

In C++, things must be declared before use
Often, a partial declaration (interface) will suffice
(but the compiler needs to know how big things are)
Large programs are broken up into several source files
⇒separate compilation

Common declarations are placed in header files ,
to be included by several source files
Shared generic code must also be placed in header files

Learn how to use make
https://www.gnu.org/software/make/manual/

Dr Christos Kloukinas (City, UoL) Programming in C++ 34 / 35

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

Dr Christos Kloukinas (City, UoL) Programming in C++ 35 / 35



Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – I
Why not initialize member array in my_vector’s default
constructor with nullptr? (slide 5)
Because then we’d be violating the class invariant :
vsize <= asize
If array is not pointing to an array, then asize isn’t defined.
my_vector’s assignment operator (slide 8) shows that
sometimes we can reuse resources instead of always destroying
the ones we’ve got and copying those of the other object.

Note the parameter type of the copy constructor and the
assignment operator (and the operator’s return type):

template <typename Elem>
class my_vector {
public:
my_vector( const my_vector<Elem> & o);
my_vector<Elem> &
operator=( const my_vector<Elem> & o);
...

};

The type is a generic one, as the class is generic; type
my_vector does not exist, only my_vector<Elem> exists!!!
Outside the class:
template <typename Elem>

my vector<Elem>:: my vector( const my vector<Elem> & o)
: ... {
...

}
template <typename Elem>
my_vector<Elem> &
my vector<Elem>:: operator=( const my vector<Elem> & o) {
...

}

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – II
Implementation of the iterator type for class my_vector (slide 9)
Slide 11 – the swap specialised for objects of type my_vector,
is another example of partial specialization! The type of its
arguments is still generic but now we know that it’s a
my_vector of some T.

Things need to be declared (not necessarily defined) before
they’re used – slides 13–17.
Separate compilation – CLASS DEFINITIONS with METHOD
DECLARATIONS go into the HEADER file NAME.h, while the
method IMPLEMENTATIONS into the SOURCE file NAME.cc.
See slides 26–27.

Which file should include which?

If there’s no generic code, then we include NAME.h at the
top of NAME.cc and compile the latter into NAME.o

If there is generic code, then we include NAME.cc at the
bottom of NAME.h (compiler needs to see the
implementation of the generic code to be able to instantiate
it where it’s used) but do not ask the compiler to produce
NAME.o (pointless – it’ll be empty).

ALL other files that need to know the types defined in NAME.h
include NAME.h (NEVER NAME.cc).

To avoid “multiple definition” compiler errors, we surround the
entire contents of NAME.h with include guards (*NOT* pragma’s!!!):

// File: name.h - WITHOUT generic code
#ifndef NAME_H
#define NAME_H
...
#endif

This ensures that the compiler will see the contents only the first
time NAME.h is included (when NAME_H hasn’t been defined).

// File: name.cc - WITHOUT generic code
// Get declarations
#include "name.h"
...

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – III
Things change a bit with generic code:

// File: name.h - WITH generic code
#ifndef NAME_H
#define NAME_H
...
// Compiler needs to see the implementation
// of the generic code.
#include "name.cc"
#endif

and the source file:

// File: name.cc - WITH generic code
// No include of "name.h"!
...

Afterwards NAME_H will get defined, so the contents between the
#ifndef and the #endif will not be considered again.
Separate compilation is automated with the make tool. On the
terminal type: info make
Or read the GNU documentation of make on-line:

https://www.gnu.org/software/make/manual/

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – IV
The C preprocessor (cpp) can do quite a lot of things (e.g., give
you a headache. . . – advanced, not to be examined):
en.wikibooks.org/wiki/C_Programming/
Preprocessor

X-Macros (for meta-programming with macros):
en.wikibooks.org/wiki/C_Programming/
Preprocessor#X-Macros

www.embedded.com/design/
programming-languages-and-tools/4403953/
C-language-coding-errors-with-X-macros-Part-1#

www.embedded.com/design/
programming-languages-and-tools/4405283/
Reduce-C--language-coding-errors-with-X-macros---Part-2#

www.embedded.com/design/
programming-languages-and-tools/4408127/
Reduce-C-language-coding-errors-with-X-macros--Part-3#

Hello headache! (No, I don’t understand these either. . . but that
doesn’t mean that you cannot use them!
Outta This World!!!
https://github.com/pfultz2/Cloak/wiki/
C-Preprocessor-tricks,-tips,-and-idioms



Programming in C++
Session 10 – When things go wrong:

Exceptions and Resource management

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023Dr Christos Kloukinas (City, UoL) Programming in C++
https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 29

Outline

Exceptions in C++

Resource acquisition is initialization (RAII)
A fundamental C++ technique
Ensures that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code.

RAII: a special case of the smart pointer and proxy patterns

Plus Revision!

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 29

Part I

Exceptions

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 29

Failures (revision)

Method cannot meet its specification?
⇒ Communicate this to its caller!
May cause the caller to fail, and so on
But sometimes the caller can work around the failure
Might be necessary to clean up in the event of failure
Traditional (C) approach – an if on a status variable – is very
cumbersome (and often left out)
Disciplined use of exceptions makes error-handling clearer and
more robust

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 29



Throwing an exception in C++

Objects of any class can be thrown (even basic types):
class my_exception { ... };

The throw statement typically takes a TEMPORARY OBJECT:
throw my_exception("Bad date");

The exception should be catched by reference.
This is the “best practice”
Can also be caught by value.
But avoid it, since catch-by-value:

Slices derived exceptions
Requires copying

Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 29

Catching an exception in C++

C++ has a try/catch statement, largely copied by Java:
try {

// do something that might fail
} catch (my_exception &e) {

// deal with the exception
} catch (AnotherException) {

// deal with the exception
}

Like Java, exceptions may form hierarchies
A catch clause also handles any derived classes

C++ has no finally clause

Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 29

The C++ treatment of exceptions

If (inside a try block
&& there’s a matching catch clause)

Then execute the first matching catch clause

“matching” = the exception type or some base type of it
Otherwise

Exit from the current block or function
Destroying any locally allocated variables in the process, and
Continue searching for a matching try block

If the main function is exited in this way
Halt the program with an error message.

This is called unwinding the stack

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 29

Clean up and rethrow

Often exception handlers are used to free resources on failure:

// acquire resource
try {

// do something that might fail
// free resource

} catch (...) { // any exception
// free resource
throw; // rethrow the exception

}

This can often be avoided, using the RAII technique:
“Resource Acquisition Is Initialization”.
Note on syntax:

Catch any exception: catch (...)

Rethrow an exception: throw;

Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 29



Resource management

Programs acquire resources
Allocate memory, open files, create windows, acquire locks, etc.
These resources should be released – Even if there are exceptions!
Most resources are freed when a program terminates :-)

But some are not, e.g., some kinds of lock :-(

Releasing resources properly is tricky and easy to get wrong

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 29

A typical pattern of resource use

Resources must often be released in the opposite order to acquisition:

// acquire resource 1
// ...
// acquire resource n

// use resources

// release resource n
// ...
// release resource 1

Just like locally allocated data!

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 29

Resource acquisition is initialization (RAII)

Introduce a resource management class with
A constructor to acquire the resource (or just to record it)
A destructor to release the resource
Possibly an access method

Locally allocate an object of this class when acquiring the resource,
and the resource will be automatically released!
Moreover, resources will be released in the correct order!
// Without RAII :-(
// acquire resource
try {
// this might fail
// now free resource

}catch (...) {//any exception
// free resource
throw; //rethrow exception

}

// With RAII :-) :-)
{
// acquire resource
try {
// this might fail

}
} // resource freed here!

// A try in main is enough!

Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 29

Example: file streams

ifstream/ofstream’s constructors open streams
ifstream in("file.txt");

Their destructors close the streams
(though one can do it earlier if required)
Hence code safely like this:
{
ifstream inp("file.txt");
// read and process file

} // inp is destroyed here (IF inside a try{}!!!)

Whether control leaves the block normally or due to an exception,
the file stream will be closed.
(must be a surrounding try somewhere!)

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 29



Example: storage management

This class manages the deletion of dynamically allocated point objects

class point_manager {
point *ptr;

public:
point_manager(point *p) : ptr(p) {}

˜point_manager() { delete ptr; }
point_manager(const point_manager &) = delete;
point_manager &operator=(const point_manager &)
= delete;

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 29

Using the point manager

Whenever a point that is only required for this block is dynamically
allocated, make a local point manager to manage it:

point *p1 = new point(20,30);
point_manager m1(p1);

point *p2 = window->get_middle();
point_manager m2(p2);

On leaving the block (normally, via return, or by an exception),
then m2 will be destroyed, which will delete p2,
and then m1, which will delete p1.

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 29

Generic storage management

The standard header <memory> provided [*] a class auto ptr.
Here is a simplified version:

template <typename T> class auto_ptr {
T *_ptr;

public:
auto_ptr(T *ptr) : _ptr(ptr) {}

˜auto_ptr() { delete _ptr; }
};

(more to come later)

[*] Until C++11 – deprecated since!!!

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 29

Using auto ptr – The promise

To ensure that dynamically allocated storage is reclaimed,
create a local auto ptr to manage it:

point *p = new point(20,30);
auto_ptr<point> p_ptr(p);

On leaving the block, p is automatically deleted.
One can also use auto ptr as a subobject
No need to write our own destructors!
Since all methods are inline, there is very little overhead.

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 29



More convenience

We add the following operator definitions to the auto ptr class:

T & operator*() { return *_ptr; }
T * operator->() { return _ptr; }

Then we can use the auto ptr as a proxy for the pointer:

auto_ptr<int> ip(new int);
*ip = 3;

auto_ptr<point> pp(new point(20,30));
pp->x = 4;
pp->y = 5;

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 29

Completing auto ptr

Gang of Three!
Since auto ptr has a non-trivial destructor, it requires

A copy constructor; and
An assignment operator

Only one of the copies of an auto ptr should call delete.
Might as well add a default constructor too.

Let’s do it!

template <typename T>
auto ptr( ) : ptr(nullpttr) {}

template <typename T>
auto ptr( auto ptr<T> & o ) { // XXX No const & !!!

ptr = o. ptr;
o. ptr = nullptr; // XXX other loses pointer!

}
Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 29

Completing auto ptr – II

template <typename T>
auto ptr<T> &
operator=( auto ptr<T> & o ) { // XXX No const & !!!

if (this != &o) {
delete ptr;
ptr = o. ptr;
o. ptr = nullptr; // XXX o loses pointer!

}
return *this;

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 29

(Smart pointers

auto ptr is a so-called “smart pointer”
It looks like a pointer, but does something extra
Some other examples:
reference counting proxy counts references to a dynamically allocated

object, and deletes it when count reaches zero
persistent data proxy reads data from a file on first use, and saves

it in the file on destruction
virtual/lazy object proxy delays creating a complex object until it is

used (and if the object is never used, avoids
creating it)

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 29



The Proxy pattern)

More generally, a proxy is any object that is interposed between the
client and some other object. Some other uses:

wrapper proxy provides consistent access to foreign language data
protection proxy provides more limited access to the object, for greater

security
handle proxy represents an object in a different address space,

e.g., an operating system object, a graphical system object,
or an object on another machine

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 29

. . .

May you live
in interesting times. . .:-(

(2019: This 2011 statement did not age well at all!)

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 29

C++11
1 auto_ptr deletes its pointer using delete !

So cannot manage a pointer to an array (needs delete[])
2 auto ptr’s “copy” constructor steals the other object’s pointer!

That’s not copying, that’s moving! (polite version of “stealing”)
So cannot use auto_ptr inside STL containers
(containers think they copy elements when they don’t)

C++11: Use unique ptr instead (or shared ptr)
unique_ptr offers a move constructor but no copy constructor:

unique_ptr(unique_ptr<T> && x);// rvalue reference...
unique_ptr(unique_ptr<T> & x) = delete;//reference...

You need to know how auto_ptr works, as old code uses it (BUG!)
And to understand “rvalue references” (and why we need them)
You need to learn the others for your coding
These also work with arrays by the way:

unique_ptr<int[]> array(new int[30]);

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 29

C++11
1 auto_ptr deletes its pointer using delete !

So cannot manage a pointer to an array (needs delete[])
2 auto ptr’s “copy” constructor steals the other object’s pointer!

That’s not copying, that’s moving! (polite version of “stealing”)
So cannot use auto_ptr inside STL containers
(containers think they copy elements when they don’t)

C++11: Use unique ptr instead (or shared ptr)
unique_ptr offers a move constructor but no copy constructor:

unique_ptr(unique_ptr<T> && x);// rvalue reference...
unique_ptr(unique_ptr<T> & x) = delete;//reference...

You need to know how auto_ptr works, as old code uses it (BUG!)
And to understand “rvalue references” (and why we need them)
You need to learn the others for your coding
These also work with arrays by the way:

unique_ptr<int[]> array(new int[30]);

20
23

-1
2-

12

Programming in C++

C++11

C++11 – II

Advanced – not in the exam (neither is unique_ptr nor rvalue
references/move constructors).

shared_ptr:
“It’s complicated” (see stackoverflow bit.ly/1SiGPyc)
And the class documentation:
https://en.cppreference.com/w/cpp/memory/shared_ptr
Especially the constructors:
https://en.cppreference.com/w/cpp/memory/shared_ptr/
shared_ptr

!!! Avoid temporary smart pointers.
Why? See Boost bit.ly/1PYanO3

Or BETTER YET use make shared
(tricky. . . – stackoverflow bit.ly/1KdK2ao)



Further reading

Exceptions: Stroustrup 14, Meyer 12.
Resource acquisition is initialization (RAII): Stroustrup 14.4.
Smart pointers: Stroustrup 14.4.2, 11.10.

Check out on StackOverflow the iterator proxy I created for
implementing copy_if_and_transform
https://stackoverflow.com/questions/23579832/

why-is-there-no-transform-if-in-the-c-standard-library/

74288551#74288551

or https://bit.ly/3Yd0dSM
(it tries to make *from behave differently, depending on the
context)

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 29

Part II

Revision

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 29

Major Differences between Java and C++

C++ allows direct access to objects!!!
[*] call-by-value & call-by-reference (session 1 and since)
operator overloading (session 3)
genericity or template classes (sessions 4–6)
[*] slicing of derived objects on copying (session 6)
memory management

local allocation of objects (sessions 1–2 and since, esp. 9–10)
pointers (sessions 5 and 6)
dynamic allocation (sessions 8–9)

multiple inheritance (session 7)
[*] gang of three (session 8)

[*] Rvalue references (& call-by-rvalue-reference – session 10)

[*] Because C++ allows direct access to objects. . .
Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 29

Things you should be able to do

Write simple classes and functions in C++
Use the containers and iterators of the Standard Template Library
to write more compact (& correct!) programs
Understand the difference between call-by-value and
call-by-reference
Appreciate the various meanings of const in C++, and know
when to use them
Read programs using overloaded operators, by identifying which
methods or independent functions are called
Define overloaded operators for new types

As member functions
As independent functions

(continued)

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 29



More things you should be able to do

Distinguish between objects and pointers (& how each behaves)
Know how to use static, local, dynamic and temporary allocation,
appreciating their properties and distinctive features
Understand the properties of subobjects (= fields of other objects)
Use inheritance, method redefinition and abstract classes in C++

Know the order of initialisation (parents [*], fields [*],
constructor) and destruction (opposite)
[*] IN THE ORDER OF DECLARATION!!!

BE CAREFUL WITH FIELD INITIALISATION!!!
Write generic classes and functions in C++
And use the standard generic algorithms!!!

(continued)

Dr Christos Kloukinas (City, UoL) Programming in C++ 28 / 29

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)

Dr Christos Kloukinas (City, UoL) Programming in C++ 29 / 29

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Empty On Purpose

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Empty On Purpose



Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Final Notes – I

Java has Exception (or some such) from which all exceptions MUST
derive.

C++ doesn’t impose such a constraint (though it does have
std::exception that you could derive from)

So you can throw/catch an object of ANY class in C++ (even basic
types – but avoid this).

Good practice: throw a TEMPORARY object!
throw my_exception("Not your lucky day!");

How can I catch it?
The same way I can receive a parameter – EITHER BY VALUE
(exception is *COPIED* and *SLICED* – BAD!) or BY REFERENCE
(GOOD!)

try {
// dangerous stuff

} catch (problem1 p1) { // catch BY VALUE - BAD! BAD! >:-(
// exception object COPIED and POTENTIALLY SLICED
// treat p1

} catch (problem2 & p2) { // catch BY REFERENCE - GOOD! :-)
// exception object NOT COPIED
// treat p2

}

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Final Notes – II

A catch clause catches all exceptions of derived classes too – be
careful to place clauses for these classes before the clauses of their
superclasses.

If no catch clause matches, then the function is terminated, destroying
all its local stack-allocated variables, and the system looks for a
matching catch clause in its caller.

As exceptions can belong to ANY class (even basic types. . . ), we cannot
write catch (Exception) to catch any kind of exception.
Instead we need to use the ellipsis notation in C++: catch (...)
matches any exception.

In order to state that we want to re-throw the same exception we simply
write: throw; (EVEN when we have a name for the exception – it
makes explicit that we’re re-throwing)

Resource allocation very often uses a pattern similar to stack-based
allocation (acquire, use, release), thus the pattern:
“Resource Acquisition Is Initialization (RAII)”

Introduce a local manager object for the resource that releases the
resource in its destructor.
In this way it is released whether the code block is terminated normally
or through an exception, avoiding boiler-plate code with try/catch
clauses.

Simple example of that: point_manager (slides 13–14)

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Final Notes – III

Standard manager class: auto_ptr (slides15–19)
An example of a “smart pointer” (which are examples of the “proxy”
pattern)

auto_ptr copy constructor:

template <typename T>
auto_ptr<T>::auto_ptr(/*NO const!*/ auto_ptr<T> & o )
: _ptr(o._ptr) { o._ptr = nullptr; }

auto_ptr assignment operator:

template <typename T>
auto_ptr<T> &
auto_ptr<T>::operator=(/*NO const!*/ auto_ptr<T> & o )
{
if (&o != this) {

delete _ptr;
_ptr = o._ptr;
o._ptr = nullptr; // STEAL THE POINTER

}
return *this;

}

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Final Notes – IV

auto_ptr is badly broken. . .
1 It calls delete, so cannot handle arrays of objects (these need

delete []).
2 It says it has a copy constructor but it doesn’t copy, it *moves* the

value from the other object into itself – major breakage!
Cannot use them in standard containers!!!

In C++11 auto_ptr has been deprecated and replaced by unique_ptr

You still need to learn how to implement auto_ptr and understand it.



Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Final Notes – V

What to do when you receive an exception?
You’re at a family party and cousin Jim starts to choke on a piece of
meat!

1 Catch the exception and ignore it – hide Jim in a closet and pretend
nothing’s happened.

2 Catch the exception and log it – “Dear diary, Jim once more ruined
the party. . . ” (after having hidden Jim in a closet).

3 Catch the exception and fix the problem – Help Jim spit the piece of
meat that is choking him.

4 Not catch the exception but let it propagate instead to your caller (or
catch/rethrow), who might know how to fix it – Call 999 and let them
know there’s someone choking; they’ll deal with it (if they can).

HINT: It’s neither #1 nor #2 that you should be doing. . .

Even more things you should be able to do

Use multiple inheritance in C++, knowing how to specify replicated
vs. virtual inheritance (virtual)
Explain — Gang of Three

1 What the automatically generated constructors, destructors and
assignment operators do

2 When they are inadequate, and if so
3 How they should be replaced

Use the exception syntax of C++ (try, catch, throw, rethrow)
Use RAII (“resource acquisition is initialization”) to safely release
resources, even in the presence of exceptions

Use unique_ptr (and less often shared_ptr [*]) to
automatically manage your pointers

([*] sharing makes it harder to parallelise)20
23

-1
2-

12

Programming in C++

Even more things you should be able to do

Final Notes – VI

Further pointers:

“What should I throw?”
A temporary object.
https://isocpp.org/wiki/faq/exceptions#what-to-throw

“What should I catch?”
Catch by reference if given the choice (avoids copying).
https://isocpp.org/wiki/faq/exceptions#what-to-catch

“But MFC seems to encourage the use of catch-by-pointer; should I do
the same?” (aka When in Rome. . . )
When working with MFC yes, otherwise no as it’s not clear who’s
responsible for deleting the pointed-to object.
https:
//isocpp.org/wiki/faq/exceptions#catch-by-ptr-in-mfc

“What does throw; (without an exception object after the throw keyword)
mean? Where would I use it?”
Re-throw.
https://isocpp.org/wiki/faq/exceptions#
throw-without-an-object

“How do I throw polymorphically?”
To catch derived exceptions instead of base exceptions, make sure
you’re throwing derived exception objects! Use virtual functions.
https://isocpp.org/wiki/faq/exceptions#
throwing-polymorphically

“When I throw this object, how many times will it be copied?”
Nobody knows (zero to some) but the exception object must have a
copy-constructor (even if the compiler will never copy it).
https://isocpp.org/wiki/faq/exceptions#
num-copies-of-exception


