
The Impact of Workload Clustering on

Transaction Routing

Christos Nikolaoua Alexandros Labrinidisb Volker Bohnc Donald Fergusond

Michalis Artavanisa Christos Kloukinasa Manolis Marazakisa

Abstract

The qualitative and quantitative description of the workload of a system is very im-
portant for capacity planning and performance management. In large-scale transaction
processing systems, dynamic workload control algorithms are applied to optimize sys-
tem performance. Such algorithms can bene�t from the results of workload clustering
algorithms that partition the workload into classes consisting of units of work exhibiting
similar characteristics. This paper presents CLUE, a clustering environment for OLTP
workload characterization. CLUE provides a library of clustering algorithms that classify
transactions into classes, according to their database reference patterns. This paper in-
troduces HALC, a new batch-mode heuristic clustering algorithm, designed to cope with
the large volume of input data that is typical for real-life applications. Next, an on the

y clustering algorithm based on neural networks is described. This algorithm can be
used in an on-line fashion in systems whose characteristics change through time. This
paper provides an evaluation of the performance of HALC and the on the y algorithms
in terms of execution times and statistical metrics related to the quality of clusters that
they compute, for both synthetic and real-life workload traces. Finally, this paper quan-
ti�es the impact of workload clustering on the performance of three dynamic transaction
routing algorithms for Shared-Nothing transaction processing systems.

1 Introduction

Typical multi-node on-line transaction processing (OLTP) systems employ a shared-nothing
architecture where each individual node has private disk & main memory and any communi-
cation among nodes is done through the local area network. Data are usually placed statically
on nodes, and remote access is needed when a transaction has to access data that do not reside
in the execution node's disk.

Knowledge of the intrinsic characteristics of the transaction workload is essential for dy-
namic workload control algorithms that are used in multi-node OLTP systems to optimize
performance. Examples of such intrinsic characteristics, which are independent of the arrival
rates of units of work, include the average number of database accesses, the �les accessed,
CPU processing demands, and the average number of synchronization points. Large-scale
OLTP systems provide a controlled run-time environment for prede�ned transaction pro-
grams (\canned transactions") that model certain business actions in the application domain.

aDepartment of Computer Science, University of Crete, Greece and Institute of Computer Science
(ICS), Foundation for Research & Technology - Hellas (FORTH) Heraklion, Crete, Greece. Email: niko-
lau@ics.forth.gr, artav@ics.forth.gr, kloukin@csd.uch.gr, maraz@ics.forth.gr

bDepartment of Computer Science, University of Maryland, USA. Email: labrinid@cs.umd.edu
cHamburg-Mannheimer, Abt. EDVS/Ueberseering 45/D-22297, Hamburg, Germany. Email:

bohn@acm.org
dIBM T. J. Watson Research Center, USA. Email: d�erg@watson.ibm.com

1

A classic example is the debit=credit transaction in the banking application domain. Users
submit requests specifying the type of transaction to execute together with any required pa-
rameters (such as the account number and amount of money in the debit=credit example) and
the transaction monitor activates the appropriate prede�ned program with these parameters.

An enterprise's geographical and organizational structure has a strong inuence on the
placement and access to operational data; certain users will only use a prede�ned set of termi-
nals to access speci�c data, which are related to their daily work and the location where they
work. For the debit=credit example, bank tellers require access to bank accounts that are
associated with their branch. It is expected that the combination of the transaction program
name, user identi�cation, and terminal name can be used as a unique identi�er of transac-
tions that will most likely display similar intrinsic resource consumption characteristics. The
combination of these three names, hereafter called a triplet ID, serves as a descriptor for all
units of work that share this combination. Units of work emanate from the requests of users.
The triplet ID together with statistical data that describe the expected resource consumption
demands of its corresponding units of work is called a triplet. Large-scale OLTP systems
can use as many as 1000 canned transactions and support more than 100,000 terminals and
users [25]. Though the real number of triplet IDs that occur in a running application is much
smaller than the product of the number of transaction programs, users and terminals, it could
easily be in the order of tens of thousands.

Given a description of intrinsic workload characteristics for triplet IDs, it is essential for
the success of dynamic workload control algorithms to compress this data without losing
information necessary for e�ective workload control. This means that triplets with similar
resource demands and database referencing behavior have to be identi�ed and grouped into
classes with similar characteristics. Triplets with di�erent characteristics must be assigned
to di�erent classes. This assignment of triplets to classes, hereafter referred to as workload
clustering, is usually done by an expert user (e.g. a database administrator), through a se-
ries of empirical decisions. However, this approach is not realistic for large-scale transaction
processing systems. Automatic clustering techniques have to be adopted. The intrinsic char-
acteristics of clusters provide a characterization of the workload from which the clusters were
created. Thus, workload clustering provides valuable input to dynamic transaction routing
algorithms that are responsible to assign each incoming unit of work to a processing node of
the OLTP system.

This paper presents CLUE, a clustering environment for OLTP workloads, which pro-
vides a library of clustering algorithms. These algorithms operate on traces collected from
operational OLTP systems. We introduce HALC, an e�cient batch-mode algorithm that can
handle clustering of large volumes of data. HALC has been integrated in the CLUE environ-
ment. This paper compares the performance of the clustering methods provided by CLUE

for several synthetic traces as well as of two real-life traces produced by an OLTP system
based on a centralized relational database system, in terms of execution times and statistical
metrics related to the quality of the clusters that they compute. Furthermore, a major con-
tribution of this paper is to provide an understanding of the impact of workload clustering
in the performance of OLTP systems. We use TPsim [19], a transaction processing system
simulator to study the performance of three di�erent dynamic transaction routing algorithms
for each of the clustering algorithms compared in this paper.

The paper is organized as follows. Section 2 provides a brief survey of work related to
workload clustering. Section 3 describes the CLUE environment and section 4 presents the
HALC batch-mode algorithm. Section 5 presents an on the y clustering algorithm, based
on neural networks, that has also been incorporated into CLUE. An evaluation of the quality
of the afore-mentioned clustering methods is presented in Section 6, while Section 7 provides

the results of simulation experiments that were conducted with TPsim to study the degree
of usefulness of workload clustering to the overall system performance. Finally, concluding
remarks appear in Section 8.

2 Related Work

This section provides a brief overview of related work in the areas of clustering and workload
characterization.

There is a large collection of clustering algorithms which are used to analyze experimental
data in a variety of applications, and new algorithms continue to appear in the literature.
Cluster analysis is the process of classifying objects into subsets that have meaning in the
context of a particular problem. A classi�cation of the most widely used methods for clustering
is given in [15]. Automatic clustering techniques are valuable tools for workload classi�cation,
because they eliminate the dependency of classi�cation results on the analyst's skills and
subjective judgments. However, as commented in [24], automatic clustering techniques should
be combined with expert knowledge about the case being studied, in order for the clustering
results to be valid. The major problems of the general approach of workload clustering are
discussed in [11]. These are: the selection of the clustering algorithm and of the clustering
distance metric, the appropriate scaling and normalization of the input data, and the e�cient
handling of large sized inputs.

The behavior of real workloads is very complex and di�cult to reproduce. A model for
such workloads has to capture the static and the dynamic behavior of the real load and must
be compact, repeatable and accurate [4]. A discussion of the problems arising when one tries
to generate such models can be found in [2]. The measurement-based approach to workload
characterization is addressed in [3]. In this work, various types of systems, namely interactive
systems, distributed and parallel systems, and databases, are analyzed and a number of case
studies are presented.

In studies on relational database workloads, measurements are collected in order to per-
form workload characterization. The measured events dealt mainly with bu�er manager I/O,
lock information, and SQL statements distribution and composition. For example, it is shown
(in [16] - with analysis of a database trace) that general models for program traces are not ap-
plicable for detailed database workload characterization. [29] presents a Relational Database
Workload Analyzer, which aims at characterizing the workload in a DB2 environment. The
authors performed a workload study, focusing on the structure and complexity of SQL state-
ments, the makeup and run-time behavior of transactions/queries, and the composition of
relations and views.

[30] and [31] propose grouping transactions according to their consumption of system re-
sources, and focus particularly on a�nity clustering, i.e. partitioning the transactions into
clusters according to their database reference patterns. In [31] data placement and trans-
action clustering are determined by solving an optimization problem where the objective
function takes into account the balance of processing load by the a�nity clusters produced.
An analytical modeling approach is followed to examine the impact of a�nity clustering
to the performance of the Shared Disk, Shared Intermediate Memory and Shared Nothing
architectures.

In this paper, we assume that the placement of data has already been determined, and
instead focus on the problem of workload characterization through cluster analysis. We
quantify the actual impact of di�erent clustering algorithms on the performance of an OLTP
system by examining how the workload characterization estimated from cluster analysis a�ect
the behavior of dynamic transaction routing algorithms.

3 Workload Clustering with CLUE

We �rst give a top level description of CLUE and then briey describe the clustering algo-
rithms that were implemented.

3.1 Description

CLUE performs clustering of the input triplets into utilization classes in three steps:

Read Triplets into Main Storage: The input �le is produced by a trace �ltering and
correlation tool. This tool reads trace data derived from a running OLTP application, corre-
lates the various types of trace records to triplets and generates the triplet data to be read
by the clustering algorithm. The input �le, derived from the original trace �le that contains
one entry for each data access made by a transaction, contains summary information about
the total number of user IDs, terminal IDs, and transaction IDs, the number of �le =database
pages accessed, and the number of triplets. The largest portion of the input �le contains data
describing the page references made by each triplet, and whether these references were read
or update requests. Currently, only the information relating to the number of page references
made by each triplet is taken into account by CLUE.
Each triplet is described by the following information:

TRIPLET ID:
TRAN ID, USER ID, TERM ID

GLOBAL INFORMATION:
Number of SYNCPOINTS,
CPU burst between data requests,
Number of page references (data requests) (\transaction length"),
Read-only indicator (true, if triplet submitted read accesses only),
Name information (name conventions used in various applications)

ACCESS INFORMATION:
Number of read references to each data �le,
Number of write references to each data �le.

The information from the input �le is stored in a reference matrix (see �g. 1), where the rows
are indexed by the triplets and the columns by the database page references. That is, in
row i and column j lies the element referring to triplet i and data page j. Each matrix entry
contains two �elds, giving the number of read and write references to the data page associated
with the triplet. This matrix is expected to be too large to be stored in its entirety in main
memory, therefore an e�cient representation method is required. Since experimentation with
real-life traces showed that the density of this matrix, de�ned as the ratio of non-zero cells to
the total number of cells, is below 1%, a sparse matrix provides an e�cient representation of
the reference matrix.

Preprocessing of the input: During the preprocessing phase, CLUE may perform various
numerical transformations to the information related to each triplet, as well as change the
relative order of the triplets (which for some algorithms may provide a better initial state).
The various alternatives, which may be speci�ed by the user in a con�guration �le, are:

Scaling and handling of the outliers: Scaling is done using either the classical standard-
ization or the logarithmic transformation, as described in [24]. This is necessary, since

j

#writesi

nT

T

T3

T2

T1

1B B B3 B Bk2T
DB

 #reads

Figure 1: Triplet-page reference matrix.

an improper scaling and treatment of the outliers usually leads to bizarre clustering
results.

Sorting of the triplets: This phase attempts to sort the triplets, so that triplets referencing
the same pages will be placed as close as possible in the reference matrix. The sorting
algorithm used in the current implementation is Heapsort and the criterion for the
sorting can be one of the following:

REF sorts triplets according to the total number of page references they make

LEX sorts the triplets lexicographically. That is, it considers each page to be a letter
and the \word" constructed for each triplet contains the respective letter if the
triplet made any references to that page.

BEA sorts the triplets as in the �rst phase of the Bond Energy algorithm [21], where
a function bond() is computed for each pair of triplets, showing the degree of
similarity of the page references they make. The larger the bond, the closer the
two triplets will be placed, once the sorting is completed.

Clustering: After preprocessing the elements of the reference matrix, one may select among
a variety of di�erent clustering algorithms to partition the triplets into a number of utilization
classes (classes consisting of transactions with an a�nity to a particular database partition).
The maximum number of classes that are to be produced should be speci�ed by the user. In
the experiments that were conducted with real-life traces, the maximum number of utilization
classes was set to 100, because, in our experience, a reasonable number of utilization classes for
transaction routing algorithms is usually less than 100. The result of the clustering, namely
the utilization classes, is stored in a �le so that another module of the OLTP system, such as
a transaction router, can use it.

3.2 Implementation

Four batch-mode algorithms have been implemented: an algorithm that randomly assigns
triplets to classes, the K-Means algorithm [18, 13, 1, 28], the Bond Energy algorithm [21],
and the HALC algorithm which is presented in detail in section 4. The random algorithm
was implemented to be used as a basis for comparison.

The K-Means algorithm is a well-known clustering algorithm and, as noted in [24], it is
considered as the standard technique for computing workload classes from measurement data,
since it is simple and quite fast. A quick description of this algorithm is the following: Initially
the algorithm assumes a random partition of the data into K clusters. Then, it goes through
a series of iterations. In every iteration, each datum is assigned to the cluster whose center is
closer to it (according to some distance metric, e.g. Euclidean distance). The cluster centers
are recomputed after each iteration and the iterations stop when the cluster memberships
stabilize.

The third clustering algorithm, Bond Energy algorithm (BEA), performs very well when
the number of data to be clustered is small, but its high complexity makes it unsuitable for
use in any other case. Nevertheless, it was implemented in the hope it would exhibit good
clustering results. Finally, the HALC algorithm is a heuristic algorithm which is very e�cient
in the case of large sized inputs. HALC will be described in more detail in section 4.

All the afore-mentioned clustering algorithms have been implemented to work with two
di�erent distance metrics, of the general form �(x; y):

� The Pseudo Linear Dependency Metric:

�(x; y) = max
i=1;:::;n

(
0 if xi = yi = 0
kxi�yik

max (xi;yi)
otherwise

)
(1)

where n is the number of all data pages, xi is the number of accesses that triplet x
makes to data page i and yi is the number of accesses that triplet y makes to the same
data page i.

� The Vector Distance Metric:

�(x; y) =

vuut nX
i=1

(xi � yi)
2 (2)

With the vector distance metric, each triplet is considered to be a vector in an n-dimensional
space, where each dimension maps to a separate data page.

The number of accesses xi used in the calculations of distances (eq. 1 and eq. 2), is a
weighted sum of the read and write accesses for the corresponding triplet and database page,
i.e. xi =

wread�#read accesses+wwrite�#write accesses
wread+wwrite

2

. The weights wread and wwrite are speci�ed by

the user; their default value is 1 (similarly for yi).

4 HALC - A Heuristic Algorithm for Clustering

This section provides an overview of the HALC algorithm, short for a Heuristic ALgortihm
for Clustering. HALC is an agglomerative, partitional, clustering algorithm1

The algorithm works by initially assigning each triplet to a separate cluster. Then, in each
iteration, the algorithm merges clusters with similar page references. Clusters are considered

1According to the classi�cation scheme given in [15]

to be similar, if the distance between them is less than the current threshold value of the clus-
tering distance. The clustering distance is set to a default value at �rst and is automatically
adjusted at each iteration. The iterations stop when the number of clusters becomes equal
to the number of clusters that the user speci�ed, or when any valid change to the clustering
distance does not a�ect the number of clusters. When two clusters X and Y are merged,
there are two choices for computing the page references of the new cluster X 0; they are set
either to the sum of the references of X and Y , or to the weighted average of them, according
to what the user had speci�ed.

Each iteration consists of the following two phases, which are executed consecutively until
the algorithm terminates:

Elementary Clustering Step (ECStep): Assuming an initial good sorting pass, triplets
with similar characteristics must have been placed close to each other in the reference matrix
(see �g. 1). During this step, the triplets are split into intervals, roughly as many as the
requested number of �nal clusters. Intervals are used to limit the scope of distance calculation
between triplets. The relative order of clusters is maintained and the length of each interval

is computed assuming a base length equal to
#current clusters
#�nal clusters and a random negative or

positive deviation.2

� Within each of the produced intervals, the distance between each element Yi and the
�rst element, Y , of the interval is computed.

� If for some pair (Y; Yi) the distance is less than the current distance, Yi is merged with
Y . Then, Yi is removed from the list of clusters.

This Elementary Clustering Step can be performed either in simulation mode, where no
changes in the data structures are performed and simply the number of possible new clusters
is returned, or in normal mode, where the clusters are merged and the result is irreversible.

Re-Adjustment of the Clustering Distance If Necessary (RACDIN): This step com-
putes the decrease of the number of clusters, due to the last ECStep, and checks if it satis�es
the following two criteria:

Quality criterion - The decrease should not be larger than a user speci�ed percentage (e.g.
10%), or else the quality of the produced clustering might be poor.

Quantity criterion - The decrease should not be smaller than a user speci�ed percentage
k% of an initial decrease, or else it is too small and a lot of iterations will be needed in
order to reach the required number of clusters.

There may be various choices for what can be selected as the initial decrease. It could
be the decrease after the �rst iteration of the algorithm, the maximum or the average
decrease observed so far, or even a user speci�ed value.

If the quality criterion is not met, the clustering distance should be decreased. At this
point, the algorithm goes through a loop, where in each iteration the clustering distance is
decreased by a speci�ed percentage and then an ECStep is performed in simulation mode, to
check if the produced decrease satis�es the quality criterion. If the quality criterion is met or
the maximum number of iterations is reached, the loop is exited, in which case the clustering

2The reader should note the di�erence between an interval and a cluster; an interval usually contains more
than one clusters, which may have only one element (i.e. a simple triplet) or more elements.

distance is adjusted to its new value. If the quantity criterion is not met, the clustering
distance should be increased and the algorithm follows a similar procedure as before, in order
to adjust the clustering distance.

The quantity criterion is checked immediately after the quality criterion has been met.
However, after each increase in the clustering distance, performed in an e�ort to meet the
quantity criterion, the quality criterion is checked again. The algorithm must guard against
oscillations (a decrease followed by an increase, or vice versa) that might occur. In such
a case, depending on the option settings provided by the user, it either exits the RACDIN
phase, or halves the decrease or increase percentage used (therefore allowing changes at a
�ner level of detail) and tolerates a few more oscillations before exiting. After an oscillation
is detected, the user has various choices for the selection of the new clustering distance (the
average of the encountered distances, the last distance, etc.)

It is obvious from the above description, that there are various parameters a�ecting the
behavior of the HALC algorithm. Even though there are default values for all the parameters
described above, a user who has knowledge of the nature of the data and the distances
produced by the metrics used in the CLUE environment could select better values for these.
In a future version, HALC should also try to estimate suitable values for these parameters
automatically.

Currently, HALC takes into account only the information about the page references made
by each triplet. However, more information should be considered for the generation of the
utilization clusters; this was referred to as global information in section 3. This additional
information can be used to further constrain the formation of clusters, in the following way:
Only if the metric used to compute the clustering distance allows the merging of two clusters,
and the number of synchronization points are similar, and : : : , and the application names
are similar, are the clusters themselves considered similar, and subsequently merged into one.
Initial experiments have shown that these additional constraints can improve the clustering
quality.

5 On the Fly Workload Clustering

So far, we have considered systems with workload characteristics that are, more or less,
stable through time. If, however, workload clustering is to be extended to systems with
characteristics that change through time, such as a banking transaction processing system
where people may perform di�erent transactions depending on di�erent days of the month,
then the batch-mode clustering algorithms are no longer su�cient. In such cases, there is a
need for an on the y clustering algorithm, which can follow the changes in the state of the
system, and the type of user requests.

Such an algorithm should be fast, so that it does not degrade the performance of the
system, accurate, and preferably simple. Arti�cial neural networks have all these properties.
An arti�cial neural network, called Optimal Adaptive K-Means [6], was constructed for this
purpose and was tested along with the other algorithms, in order to evaluate its performance.

Optimal Adaptive K-Means is an enhanced version of the neural network implementation
of K-Means, which is usually referred to as Adaptive K-Means [17, 22, 14]. First, a brief
description of Adaptive K-Means will be given, followed by a presentation of the Optimal

Adaptive K-Means.

5.1 Adaptive K-Means

Weights

Input
Signals

kθ

y
k

φ()

kp

k2w

Summing
Function

Activation
Function

Output
Signal

Synaptic

w

.

.
.

.

.
.

. Σ uk

Threshold

k1w
1

2

px

x

x

Figure 2: Mathematical Neuron Model

A mathematical neuron, or just neuron from now on, can be modeled as shown in Figure 2.
In brief, a neuron k, computes a weighted sum of p input signals xj, j = 1 ... p and generates
a signal uk usually between [0,1]. On this signal an activation function '(�) is applied, along
with a certain threshold �k. The �nal output signal can take two di�erent values (0 or 1)
depending on the activation function (which is usually a unit step function). Mathematically,

uk =
pX

j=1

wkjxj (3)

yk = '(uk � �k) (4)

where x1; x2; : : : ; xp are the input signals, wk1; wk2; : : : ; wkp are the synaptic weights of neuron
k, uk is the output of the summing function, �k is the threshold, '(�) is the activation function
and yk is the output signal of neuron k.

The Adaptive K-Means neural network consists of K neurons, each one corresponding to
a di�erent cluster. The centroid of each cluster is stored in the synaptic weights vector, ~c, of
the respective neuron.

These weights are usually initialized with small random values and then updated in the
following manner: As a new datum, ~x, is presented to the network, all neurons compute the
Euclidean distance between it and their centroid. The neuron having the smallest distance
is said to be the winner, i.e. the one that represents the cluster that will "own" datum ~x.
Then, the winning neuron updates its synaptic weight vector, so that its centroid will move
closer to the new data. The update is done accordingly to eq. 5, which is a running average
of the data seen so far. The coe�cient M (i)(�), called the membership indicator, is calculated
as in eq. 6 and is nothing more, than the mathematical expression \choose the neuron which
is closer to the data". d(~� � ~�) denotes the squared Euclidean distance of ~� and ~� (eq. 7).
The coe�cient �, appearing in eq. 5, is called the learning rate of the network and controls
the speed and accuracy with which the network will converge to the �nal clusters3.

~c (i)[T + 1] = ~c (i)[T] +M (i)(~x[T]) � � � (~x[T]� ~c (i)[T]) (5)

M (i)(~x) =

(
1 if d(~x� ~c (i)) � d(~x� ~c (j)) 8j 6= i
0 otherwise

(6)

3
� is usually a constant, in the [0, 1) interval. Value 0 means that the network has stopped learning, i.e. it

has reached a stable state.

d(~x;~c (i)) = jj~x� ~c (i)jj2 (7)

The afore-mentioned Euclidean distance and membership indicator force the network to
cluster data in such a way, that the mean squared error function, or MSE for short, de-
creases [14] [22]. This function is shown in eq. 8. Symbol v(i) in eq. 8 denotes the intra-cluster
variance of the i-th cluster, i.e. the mean value of the distances of the data of the cluster from
the centroid of the cluster, as shown in eq. 9 (S(i) being the number of elements of the i-th

cluster, ~x
(i)
j the j-th datum of the i-th cluster, and ~c (i) the centroid of the i-th cluster).

MSE(K) =
KX
i=1

v(i) (8)

v(i) =
1

S(i)
�
S(i)X
j=1

jj~x
(i)
j � ~c

(i)jj2 (9)

5.2 Shortcomings of the Adaptive K-Means

The Adaptive K-Means algorithm has certain inherent shortcomings, that do not always
permit it to reach the globally optimal solution. As a globally optimal solution we de�ne the
minimum square error for the entire clustering (see eq. 15) for a given data set.

First of all, some of its neurons may get initialized with values, that lie in regions of the
search space with few or even no data at all. The e�ect of this is that these neurons will
almost never win over the others, which means that the network will be using only a subset
of its neurons and, therefore, it will have to join dissimilar clusters together. It is evident
that in such a case the produced solution will be sub-optimal.

Various techniques have been proposed to remedy this problem; in [26, 27], it is proposed
that the so called leaky learning rule be employed, according to which, non-winning neurons
have their weights updated as well, but with a smaller learning rate than the winner, so that
the later still retains an advantage over the others. In [9], it is proposed to change the distance
function used, so that it favors those neurons which have won fewer times during the past.
This later enhancement is called the conscience learning law. However, both these methods
cause the cost function of the neural network (eq. 8) to change in such a way, that the clusters
produced by the network are no longer optimal with respect to MSE, or, sometimes, not even
near optimal. In addition to that, the leaky learning rule increases by far the computational
complexity of the algorithm, since the synaptic weights of every neuron, instead of just the
winner, must be recomputed at each step, when it is employed.

Another problem of the Adaptive K-Means algorithm is the fact that the learning rate is
a constant. When choosing a suitable value for it, there is a tradeo� between the dynamic
performance of the network, i.e. the rate by which it converges to the �nal solution, and the
steady-state performance, i.e. the deviation of the �nal solution from the optimal solution.
In other words, one must choose a small enough value, so that the network converges to a
�nal solution and does not wander aimlessly in the search space. The smaller the learning
rate is, the smaller the �nal deviation from the optimal solution will be. On the other hand,
the smaller the rate is, the longer it takes for the network to reach a solution.

Since the optimal value for the learning rate depends on the characteristics of the data
that are to be clustered, it is not possible to select one a priori. Usually, a small value
is selected initially, which is then successively increased through a series of \test and fail"
experiments. Several di�erent methods have been proposed to alleviate this problem, by
adjusting the learning rate dynamically. In [7], it was proposed that the learning rate be

inversely proportional to the square root of the number of data seen up to that point in time.
Since this rule increases the time needed by the network to converge to the �nal solution,
another method called search then converge [8] was later proposed by the same authors,
where �(t) = �0

(1+t=�) . In this method, the learning rate is kept close to the value �0 for a time

period equal to � and then it starts decreasing at a rate of 1
t . In many cases, this method

converges both accurately and quickly. It is not possible, however, to select the optimal
value for � a priori. In addition to that, such methods are not suitable for problems whose
characteristics keep changing during time.

Both of these problems, that of the exclusion of neurons due to bad initialization of their
weights, and that of the determination of a good learning rate, were taken into consideration
in the creation of the Optimal Adaptive K-Means algorithm [6], which we describe in the next
section.

5.3 Optimal Adaptive K-Means

Optimal Adaptive K-Means is based upon the �ndings of Gersho [12], who showed that, for
a large number K of clusters and a smooth underlying probability density function P of the
data, all regions in an optimal Voronoi partition have the same within-region variations v(i).
Since K-Means (and therefore Adaptive K-Means) produces such a Voronoi partition, the
authors of [6] conjectured that it would be interesting to aim for a clustering with equal
cluster variances, even when K is not large enough, or P is not smooth. In order to achieve
this, they proposed two changes to the Adaptive K-Means algorithm.

The �rst one attempts to force all neurons of the network to participate in the clustering
process. This is done by employing a di�erent distance function, which is the one shown in
eq. 10. The original squared Euclidean distance is shown in eq. 7.

dbias(~x;~c
(i)) = v(i) � d(~x� ~c (i)) = v(i) � jj~x� ~c (i)jj2 (10)

The i-th cluster variance, v(i), used to weigh the Euclidean distance, is calculated as in
eq. 11. The coe�cient � is used much like the learning rate of the network, and usually has
a value close to 1, e.g. � = 0:9999.

v(i)[T + 1] = � � v(i)[T] + (1� �) �M (i)(~x[T]) � jj~x[T]� ~c (i)[T]jj2 (11)

By weighing the Euclidean distance with the variance of each cluster, they manage to bias
it in favor of neurons that have responded to fewer data. This is so, because as the number of
data won over by a neuron increases, its variance will usually be increasing as well. Therefore,
there will come a time, when a neuron with fewer data, and thus a smaller variance, will start
winning the others.

As in the case when changes are made to the distance function or the update rule, this
new distance function causes a change in the cost function minimized by the network. The
new cost function is shown in eq. 12. However, the authors prove that this new Variance

Weighted Mean Square Error, or VWMSE for short, function is equivalent to the MSE cost
function (see eq. 8). Therefore, the new network has the advantage of better utilizing its
neurons, while still retaining the original cost function.

VWMSE(K) =
KX
i=1

v(i) �

PS(i)

j=1 jj~x
(i)
j � ~c

(i)jj2

S(i)
=

KX
i=1

v(i)
2

(12)

The second change proposed, has to do with the selection of the learning rate and its
subsequent adjustment. Since the optimal solution is reached when all cluster variances are

equal, they utilize the entropy function, H(�(1); : : : ; �(K)) =
PK

1 ��
(i) � ln(�(i)), in order to

measure the quality of the current clustering. This is because, the entropy function takes
its maximal value, which is 1

K , when all its arguments are equal. So, after normalizing the
cluster variances, so that they lie in the [0,1] interval (see eq. 13), they de�ne the learning
rate, �, of the network as in eq. 14.

v(i)norm =
v(i)PK
j=1 v

(j)
(13)

� =
lnK �H(v

(1)
norm; v

(2)
norm; : : : ; v

(K)
norm)

lnK
(14)

5.4 On the Fly Workload Clustering in CLUE

In addition to the Optimal Adaptive K-Means algorithm, CLUE provides a version of the more
\standard" Adaptive K-Means one. The only di�erence of this version and the one described
in subsection 5.1 is that the learning rate is adjusted dynamically, in the same manner as
in the Optimal Adaptive K-Means algorithm. This on the y algorithm was implemented, in
order to compare its performance against the Optimal Adaptive K-Means.

A very important characteristic of these neural networks is that they do not need to be
trained with the usual time-consuming paradigm of iterating over a set of training data for
a long period of time. Instead, they can utilize the clusters, produced by the batch-mode
algorithms for the afore-mentioned training data set, to initialize their synaptic weights to
the representatives of each cluster, in constant time. This way, the training of the networks
can be done very fast and provides very good starting points for the synaptic weights of the
neurons.

6 Evaluation of Clustering Results

This section presents the results of the experiments that were performed to evaluate and
compare the quality of the clusterings produced by the di�erent algorithms, both on synthetic
and real-life traces.

In order to guarantee that the clustering algorithms have been implemented correctly, and
behave in an intuitive manner, it is very important to verify that, when their input consists of
simple arti�cial examples, the classes produced are the same with those a human would have
identi�ed. If an algorithm does not behave well in these simple cases, it is meaningless to use
it with real-life data, since then, the obtained results will probably not be valid. Therefore,
a Test Suite Generator (TSG for short) was built, which constructs sets of arti�cial traces
in the format used by CLUE. The input to TSG is a speci�cation �le, whereas its output
serves as input for CLUE. The TSG speci�cation �le is written in a high-level language, and
contains information needed to produce a number of triplets, i.e. the areas in the reference
matrix that are to be �lled, as well as, the particular policy to be followed when �lling them
(either the whole area is �lled or only a random portion of it, and either constant values are
used or random ones selected from a user speci�ed interval). The output of TSG contains the
description of a reference matrix similar to that of �g. 1.

Out of the various metrics [1, 5, 15] used to compare two di�erent clusterings of the same
set of data, the most common one is the square error criterion, e2i . If N data patterns have
been partitioned in K clusters fC1; C2; : : : ; CKg, the square error for the entire clustering is

the sum of the square errors of all clusters (eq. 15):

E2
K =

KX
i=1

e2i (15)

6.1 Experiments with synthetic traces

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

W
LC

DC

"diags10.dat"

Figure 3: The synthetic trace \diagonal squares".

Various synthetic traces, where the number & composition of workload classes are easy to
identify, have been produced using TSG. These synthetic traces were subsequently used to
compare the various clustering algorithms. Fig. 3 shows the reference matrix for a synthetic
trace called \diagonal squares" (since the non-zero entries in the reference matrix form squares
along the diagonal of the matrix), where the data classes (DCs) are in the x axis and the
workload classes (WLCs) are in the y axis. In this trace, it is evident that the workload classes
should be partitioned in 10 clusters, each one containing workload classes from a di�erent
square.

Table 1 shows howHALC,K-Means and BEA performed on this type of traces, for di�erent
numbers of data (WLCs) and inherent clusters, i.e. di�erent number of squares.

All three algorithms found the expected number of clusters, and both HALC and K-Means

seemed to perform well as the size of the problem gets larger, even though HALC outperforms
K-Means. On the contrary, BEA had a long execution time, which renders it unsuitable for
large traces.

6.2 Experiments with real-life traces

Except for synthetic traces, we also used two real-life traces, to evaluate the clustering algo-
rithms; in the following, these will be referred to as DOA and PULS, and were provided by
Siemens Nixdorf Informationssysteme AG Germany. These traces where collected during the
operation of a simulated single-node relational database system. Table 2 summarizes some of
their characteristics.

We assumed that triplets arrive with the frequency measured from the trace, because the
traces contain no timing frequency. Measurements of the data locality as seen on the traces
showed that a very small number of pages is heavily referenced.

WLC DC # clusters HALC K-Means BEA

10 10 1 0.17 0.18 0.21

50 50 5 0.42 0.47 1.99

100 100 10 0.70 0.71 11.18

1000 1000 100 7.49 22.02 8258

Table 1: Comparative results for the three clustering algorithms for the synthetic trace \di-
agonal squares"

The �rst column shows how many triplets were in the trace, while the second one, the number of pages

that were in the data base (i.e. the dimension of the triplets page reference vector). The third column

shows the number of real clusters in the trace, and the other columns show the execution times in

seconds for the respective algorithm.

Characteristic DOA PULS

transaction IDs 103 53
user IDs 474 103
terminal IDs 474 110
number of triplets 1984 280
Total of DB pages referenced 41003 66846
non zero reference matrix elements 180017 178749
ref. matrix density 0.22123% 0.95501%

Table 2: Traces DOA and PULS.

� Observations about locality of references for DOA:

{ 10 most referenced pages (0.0243% of all pages) get 16.76% of all references.

{ 80% of all references are to 13.14% of all pages.

{ 90% of all references are to 25.78% of all pages.

� Observations about locality of references for PULS:

{ 10 most referenced pages (0.015% of all pages) get 10.02% of all references.

{ 80% of all references are to 26.96% of all pages.

{ 90% of all references are to 45.05% of all pages.

Since the traces were collected on a single node system, in a multiple node TP system
special handling of the pages was needed. Therefore we assigned pages to a number of buckets
(disk-resident �les) so that, according to the access info on the trace, each bucket is accessed
with the same frequency.

The four clustering algorithms, namely RANDOM, HALC, VWMSE (Optimal - Adaptive
K-Means) and K-Means 4, were used to produce a maximum number of 30 clusters. Figures

4
BEA was excluded, since its execution time was too high for it to be of any practical use.

Figure 4: Comparative results for the four clustering algorithms using the DOA trace.

4 and 5 show how the four clustering algorithms performed in terms of execution time
(measured in seconds) and the square error criterion.

For the VWMSE clustering algorithm, which is based on neural networks, �rst both the
traces (DOA and PULS) were divided in two di�erent sets. The training set of a trace was
used for the training of the neural network, and the testing set for the evaluation of the
clustering. For the DOA trace 10% of the original trace triplets comprised the training set
and the other 90% the testing set. For the PULS trace the training set was exactly 30 triplets
(in order to initialize all the neurons) and the remaining triplets were the testing set.

As Figures 4 and 5 suggest, HALC, VWMSE and K-Means managed to construct useful
clusters (i.e. with a much smaller square error than that of the RANDOM algorithm), even
though HALC and VWMSE seem to produce somewhat better solutions. Additionally, HALC
takes a lot less time to �nish than K-Means and VWMSE. Execution times for HALC are in
the order of seconds, while for K-Means and VWMSE are in the order of minutes. K-Means

produces in both cases a very big cluster containing most of the pages, caused from the fact
that in both traces triplets are accessing the same pages with high probability.

7 Impact of Workload Clustering on Transaction Routing

This section provides a detailed description of the simulation model that was used, and the
experiments performed in order to investigate the impact of the quality of clustering on the
performance of various transaction routing policies.

7.1 Simulation Methodology

The evaluation study is based on the TPsim [19] simulator of multiple-node shared-nothing
transaction processing systems. The simulator was written in C, on top of a threads-based

Figure 5: Comparative results for the four clustering algorithms using the PULS trace.

simulation support library (PARASOL [23]), and a parser that processes a high-level descrip-
tion of the system con�guration and workload, in order to con�gure the simulated run-time
environment according to user speci�cations. TPsim models a transaction processing monitor
coupled with a database manager, and fully emulates concurrency control (two-phase lock-
ing with deadlock detection), LRU bu�er management, logging (including group commit),
CPU scheduling, I/O scheduling and distributed two-phase commit. It allows simulation of
multiple-class workloads and collects performance related statistics for each workload class.

Initial experiments showed that since there were some transactions accessing thousands
of pages and the rest only accessed a few pages, the results were strongly a�ected from those
long-lived transactions. Since these transactions needed to lock a big part of the database,
many others were blocked waiting for locks owned by these transactions. This caused a lot
of timeouts and deadlocks between the transactions and as a result low utilizations. So we
reduced the traces by removing instances of triplets that were accessing more than 30 di�erent
pages. For the remaining triplets, the overall number of page references per transaction can
be much higher than 30, however each transaction references no more than 30 di�erent pages.

The resulting traces, which will be called Reduced DOA and Reduced PULS from now on,
consist of 1836 triplets (92.5% of the initial trace DOA) and 144 triplets (51.4% of the initial
trace PULS), respectively. The average number of page references per transaction is 27 for
the Reduced DOA trace, and 55 for the Reduced PULS trace.

The OLTP system con�guration used in the experiments consisted of 7 nodes for the
Reduced DOA trace, and of 5 nodes for the Reduced PULS trace. Incoming requests from
users were routed by a dedicated \front-end" node to one of the other 6 or 4, respectively,
available \back-end" nodes, according to the policy adopted for transaction routing. There
were 100 user terminals in the system, submitting streams of units of work for service. Each
user terminal was modeled as a source that submits a request, waits for the response, and
then waits for a period of time (think time) before submitting the next request. This means

that the maximum number of active transactions was limited only by the multiprogramming
level. All the nodes of the simulated system were identical although some experiments were
made with heterogeneous clusters. The main con�guration parameters, with their settings
for each of the nodes, as well as the ones for the connecting network, are shown in Table 3.

We varied CPU speed from 20 - 28 MIPS in order to get results for di�erent (high)
utilizations. Because of the locality of references issued by the transactions in both Reduced

DOA and Reduced PULS, pages were found with a high probability in the private bu�ers
of the node and as a result disk utilizations were very low (usually lower than 15%). The
communication network also was fast enough so as not to become a bottleneck. All the results
were taken only after the end of the �rst 10000 transactions, so that the measurements taken
would correspond to a stable system state. The simulation time was chosen to be 2000 time
units. During this period, the simulated system completed about 150.000 transactions of
Reduced DOA and 80.000 of Reduced PULS (in Reduced PULS transactions make almost twice
as many page references as in Reduced DOA). Due to lack of knowledge about the composition
of each transaction class (which depended also by the clustering algorithm used), we chose
the same performance goal for all transaction classes. The class performance goal parameters
are taken into account by the goal-oriented routing algorithms [10].

Reduced DOA

number of CPUs 1
MPL 400
number of disks 1
CPU speed 20 - 24 - 28
Private bu�er 30% of local pages

Communication Network:

packet size 1024 bytes
transfer rate 80Mbits

Workload

Transaction Classes 30
Tx Appl. Burst 500000.0
Users 100
Think time 0.014
Performance Goal 0.5

Reduced PULS

number of CPUs 1
MPL 400
number of disks 1
CPU speed 20 - 25 - 28
Private bu�er 50% of local pages

Communication Network:

packet size 1024 bytes
transfer rate 80Mbits

Workload

Transaction Classes 30
Tx Appl.Burst 1000000.0
Users 100
Think time 0.038
Performance Goal 1.0

Table 3: Main simulation parameter settings.

The objective of the experiments was to get an evaluation of the simulated system's perfor-
mance, with respect to alternative workload clusterings and transaction routing algorithms.
Each incoming request carried a workload class identi�er that was assigned by a workload
characterization module. The latter provided a pro�le of anticipated resource demands for
each class, as well. Workload classes were determined from the clustered triplets, either of
Reduced DOA or Reduced PULS.

Afterwards, CLUE was used to cluster the triplets. This information was subsequently
used by the workload generation module of the simulator, which produced streams of triplets,
where each triplet's reference pattern was (on average) as computed from the original trace,
and its frequency of occurrence as derived from the original trace. The transaction router,

however, had to base its decision on the expected resource consumption pro�le associated
with the (statically assigned) workload class identi�er for the triplet, which was taken from
the output of CLUE. Thus, the quality of clustering, by a�ecting what the router perceived as
the expected resource demands for each incoming unit of work, could have a marked impact
on system performance.

7.2 Transaction Routing Algorithms

The transaction routing algorithms used in the experiments were WFW,WFWC, SGOR, and
JSQ, which are described in detail in [10]. These are all dynamic control algorithms, able to
handle multiple-class workloads. Both WFW and WFWC aim at minimizing the response
time for each arriving transaction. WFW is based on the Join-the-Shortest-Queue (JSQ)
algorithm but takes into account data a�nity, as well. WFWC is based on WFW but also
considers the priority of each arriving transaction, as well as, of those already in the system.
SGOR tries to minimize the maximum performance index (see subsection 7.3) over all classes,
by estimating the e�ect of possible routing decisions on the performance index of all classes.

All the above algorithms (except JSQ) use an estimation of the transaction response time,
which is the sum of the estimation of the service time, determined by an expected resource
consumption pro�le and the estimation of the queueing delay, derived from current run-time
state information. The resource consumption pro�le, used for the service time estimation, is
associated with the workload class to which the unit of work to be routed has been assigned.
Such a pro�le includes the following information:

- the average CPU work W(i; l; k) generated on node Sk by a transaction of class Ci,
which was routed to node Sl,

- the average number of times V(i; l; k) a transaction of class Ci, which was routed to
node Sl, \visits" node Sk,

- the expected total I/O delay I(i) of a transaction of class Ci,

- the expected total communication delay D(i; l) of a transaction of class Ci, which was
routed to node Sl,

- the expected total I/O delay C(i; l), due to writing log records related to the commit
protocol, at all sites for a transaction of class Ci, which was routed to Sl.

However, the values for these parameters were not available for the traces described in
subsection 6.2. Therefore, in order to obtain meaningful values for the above parameters, a
series of monitoring simulation runs were made �rst, one for each clustering algorithm and
each trace �le. The scheduling algorithm used in these monitoring runs was round-robin, and
the routing of transactions was done randomly, while the rest of the settings were the same as
for the normal simulation runs. This way, it was possible to obtain measurements of the above
quantities, which were subsequently used as an approximation of the resource consumption
pro�les required by the routing algorithms. This approach was deemed necessary, as the
original system from which the traces were collected is no longer available to the authors.

An important notice on the performance of these algorithms is that goal-oriented algo-
rithms that attempt to minimize the maximum performance index, tend to cause the minimum
and maximum performance index curves to converge at high throughput. This causes the
increase of the throughput at which goals can be met, compared to non-goal oriented algo-
rithms (such as WFW), but also results in an increased average transaction response time
over all transaction classes (the metric we chose to measure).

Figure 6: Mean response time over all the transaction classes for the Reduced DOA trace.

7.3 Metrics and Experimental Results

The main metric that we considered in this evaluation was the average response time over all
the units of work.

The performance index Pi of a transaction of class Ci, for which a performance goal gi has
been de�ned (maximum acceptable response time for transactions of class Ci), is de�ned [10]
as in eq. 16:

Pi =
RTi
gi

(16)

In eq. 16, RTi is the current estimation of the average response time for transactions of class
Ci. RTi gets updated, whenever a transaction T of class Ci is terminated, as shown in eq. 17:

RTi (1� �) �RTi + � � R(T) (17)

In eq. 17, R(T) is the response time of T and � is a constant (0 < � � 1) that weighs
the relative importance of recent measurements of response time, against measurements of
response times for units of work that completed further back in time. In these experiments,
� was set to be 0:8.

The CPU scheduling algorithm used in these experiments was CLASS PI [20]. This CPU
scheduling algorithm sets the priority of a transaction (instance of a particular class) equal
to 1

Pi
, where Pi is the current performance index of the class. Therefore the CPU scheduling

algorithm is an adaptive policy, as it considers satisfaction of class performance goals. It favors
transactions belonging to classes that at a particular decision instant, are more probable to
exceed their speci�ed response time goal.

7.3.1 Experimental results for the Reduced DOA trace

Figure 7: Mean response time over all the transaction classes for the Reduced DOA trace.

The experimental results for the Reduced DOA trace can be seen in the three charts presented
in Figures 6, 7 and 8. The metric in these charts is the mean response time over all
transactions. The CPU rate of the processors for the nodes of the simulated system was for
the �rst chart 20 MIPS (Million Instructions Per Second), for the second 24 MIPS and for
third one, 28 MIPS. In this way we measured the performance of the system under di�erent
utilizations.

The performance of the Join-Shortest-Queue (JSQ) router provides the basis of compar-
ison, because the router does not take into account the a�nity of a transaction class to a
given database partition. According to this policy, a newly arrived transaction is routed to
the node with the minimum number of active transactions.

The experiments which used the RANDOM, K-Means and HALC clustering algorithms
with the JSQ router, resulted in mean response times that are very close. This was to be
expected, because the JSQ router does not take into account the information produced by
clustering. Although someone would expected that the node utilizations, using the JSQ
router, would be about the same for all the nodes, experiments showed that a node (in
particular node 3) had a much lower CPU utilization than the others. This happened because
many transactions running on the other nodes were making requests to this node (\function-
shipping" [30]). Function-shipping to a node is made in order to access non-local data in
a Shared-Nothing transaction processing system. It results in creating a mirror transaction
on that node which imposes less overhead than the (primary) transaction. The primary
transaction is located on the node that the router chose to service the transaction and also
controls the two-phase commit protocol.

For the VWMSE clustering algorithm, the testing set of the Reduced DOA trace (90% of
the triplets of Reduced DOA) was used for collecting measurements of transaction response
times. As mentioned in the previous section, triplets in the testing set issued on average
5 DBcalls per transaction more than the triplets in Reduced DOA trace. Using the JSQ

Figure 8: Mean response time over all the transaction classes for the Reduced DOA trace.

router for the 20 MIPS case, the node utilizations were around 97% while for the other
clustering algorithms the node utilizations were about 90%. This caused a higher probability
of deadlocks among the transactions and, as a consequence, much worse overall mean response
time. As the utilization of the nodes decreased (see Figures 7, 8), the performance of the
system reached and �nally exceeded the performance of the systems that used the RANDOM,
K-Means and HALC clustering algorithms. The reason for this behavior is that using the
testing set, nodes had more balanced utilizations5 and as a result better mean response time.
The same behavior was also observed with the SGOR router which, while trying to minimize
the maximum performance index, did not take into account load imbalance.

The JSQ router showed the worst performance among the four routers used in these exper-
iments. Only in the experiments which used the K-Means clustering algorithm, JSQ showed
a better performance. This was because K-Means resulted in very bad clusters (95% of the
triplets were assigned in one cluster). The bad quality of clustering a�ected the performance
of the system dramatically, resulting in very high overall mean response time. Only in the
experiments with the SGOR router, the system managed to handle the workload, resulting
in acceptable mean response time.

The WFW router resulted in the lowest overall mean response time observed, for the
clustering algorithms used, except for the case of K-Means. In general WFWC came next,
followed by SGOR and JSQ. From the di�erent clustering algorithms that were used in these
experiments, HALC proved to be the best when the router considered data a�nity.

The results show that clustering the triplets in a random manner had better results than
clustering them using K-Means or VWMSE clustering algorithms. We must keep in mind
that RANDOM clustering bene�ts from the fact that triplets in the trace have widely varying
probabilities of appearance. The assignment of a frequently appearing triplet in a class with

5Node 3 had a much higher utilization because part of the transactions accessing data stored on this node
were not part of the testing set.

Figure 9: Mean response time over all the transaction classes for the Reduced PULS trace.

other triplets that have much lower probabilities of appearance causes the class measurements
taken in the monitoring run to be dominated from the a�nity of these frequently appearing
triplets. The routers (except JSQ) use these measurements in order to route an instant of a
transaction class, to the node to which the transaction class had a higher a�nity. As a result,
although we use a RANDOM clustering algorithm, many of the triplets with high probability
of appearance were routed to the their \favorite" (in terms of data a�nity) node. This has
a considerable impact on the performance of the system, as the number of function-shipped
requests is much lower.

7.3.2 Experimental results for the Reduced PULS trace

More or less the same observations hold also for the performance of the simulated systems
using the Reduced PULS trace. The experiment results for the Reduced PULS trace can be
seen in the three charts presented in Figures 9, 10, 11.

Here the number of classes (30) is much closer to the total number of triplets (144) and
so the classes were consisted of a much smaller number of triplets (for RANDOM clustering
algorithm the number of triplets was 4-5 per class). Even in this case, HALC clustering
algorithm is the clear winner among the clustering algorithms used. The simulation runs
made using the K-Means clustering algorithm to cluster the trace data, su�ered again from
the bad quality of clustering although the mean response time is much closer to those measured
using the other clustering policies. This is caused from the fact that in the Reduced PULS
trace the num:ofclasses

num:oftriplets ratio is much bigger compared to that of the Reduced DOA trace, and

so K-means had at least 29
144 � 100 triplets in di�erent classes (about 20%). Mean response

time over all classes is also much higher as a result of the higher average number of database
calls issued from the transactions consisting the Reduced PULS trace.

Figure 10: Mean response time over all the transaction classes for the Reduced PULS trace.

Figure 11: Mean response time over all the transaction classes for the Reduced PULS trace.

8 Conclusions

In large-scale transaction processing systems, knowledge of the workload intrinsic character-
istics is essential for performance management purposes. In these systems, dynamic workload
control algorithms are used, in order to optimize performance. These algorithms can bene�t
from the results of workload clustering algorithms that partition the workload into classes
exhibiting similar characteristics.

Four di�erent routing algorithms along with four clustering algorithms were considered
in this paper. For this evaluation, two traces from real-life OLTP systems were used. Ex-
periments showed that the heuristic clustering algorithm (HALC) and the Optimal Adaptive
K-Means (which is based on neural networks) performed very well in terms of quality of clus-
tering. On the other hand, the classic K-Means algorithm produced disappointing results.

The impact of the above workload clusterings on the performance of three dynamic trans-
action routing algorithms (plus a Join-Shortest-Queue router for comparison reasons) was
also studied. The quality of workload clustering reected the performance of the routing
algorithms. HALC clustering algorithm improved a lot the performance of these algorithms.
Simulations with K-Means showed how a bad clustering can degrade the performance of sys-
tems that use dynamic goal-oriented routing algorithms. Optimal Adaptive K-Means did not
perform very well, but this was probably because of the experiment settings and in particular
from the fact that the simulated system used a subset of the trace, called testing set. We
have reasons to believe that Optimal Adaptive K-Means can perform much better, and our
belief is based on the quality of workload clustering that it produces. This will be part of our
future work since on the y clustering algorithms appear to be well-suited for OLTP systems
with workload characteristics that change with time.

Acknowledgments

The authors would like to express their gratitude to Thomas Delica from Siemens Nixdorf
Informationssysteme, for providing the traces that were used in the afore-mentioned simula-
tions, and to Maria Karavassili and Anastasia Anastasiadi, former members of the PLEIADES
research group at ICS=FORTH, who helped link the two tools (CLUE and TPsim) and col-
lect the simulation results. The work presented in this paper was supported by the European
Union ESPRIT III Basic Research Project LYDIA 8144.

References

[1] M. R. Anderberg. \Cluster Analysis for Applications". Academic Press Inc., New York,
1973.

[2] Eike Born, Thomas Delica, Werner Ehrl, Lutz Richter, and Reinhard Riedl.
\Characterization of Workloads for Distributed Processing - Methodology and
Guide". Deliverable WP2/T.2.1/D4 of project LYDIA (available online at the URL:
http://www.ics.forth.gr/proj/pleiades/projects/LYDIA/1st-year deliv/4thDel.ps),
June 1995.

[3] M. Calzarossa and L. Massari. \Measurement-Based Approach to Workload Character-
ization". In R. Marie, G. Haring, and G. Kotsis, editors, Tutorial Papers of the 7th

International Conference on Modeling Techniques and Tools for Computer Performance

Evaluation, pages 123{147, Vienna, 1994. Springer-Verlag.

[4] M. Calzarossa and G. Serazzi. \Workload Characterization: A Survey". Proceedings of
the IEEE, 81(8), August 1993.

[5] S. Chakravarthy, J. Muthutaj, R. Varadarajan, and S. Navathe. \An Objective Func-
tion for Vertically Partitioning Relations in Distributed Databases and its Analysis.".
Technical Report UF-CIS-TR-92-045, University of Florida, Computer and Information
Sciences, 1992.

[6] Chedsada Chinrungrueng and Carlo H. S�equin. Optimal Adaptive K-Means Algorithm
with Dynamic Adjustment of Learning Rate. IEEE Transactions on Neural Networks,
6(1):157 { 169, January 1995.

[7] Christian J. Darken and John Moody. Fast adaptive k-means clustering: Some empirical
results. In Proc. International Joint Conference on Neural Networks (IJCNN-90), June
1990.

[8] Christian J. Darken and John Moody. Learning schedules for stochastics optimization. In
1990 IEEE Conf. Neural Information Processing Systems-Natural and Synthetic, Novem-
ber 1990.

[9] D. Desieno. Adding a conscience to competitive learning. In Proc. 2nd IEEE Interna-

tional Conference on Neural Networks (ICNN-88), volume I, July 1988.

[10] D. Ferguson, C. Nikolaou, L. Georgiadis, and K. Davies. \Satisfying Response Time Goals
in Transaction Processing Systems". In Proceedings of the 2nd International Conference

on Parallel and Distributed Information Systems, 1993.

[11] D. Ferrari, G. Serazzi, and A. Zeigner. \Measurement and Tuning of Computer Systems".
Prentice-Hall, New Jersey, 1983.

[12] Allen Gersho. Asymptotically optimal block quantization. IEEE Transactions on Infor-

mation Theory, IT-25(4):373{380, 1979.

[13] John A. Hartigan. Clustering Algorithms. John Wiley and Sons, Inc., 1975.

[14] W. Y. Huang and R. P. Lippman. Neural net and traditional classi�ers. In D. Z. Ander-
son, editor, Neural Information Processing Systems, pages 387{396. American Institute
of Physics, 1988.

[15] A. Jain and R. Dubes. \Algorithms for Clustering Data". Prentice-Hall, New Jersey,
1988.

[16] O. Klaassen. \Modeling Database Reference Behaviour". In G. Balbo and G. Serrazi,
editors, Computer Perfomance Evaluation: Modeling Techniques and Tools, pages 47{60.
North-Holland, 1992.

[17] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, IT-28(2):129{137, March 1982.

[18] J. MacQueen. Some methods for classi�cation and analysis of multivariate observations.
In Proc. 5th Berkeley Symposium on Mathematics, Statistics, and Probability, volume 1,
pages 281{298, 1967.

[19] Manolis Marazakis. Simulation of transaction processing systems and a study of methods
for performance goal satisfaction. Master's thesis, Dept. of Comp. Science, Univ. of Crete,
Greece, P.O. 1470, Heraklion, Crete, Greece, October 1995.
Also: Technical Report No. TR95-0140, ICS-FORTH, Heraklion, Crete, Greece.
(Both in Greek)
Note: ICS Technical Reports can be obtained through the ICS/Pleiades Dienst server
at the URL: http://www.ics.forth.gr/TR.

[20] Manolis Marazakis and Christos Nikolaou. Towards adaptive scheduling of tasks in trans-
actional workows. Technical Report No. 134, ICS-FORTH, Heraklio, Crete, Greece,
August 1995.

[21] W. McCormick, P. Schweitzer, and T. White. Problem Decomposition and Data Re-
organization by a Clustering Technique. Operation Research, 20, September/October
1972.

[22] John Moody and Christian J. Darken. Fast Learning in Network of Locally-Tuned Pro-
cessing Units. Neural Computation, 1(2):281{294, 1989.

[23] J. E. Neilson. \PARASOL: A Simulator for Distributed and/or Parallel Systems.". Tech-
nical Report SCS-TR-192, Carleton University, Canada, 1991.

[24] K. E. E. Raatikainen. \Cluster Analysis and Workload Classi�cation". Performance

Evaluation Review, 20(4):24{30, May 1993.

[25] E. Rahm. \A Framework for Workload Allocation in Distributed Transaction Processing
Systems". J. Systems Software, 18:171{190, 1992.

[26] David E. Rumelhart and James L. McClelland. Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition, volume Foundations. MIT Press, 1986.

[27] David E. Rumelhart and David Zipser. Feature Discovery by Competitive Learning,
chapter 5, pages 151{193. Volume Foundations of Parallel Distributed Processing [26],
1986.

[28] N. B. Venkateswarlu and P. S. V. S. K. Raju. Fast ISODATA Clustering Algorithms.
Pattern Recognition, 25(3):335{342, 1992.

[29] P. S. Yu, M. S. Chen, H. U. Heiss, and S. Lee. \On Workload Characterization of Rela-
tional Database Environments". IEEE Transactions on Software Engineering, 18(4):347{
355, April 1992.

[30] P. S. Yu and A. Dan. \Impact of Workload Partitionability on the Performance Coupling
Architectures for Transaction Processing". In Proc. of the 4th IEEE Int. Symp. on

Parallel and Distributed Processing, pages 40{49, Arlington, Texas, December 1992. IEEE
Computer Society Press.

[31] P. S. Yu and A. Dan. \Performance Analysis of A�nity Clustering on Transaction Pro-
cessing Coupling Architecture". IEEE Transactions on Knowledge and Data Engineering,
6(5):764{786, oct 1994.

