
Design-by-Contract for Reusable Components and
Realizable Architectures

Mert Ozkaya
City University London
School of Informatics

London EC1V 0HB, U.K.
mert.ozkaya.1@city.ac.uk

Christos Kloukinas
City University London
School of Informatics

London EC1V 0HB, U.K.
c.kloukinas@city.ac.uk

ABSTRACT
Architectural connectors can increase the modularity and reusabil-
ity benefits of Component-based Software Engineering, as they al-
low one to specify the general case of an interaction pattern and
reuse it from then on. At the same time they enable components to
be protocol-independent – components do not need to know under
which interaction patterns they will be used, as long as their mini-
mal, local interaction constraints are satisfied. Without connectors
one can specify only specific instances of such patterns and compo-
nents need to specify themselves the interaction protocols that they
will follow, thus reducing their reusability.

Connector frameworks so far allow designers to specify systems
that are unrealizable in a decentralized manner, as they allow de-
signers to impose global interaction constraints. These frameworks
either ignore the realizability problem altogether, ignore connector
behaviour when generating code, or introduce a centralized con-
troller that enforces these global constraints but does so at the price
of invalidating any decentralized properties of the architecture.

We show how the XCD ADL extends Design-by-Contract (DbC)
for specifying (i) protocol-independent components, and (ii) arbi-
trary connectors that are always realizable in a decentralized man-
ner as specified by an architecture – XCD connectors impose lo-
cal constraints only. Use of DbC will hopefully make it easier
for practitioners to use the language, compared to languages using
process algebras. We show how XCD specifications can be trans-
lated to ProMeLa so as to verify that (i) provided services local in-
teraction constraints are satisfied, (ii) provided services functional
pre-conditions are complete, (iii) there are no race-conditions, (iv)
event buffer sizes suffice, and (v) there is no global deadlock. With-
out formally analyzable architectures errors can remain undiscov-
ered for a long time and cost too much to repair.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Languages;
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs—
Pre- and post-conditions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2577-6/14/06 ...$15.00.
http://dx.doi.org/10.1145/2602458.2602463.

Keywords
Modular specifications; Separation of functional and interaction
behaviours; Connector realizability.

1. INTRODUCTION
Component-based Software Engineering helps develop software

systems out of largely reusable components, thus reducing develop-
ment time and cost, and leading to a higher system quality. Reusable
components end up having fewer design and implementation errors,
as these are identified and corrected through their use by different
systems. Researchers in software architectures [36, 19] have iden-
tified connectors as another important element for increasing mod-
ularity and reusability even further. Connectors allow the specifica-
tion of arbitrary interaction patterns, thus allowing such patterns to
be reused. At the same time, components no longer need to specify
instances of such patterns themselves, thus increasing component
reusability too. Indeed, designers can more easily explore alter-
native designs/protocols to meet the requirements of their specific
system when components are separated from the possible interac-
tion patterns (i.e., connectors) that they can be used with. This is
similar to how we program in languages such as C++. We define
a vector class (re-sizable array), specifying its basic operations and
the minimal, local constraints on its use, e.g., that the vector should
not be empty when retrieving an element. The vector does not spec-
ify anything about reverse, sort, etc. to be more reusable. These are
instead specified by independent algorithms, among which one se-
lects the most appropriate to their context, e.g., bubble or merge
sort. Keeping the two separate increases the code modularity and
reusability. Our data-structures/classes stay independent of specific
usage patterns, which are described separately as algorithms. In-
deed, the reusability of the algorithms themselves increases as well,
as they can usually be applied at different classes. Specifying com-
ponent becomes harder without support for connectors and some-
times specifiers avoid specifying the interaction patterns altogether,
which leads to the architectural mismatch problem [17, 18].

1.1 Connector Realizability
A formal framework for specifying connectors in the Wright lan-

guage was presented in the seminal work of Allen and Garlan [4]
and has been followed by almost all approaches that support con-
nectors – a set of protocol role behaviours, that component partic-
ipants should implement, and a “glue” element that choreographs
them. However, connectors are not supported in the main languages
used by practitioners [26], who complain about the complexity of
ADLs (an orthogonal issue). This may have been a blessing in
disguise, since the ADLs supporting connectors do so in a man-
ner that is somewhat dangerous for general usage. This is because,
following Wright [4], these languages allow architects to specify
connectors that are potentially unrealizable in a distributed manner

P2

URNA

P1

(a) A decentralized architecture

P2UR NAP1

inc

inc

double

double

MSC1 MSC2

P2UR NAP1

inc

inc

double

double

P2UR NAP1

inc

double

double

inc

(b) A nuclear power plant’s (unrealizable)
MSCs [5]

(c) An unavoidable
bad behaviour [5]

1 connector Plant_Connector =
2 r o l e P1 = ur → na → P1.
3 r o l e P2 = ur → na → P2.
4 r o l e UR = inc → UR 2 double → UR.
5 r o l e NA = inc → NA 2 double → NA.

6 g lue = P1.ur→ UR.inc → P1.na→ NA.inc

7 → P2.ur→ UR.double → P2.na→ NA.double→ g l ue
8 u P2.ur→ UR.double → P2.na→ NA.double

9 → P1.ur→ UR.inc → P1.na→ NA.inc → g lue .

(d) Wright’s (unrealizable) connector for Alur’s plant of (b)
Note: barred actions are initiated by the current process,→ is the
action sequence operator, and 2/u are external/internal choice.

Figure 1: An unrealizable protocol/connector

[33]. Realizability is defined as: “a set of MSCs [i.e., a glue] [is]
realizable if there exist concurrent automata [the connector roles]
which implement precisely the MSCs it [the glue] contains.” [5]

Consider the nuclear power plant case study [5], shown in Fig-
ure 1a. In the plant, the quantities of Uranium (UR) and Nitric Acid
(NA) need to be the same at all times. Two processes P1 and P2
respectively increase and double these quantities and to ensure the
plant’s safety they need to strictly follow the protocol described by
the message sequence charts of Figure 1b. However the protocol in
Figure 1b was proved to be unrealizable in a decentralized manner,
since bad behaviours like in Figure 1c cannot be avoided [5].

One can check conditions implying a protocol’s realizability [6,
9], attempt to identify implied scenarios from the protocol [43], or
even attempt to repair it [23] by multi-casting messages to more
recipients. However, there will always be cases where the proto-
col cannot be realized. Worse yet, there are cases where it cannot
be decided whether a protocol is realizable in a distributed man-
ner with only the specified roles or not – the general problem is
undecidable [6] and relates to the undecidability of decentralized
observation and control [41]. Connectors can use their “glue” to
impose non-local interaction constraints on the participating com-
ponents, just like service choreographies do. Such global inter-
action constraints cannot be realized always by the participating
components, since the global system state is not always known.
Nevertheless, such unrealizable protocols are very easy to specify
in existing ADLs. Indeed, Figure 1d shows the Wright [4] connec-
tor specification of the unrealizable protocol of Figure 1b. It shows
the four participating roles (P1, P2, UR, and NA), and the glue part of
the connector. The glue element links role actions together (e.g.,
P1.ur->UR.inc), establishing the communication channels between
component ports. Unfortunately, the glue also imposes global in-
teraction constraints – here that roles UR and NA follow the behaviour
inc→inc→double→double u double→double→inc→inc. While link-
ing component actions together does not create any realizability
problems, global interaction constraints allow architects to present

unrealizable specifications as architectural solutions. While a re-
quirements language needs to be able to express something poten-
tially unrealizable (as it is a wish), we believe that an ADL needs to
be able to specify only realizable designs, as these are supposed to
be solutions for the requirements: wishing for a building that is sus-
pended in the air is acceptable but presenting a drawing of such a
building as an architectural solution is not, unless it is made explicit
how this can be achieved (builders cannot “refine” the architecture).

Some approaches follow Wright [4] in supporting connectors
with a glue element but ignore the connector behavioural speci-
fication when generating code. This is for example the case with
SOFA [13] and its code generation ConGen [16, 12]: “we are rather
interested in rich functionality than formal proving that a connector
has specific properties; thus, at this point we do not associate any
formal behavior with a connector.” [12, p. 14]. Without associ-
ated behaviour one cannot generate code for arbitrary, user-defined
protocols. Only simple connectors like procedure call can be sup-
ported, which forces one to specify protocols inside components.

Finally, a third approach implements arbitrary, user-defined con-
nectors by introducing additional centralized controllers for con-
nectors. In Exogenous Connectors [22] these controllers are ex-
plicit and clearly visible – while this centralizes all behaviour, it
avoids surprises. In BIP [8], an underlying distributed consensus
protocol is employed instead, so that connector participants can
know the exact global system state – essentially adding an im-
plicit centralized controller. However, network overhead, reliabil-
ity, scalability, etc. analyses (what practitioners really care about
[26]) based on the decentralized architectural design are now in-
valid. BIP’s implicit centralization changes the system structure
and its behaviour with respect to these properties – it breaks what
ArchJava calls “communication integrity” [1]. After all, if the ar-
chitect wished for a centralized solution they should have specified
it explicitly by introducing a controller component in the system
in Figure 1d – that is the solution at the architectural level for the
requirement. If they did not do so it was probably because they
desired a decentralized solution, so as to get its benefits. But such
a decentralized solution must be shown to satisfy the requirement,
not simply repeat it, as the glue does in this specification.

1.2 Paper Contribution and Structure
Herein we present XCD, a formal ADL that, following Wright

[4], supports arbitrary, user-defined, connectors. Unlike Wright and
all other ADLs following it, XCD allows only local constraints to
be defined in connectors, so as to ensure realizability by definition.
Non-local interaction constraints are now only expressible as prop-
erties the architecture should satisfy. Our work builds on our earlier
attempts at such an ADL [21, 32], and using FSP [25] to spec-
ify and verify architectures [35]. The differences from these are
the following: (i) We have simplified the main notions, no longer
having “control strategies”; strategies are connectors. (ii) We have
extended the language to better support architects with: data arrays,
enumerated types, interval values, helper functions, asynchronous
interaction, and composite components that were not supported in
our initial FSP encoding and tool. (iii) We have also replaced FSP
with Spin’s ProMeLa language [20], as encoding asynchronous in-
teraction and method/event parameters in FSP required too much
effort. Spin’s code availability also helped us in better understand-
ing the use of some constructs and optimizing our models.

XCD tries to resemble a programming language and follows a
Design-by-Contract (DbC) based approach, as practitioners find
process algebra-based ADLs to have a “steep learning curve” [26].

A brief, high-level introduction of the current version of the XCD
language was presented in an earlier short position paper [34]. This

1 SimpleCType:component IDCTypeName ([DataType IDParamName]*)
2 { Variable* Port+ } ;
3

4 Port: RequiredPort | ProvidedPort ;
5 ProvidedPort: provided IDPortName

6 { ProvidedPortMethod+ } ;
7 RequiredPort: required IDPortName

8 { RequiredPortMethod+ } ;
9 ProvidedPortMethod:

10 [ProtocolAwaits | ProtocolAccepts]?
11 FunctionalReqEns? MethodSignature ;
12 RequiredPortMethod:
13 ProtocolAwaits?
14 FunctionalPromReqEns? MethodSignature ;
15

16 ProtocolAwaits: @interac t ion { w a i t s Expression } ;
17 ProtocolAccepts: @interac t ion { a c c e p t s Expression } ;
18

19 FunctionalReqEns:
20 @funct ional { ReqEns [o t h e r w i s e ReqEns]* };
21 ReqEns: [r e q u i r e s Expression]? ensures Assignments
22 | r e q u i r e s Expression ;
23 FunctionalPromReqEns:
24 @funct ional { PromReqEns [o t h e r w i s e PromReqEns]* };
25 PromReqEns: [promises Assignments]? ReqEns
26 | promises Assignments ;
27

28 Variable: DataType IDVarName := Expression ;
29 DataType: bool | byte | s h o r t | i n t | IDDataTypeName ;
30 Assignments: Assignment [Assignment]* ;
31 Assignment: IDVarName := Expression ;
32 | IDVarName in ’[’ Expression , Expression ’]’ ;

Note: Rules are of the form symbol: expression;. Keywords are in
bold, “(){}=,” are part of the input, “[]” are used for grouping
(unless quoted), and “?+*” stand for optional, at least once, and
zero or more repetitions respectively. Superscripts refer to the
meaning of an ID, e.g., IDCTypeName is a component type name.

Figure 2: Simple components (SimpleCType) grammar

paper describes in detail the XCD notions, its grammar, and the
language mappings to Spin’s ProMeLa language, so as to enable
formal verification of architectural designs. It identifies the five
properties that can be verified without any further input from de-
signers, and shows how designers can modify the ProMeLa models
to verify more properties. It demonstrates most of the new features
(enums in Figure 6 line 1, helper functions in Figure 8 lines 55-58)
and discusses others (intervals in section 2.1). It shows how global
constraints can be supported by an explicit centralized controller
component when decentralized control is impossible. The paper
also includes an extensive experimental evaluation using a number
of well-known architectural case studies (all available at [40]), and
some further related work before the final discussion.

2. CONTRACTS FOR ARCHITECTURES
In XCD we follow a Design-by-Contract (DbC) [28] approach

to specify the behaviours of components, extending it in two ways
so as to support software component frameworks like CORBA [30]
and OSGi [31] better. We extend DbC so as to be able to spec-
ify contracts not only for the component provided services but for
its required services too. This is because, unlike object classes for
which DbC was initially designed, components also have required
services in their public interfaces. At the same time, we propose a
different contract structure so as to better distinguish between the
functional and interaction component constraints, which are usu-
ally mixed together in most DbC approaches. Finally, we use DbC
to specify connectors/protocols as well as components.

2.1 Structure of Simple Components
A simple (non-composite) component has data variables and a

set of ports for interacting with its environment. We ignore ports
supporting events due to lack of space. Each port can be either a

1 component Thread {
2 bool started := f a l s e ; // component data.
3 bool died := f a l s e ;
4

5 provided p {
6 @interac t ion { a c c e p t s : ! started; }
7 @funct ional { ensures : started := t rue ;}
8 void start ();
9

10 @funct ional {
11 ensures : \ r e s u l t := started && ! died; }
12 bool isAlive ();
13

14 @interac t ion { w a i t s : died; }
15 void join ();
16 // ... other methods
17 };
18 };

Figure 3: Java Thread as an XCD component

provided one, offering a number of methods to the environment, or
a required one, which uses methods provided by the environment.
XCD component ports execute concurrently to each other and oper-
ate as a monitor, i.e., at most one method of a port can be active at
any time. Interaction between ports is asynchronous, as we target
mainstream software components. Figure 2 shows the high-level
grammar for simple components, abstracting over a number of lan-
guage details, e.g., helper functions, for simplicity. Figure 3 shows
a small component example, described in more detail later.

As aforementioned, provided port methods (ProvidedPortMethod,
at line 9) resemble object methods and their constraints can es-
sentially be described through classic DbC. Ignoring the interac-
tion contract, whenever a method is called and the method pre-
condition (requires of FunctionalReqEns, at line 21) on the parameter
and component data values is satisfied, the method post-condition
(ensures) should be satisfied as well. It should be noted that while
pre-conditions are expressions, post-conditions in XCD are in fact
assignments. In assignments (lines 31-32) we also allow a variable
to be set to a value within a range, for non-deterministic specifica-
tions. The use of assignments instead of post-conditions is to make
our models easier to formally analyze. Trying to ensure a post-
condition like 0≤ x+ y+ z≤ n means that we need to consider all
possible combinations of x,y,z within the range [0,n], i.e., (n+1)3

states. Instead, architects write this as x ∈ [0,n];y ∈ [0,n− x];z ∈
[0,n− x− y];, which has (n+ 1)(n2 + 5n+ 6)/6 states 1. For n =
255, i.e., a byte, we need explore 2.8 M instead of 16.7 M states. A
provided port method is atomic – testing its required pre-condition
and performing its ensured assignment is done as one action.

Required port methods (RequiredPortMethod, at lines 12-14) do
not have an equivalent in object class definitions and, as such, clas-
sic DbC does not consider them. These are actions that the com-
ponent enacts itself, instead of actions that it reacts to (in its pro-
vided ports). A restaurant may provide a service between 7pm and
11pm (protocol) and offer an Italian menu (functional). Symmet-
rically, a customer may require a service between 9pm and 10pm
(protocol) and desire to have a pizza (functional). A required port
method is non-atomic (race-conditions are considered later). At the
first state it selects parameter values (i.e., affects its promises at lines
25-26) and makes the method call. At the second state it receives
the method call results and updates the component data, according
to the required/ensures pair establishing appropriate assignments
given conditions on the component data and the method results.

2.1.1 Functional and Interaction Contracts
As shown in Figure 2, along with functional contracts methods

in XCD can have protocol contracts too. The latter can be of a

1Wolfram Alpha: https://www.wolframalpha.com/input/
?i=sum_x=0^n+sum_y=0^(n-x)+sum_z=0^(n-x-y)+1,n=255

https://www.wolframalpha.com/input/?i=sum_x=0^n+sum_y=0^(n-x)+sum_z=0^(n-x-y)+1,n=255
https://www.wolframalpha.com/input/?i=sum_x=0^n+sum_y=0^(n-x)+sum_z=0^(n-x-y)+1,n=255

waits (line 16) or an accepts type (line 17). Provided port methods
can use either type. The former indicates that the action will be
delayed until some predicate on the component data and the method
parameters is satisfied. The latter indicates that the action will be
processed immediately when received and either it will be accepted
or it will be rejected – whereby rejection leads to chaotic behaviour
(caught as a violated assertion in our models). So a data queue may
use a waits constraint to specify that a request for an element will
be delayed till the queue is not empty. Alternatively, an object lock
can use an accepts constraint to specify that attempts to unlock it
cause undefined behaviour when it is already unlocked.

Examples of such protocol contracts abound in everyday life. A
washing machine manufacturer can warn users against opening the
door while the machine is operating (accepts: ! operating) or add a
safety mechanism that delays the door opening (waits: ! operating).
The former protocol contract makes no guarantees whatsoever if
someone attempts to open the door during operation – water may
be spilt outside and the user can even be electrocuted because of
it. In fact, such bad behaviour due to a component’s protocol con-
tract violation appears in the standard libraries of mainstream lan-
guages already. In Java, RuntimeExceptions are used extensively
to represent such situations. Unlike other exceptions, they are not
supposed to be caught by code. In fact, they are not even sup-
posed to be declared by the methods that may throw them – Java
calls them “unchecked exceptions”. The method Thread.start()

can throw such an exception when called on a thread that has al-
ready started. Using XCD protocol contracts this can be specified
as in line 6 of Figure 3. Note that a method may have no proto-
col contract, e.g., isAlive (lines 10-12). Sometimes it may have no
functional contract instead, like join that can be specified entirely
through a protocol contract (lines 14-15).

Another example of protocol contract violations in Java is Socket-
Exception, thrown when a socket’s setSocketFactory is called more
than once. Exception InternalError as well, thrown by wait/notify
when the thread is not the current owner of the object’s monitor.
And of course, a NullPointerException, which is thrown when an
object reference has not been initialized properly. All these are ex-
amples of erroneous protocol usage. All of them terminate a pro-
gram immediately. By introducing the separate protocol contract
(@interaction) construct, such interface protocols become easier to
express and their importance is highlighted. Functional contracts
also become easier to express. Indeed, in the functional contract of
method start at lines 6-8 of Figure 3, the requires clause does not
consider the state of variable started. It assumes that the call has al-
ready been accepted, at which point it has no functional constraint
to impose. It should be noted that component protocol contracts
do not modify the component state – there is no ensures clause in
them. State updates in XCD components are instead the sole re-
sponsibility of functional contracts, so as to keep contracts simpler.

User obligations. When a required port r makes a request on a
provided port p, it needs to ensure that p.accepts is satisfied, if the
provided method has an accepts protocol (so p.waits is true), other-
wise (p.accepts being true) that p.waits is satisfied. So in general:

(r.waits→ r.promises)→ (p.waits→ p.accepts)
Interestingly, the user does not need to satisfy the functional re-
quirements of the provided service (p.requires), since these must be
complete when the service’s interaction constraint is satisfied – the
call has been accepted already, so it must be honoured.

Simple component types define the data a component has and its
ports with their methods and protocol/functional contracts. How-
ever in order to produce formal models of the component instances
we need to consider also the protocol/connector roles these are as-
suming within an architecture, as roles constrain their behaviour.

1 XType: connector IDXTypeName (XTypeParam+)
2 { Role+ XInstance+ } ;
3 XTypeParam: IDRoleName { IDPortVarName+ }
4 | DataType IDParamName;
5

6 Role: r o l e IDRoleName

7 { Variable+ [[required |provided] PortVar]+ } ;
8

9 PortVar: IDPortVarName

10 { [[XProtocol]? MethodSignature]+ } ;
11 XProtocol: @interac t ion {
12 [w a i t s Expression]? ensures Assignments
13 | w a i t s Expression } ;
14

15 XInstance: IDXTypeName IDXInstanceName (XInstanceArg+);
16 XInstanceArg: IDRoleName { IDPortVarName+ } | Expression ;

Figure 4: High-level XCD grammar – Connectors (XType)

While a component type may have just accepts conditions, its in-
stances may also get waits conditions from their roles.

2.2 Connector/Protocol Structure
As shown in Figure 4, XCD connectors have a set of roles (each

assumed by some component) and instances of other connectors
that they are using. A basic connector is provided by the language
to specify a simple asynchronous method call, linking the required
port of one component to the provided port of another, without im-
posing any further constraints on their actions. There is no glue el-
ement in XCD connectors, nor any other way to specify global state
or constraints – everything is local and so directly realizable. Each
role consists of role data, that keep track of the protocol’s local
state, and a set of provided/required port variables, to be assumed
by the role component’s ports. Role port variables have actions like
component ports do. These are the actions that the role requires its
component to have and that the role will constrain. The behaviour
of port variable actions is again specified through contracts, only
now all contracts have the same form, i.e., a pair of a waits pre-
condition and an ensures assignment, as shown in lines 11-13. This
is because roles can only delay some component port action, until
the point where it is acceptable by the protocol/connector they are
a part of. Role actions have no functional contracts, as they can-
not influence the component’s action parameters, or its result or the
manipulation of the component’s private data. Instead, the protocol
contracts of role actions use their ensures assignments, to update the
role’s local protocol state after the action.

A component instance is provided with all the roles it assumes
in an architecture, just like actors are provided with the roles and
corresponding scripts they play in a movie. Component instances
use the role(s) port method contracts to further constrain their own
contracts and are responsible for updating the role variables along
with their own. Here again we diverge from Wright [4]. In Wright,
components should refine/implement the roles they assume; the fi-
nal system is the composition of components and connector glues
only – roles are ignored. This restricts the reusability of compo-
nents – they need to know beforehand all protocols under which
they may be used, something that one would never require of ac-
tors. Instead, in XCD components do not need to refine their roles.
On the contrary, their behaviour can be much richer. For this to
work, XCD components need to be presented with their role con-
straints – XCD components are interpreters of connector roles.

2.2.1 A Centralized Nuclear Plant Xcd Connector
Figures 6–9 specify a centralized XCD connector that ensures

the required glue property of the nuclear plant example in Figure 1
– the architecture is shown in Figure 5. The glue property states
that UR and NA should always increase and double their quantities
in tandem: UR.i->NA.i->UR.d->NA.d|UR.d->NA.d->UR.i->NA.i, where i

Controller

P1 P2

URNA

Figure 5: A centralized architecture

1 enum order := {none , incFirst , dblFirst }; // New type.
2

3 connector centralised(roleP1{toUR , toNA},
4 roleP2{toUR , toNA},
5 roleUR{inc , double},
6 roleNA{inc , double},
7 /*extra role*/ roleController{P1toUR , P1toNA ,
8 P2toUR , P2toNA ,
9 CtoURinc , CtoURdouble ,

10 CtoNAinc , CtoNAdouble }) {

// P1/UR/NA/P2 and Controller from Fig. 7 and Fig.8-9 respectively.

134 // Controller appears to P1 & P2 as UR & NA.
135 connector async link1(roleP1{toUR},
136 roleController{P1toUR });
137 connector async link2(roleP1{toNA},
138 roleController{P1toNA });
139 connector async link3(roleP2{toUR},
140 roleController{P2toUR });
141 connector async link4(roleP2{toNA},
142 roleController{P2toNA });
143 // Controller appears to UR & NA as P1 & P2.
144 connector async link5(roleUR{inc},
145 roleController{CtoURinc });
146 connector async link6(roleUR{double},
147 roleController{CtoURdouble });
148 connector async link7(roleNA{inc},
149 roleController{CtoNAinc });
150 connector async link8(roleNA{double},
151 roleController{CtoNAdouble });
152 }

Figure 6: Centralized nuclear plant connector in XCD

12 r o l e roleP1 {
13 bool urFirst := f a l s e ;
14 required port_variable toUR {
15 @interac t ion { w a i t s : !urFirst;
16 ensures : urFirst := t rue ; }
17 void incUR (); }
18 required port_variable toNA {
19 @interac t ion { w a i t s : urFirst;
20 ensures : urFirst := f a l s e ; }
21 void incNA (); }
22 }
23 r o l e roleUR {
24 provided port_variable inc { void incUR (); }
25 provided port_variable double { void doubleUR (); }
26 }

Figure 7: Original nuclear plant roles in XCD (part of Figure 6)

and d are the increase and double actions. The connector employs
five roles instead of the four roles in the decentralized connector,
as it has an explicit centralized controller (lines 7-10). Without a
controller it is impossible to ensure the glue property (indeed, the
decentralized connector violates it). Figure 7 shows the P1 and
UR roles of the decentralized connector (omitted roles P2 and NA
are similar). These roles behave as in the Wright specification of
Figure 1d. Roles UR (lines 23-26) and NA have no constraints,
as they can receive requests to increase or double their amount
of fuel anytime. Roles P1 (lines 12-22) and P2 impose that in-
crease/doubling requests are sent first to UR and then to NA. The
controller role, shown in Figure 8 and Figure 9, presents itself as
UR and NA to P1 and P2 using its provided ports (lines 60-71 for

43 r o l e roleController {
44 order corder := none;
45 bool p1_incNARcvd := f a l s e ;
46 bool p1_incURRcvd := f a l s e ;
47 bool p2_dblNARcvd := f a l s e ;
48 bool p2_dblURRcvd := f a l s e ;
49

50 bool ur_incUREmtd := f a l s e ;
51 bool na_incNAEmtd := f a l s e ;
52 bool ur_dblUREmtd := f a l s e ;
53 bool na_dblNAEmtd := f a l s e ;
54

55 all_received (){ return p1_incURRcvd && p1_incNARcvd
56 /*helper functions*/ && p2_dblURRcvd && p2_dblNARcvd ;}
57 inc_emitted (){ return ur_incUREmtd && na_incNAEmtd ;}
58 dbl_emitted (){ return ur_dblUREmtd && na_dblNAEmtd ;}
59

60 provided port_variable P1toUR {
61 @interac t ion {
62 w a i t s : !p1_incURRcvd;
63 ensures : p1_incURRcvd := t rue ;
64 corder := pre(corder) == none
65 ? incFirst : pre(corder); }
66 void incUR (); }
67 provided port_variable P1toNA {
68 @interac t ion {
69 w a i t s : !p1_incNARcvd;
70 ensures : p1_incNARcvd := t rue ; }
71 void incNA (); }

Figure 8: Nuclear plant controller role in XCD – provided ports

85 required port_variable CtoURinc {
86 @interac t ion {
87 w a i t s : all_received () && !ur_incUREmtd
88 && ((corder == incFirst)
89 || (corder == dblFirst && dbl_emitted ()));
90 ensures : ur_incUREmtd := t rue ; }
91 void incUR (); }
92 required port_variable CtoNAinc {
93 @interac t ion {
94 w a i t s : ur_incUREmtd && !na_incNAEmtd;
95 ensures : // clear flags if dblFirst
96 p1_incURRcvd := !(pre(corder) == dblFirst);
97 p1_incNARcvd := !(pre(corder) == dblFirst);
98 ur_incUREmtd := !(pre(corder) == dblFirst);
99 na_incNAEmtd := !(pre(corder) == dblFirst);

100 p2_dblURRcvd := !(pre(corder) == dblFirst);
101 p2_dblNARcvd := !(pre(corder) == dblFirst);
102 ur_dblUREmtd := pre(corder) == dblFirst
103 ? f a l s e : pre(ur_dblUREmtd);
104 na_dblNAEmtd := pre(corder) == dblFirst
105 ? f a l s e : pre(na_dblNAEmtd);
106 corder := pre(corder) == dblFirst
107 ? none : pre(corder); }
108 void incNA (); }

Figure 9: Nuclear plant controller role in XCD – required ports

ports related to increase). Using its required ports, it presents it-
self as P1 and P2 to UR and NA (lines 85-108 for ports related
to increase). The provided ports note which commands have been
received by P1 and P2, and which of increase or double was re-
ceived first in each round, using the corder variable (an enumerated
type). The expression on lines 64-65 uses the if-then-else opera-
tor “guard ? exp1 : exp2”, and the operator pre to access the value
of variable corder when the action started. Once all commands
have been received, the required ports in Figure 9 start requesting
from UR and NA to update their fuel amounts. This behaviour uses
helper functions all_received, inc_emitted, and dbl_emitted (defined
in Figure 8, lines 55-58). Depending on whether it was the in-
crements or the doubles that were received last, action incNA (or
doubleNA respectively) reset all role variables, to enable the next
round. The full models for both the decentralized and centralized
protocols are available at the XCD website [40].

Compared to the Wright connector in Figure 1d, the XCD con-
nector is longer – much more so. This is for two main reasons.

1 CompositeCType:component IDCTypeName (
2 [DataType IDParName]*)
3 { [CInstance | XInstance]+ } ;
4 CInstance: IDCTypeName IDCInstanceName (Expression*) ;

Figure 10: High-level XCD grammar – Composite components
(CompositeCType)

182 component NuclearPlant () {
183 component P1 p1inst (); component P2 p2inst ();
184 component NA nainst (); component UR urinst ();
185 component controller controllerinst ();
186

187 connector centralised centrins(
188 p1inst{incUR , incNA},
189 p2inst{doubleUR , doubleNA},
190 urinst{incUR , doubleUR},
191 nainst{incNA , doubleNA},
192 controllerinst{P1_incUR , P1_incNA ,
193 P2_doubleUR , P2_doubleNA ,
194 UR_incUR , UR_doubleUR ,
195 NA_incNA , NA_doubleNA}
196);
197 }

Figure 11: Nuclear plant composite component in XCD

Firstly, it does not employ a process algebra but uses a language
similar to a programming one, e.g., Java, which is more verbose
but also more familiar. Secondly, and more importantly, the XCD
connector specifies a solution. Indeed, it does not simply repeat
the requirement about the behaviour of the UR and NA roles but
it guarantees it. It should be noted that this solution increases the
number of messages per round, from four to eight. It also changes
the structure of the system – if one of P1 or P2 fails, no inter-
actions are possible any more, unlike in the original architecture.
Both the number of messages and system structure are crucial for
a proper architectural system analysis. Lower-level designs should
not modify them, since then the architecture is compromised – what
ArchJava calls (lack of) “communication integrity” [1]. XCD aims
at facilitating the expression of architectures that can be realized
without compromising their communication integrity. If a Wright
connector is realizable then XCD can also represent it.

2.3 Structure of Composite Xcd Components
The grammar for specifying composite components is shown

in Figure 10. A composite component declares a set of compo-
nent instances (which can be either simple or composite) and a
set of connector instances. The connector instances are initialized
with the component instances that will assume their roles. In this
way, a composite component defines the configuration of its sub-
components. The ports of sub-components that are not connected
through the connectors employed in the composite component be-
come ports of the composite component. An architecture is a com-
posite component where all the ports of the sub-components are
connected, as the composite component in Figure 11.

3. TRANSLATING XCD INTO PROMELA
We translate XCD models into Spin’s ProMeLa [20], in order to

formally verify architectures. Each component instance becomes
a separate ProMeLa process. The number of component instances
is fixed in each architecture (we consider only static architectures).
ProMeLa processes are concurrent automata that are composed to-
gether through synchronous or buffered asynchronous channels.
We use asynchronous channels in our models, as we target soft-
ware systems, where asynchronous interaction is the mainstream.
For each simple component (c) instance’s (i) provided port (p) we
introduce one asynchronous channel (chci

p), with a buffer size equal
to the number N = connectedTo(ci, p) of required ports that are

1 SimpleComponent2Promela(SimpleCInstance comp)
2

3 FORALL port ∈ comp.SimpleCType.ProvidedPortSet
4 // Requests
5 chan cReq.comp.port = [port.Connections] ...
6 // Responses
7 chan cRes.comp.port = [1] ...
8

9 proctype comp.InstanceID (params ...) {
10 LET
11 RoleVars = { role.VarSet | role ∈ comp.RoleSet };
12 VarSet = RoleVars

⋃
comp.SimpleCType.VarSet;

13 RoleReqPorts = { r ∈ role.RequiredPortSet
14 | role ∈ comp.RoleSet };
15 RoleReqMethods = { m ∈ r.Methods
16 | r ∈ RoleReqPorts };
17 RoleVarsRace = { v ∈ m.Methods.Ensures.VarSet
18 | m ∈ RoleReqMethods };
19 compReqPorts = { r
20 | r ∈ comp.SimpleCType.RequiredPortSet };
21 compReqMethods = { m ∈ r.Methods
22 | r ∈ compReqPorts };
23 compVarsRace = { v ∈ m.Methods.Ensures.VarSet
24 | m ∈ compReqMethods };
25 VarSetRace = RoleVarsRace

⋃
compVarsRace;

26 IN
27 FORALL var ∈ VarSet
28 var.DataType var.Pre_State = var.InitialValue;
29 var.DataType var.Post_State = var.InitialValue;
30 FORALL var ∈ VarSetRace
31 var.DataType var.Pre_State_Copy=var.InitialValue;
32 FORALL port ∈ comp.SimpleCType.RequiredPortSet
33 s h o r t port.Lock =0; // One lock per required port.
34

35 Start:
36 do
37 FORALL port ∈ comp.SimpleCType.ProvidedPortSet
38 Port2Promela_Provided(comp , port);
39 FORALL port ∈ comp.SimpleCType.RequiredPortSet
40 Port2Promela_Required(comp , port);
41 od
42 }

Figure 12: Translating a simple component instance to ProMeLa

connected to port p of component instance ci, as in lines 4-5 of Fig-
ure 12. This is because in the worst case there will be N concurrent
service requests to port p from these N required ports. No more
service requests can be initiated by them, as required component
ports, just like provided ports, act as a monitor and therefore allow
at most one method request to be active each time. We also intro-
duce a channel to carry the response back to the required port (lines
6-7). Due to lack of space we omit here the discussion of XCD
support for events (emitter and consumer ports) or for non-atomic
provided methods, which are needed when a provided method has
to call another method to obtain partial results.

3.1 Translating Simple Component Instances
Figure 12 shows the top-structure of the ProMeLa translation for

a simple XCD component instance. The translation goes through
the instance’s assumed roles, collecting their variables and noting
which ones of them are used in ensures clauses in methods of re-
quired port variables (to check for race-conditions later). It declares
corresponding variables for each variable of the component and its
roles. It then translates the provided and required ports themselves.
All port actions are inside a do/od loop of guarded actions [14].

Each component and role data var is mapped to two variables
(lines 27-29 of Figure 12). The first one (var.Pre_State on line 28)
is the current data value, i.e., the value right before a call, used to
evaluate the protocol constraints and the pre-conditions. The sec-
ond one (var.Post_State) is the data value immediately after a call,
i.e., where we have just established the post-conditions. The two
variables are needed because an assignment of some vari.Post_State

may refer to some var j.Pre_State values.

1 Port2Promela_Provided(SimpleCInstance comp , Port port)
2 FORALL method ∈ port.MethodSet
3 LET
4 roles = { method.roleMethod(r) | r ∈ port.RoleSet };
5 roleAwaits = { r.method.Awaits | r ∈ roles };
6 rolePostEnsures = { r.method.Ensures | r ∈ roles };
7

8 compPos = roleAwaits
∧

method.Awaits
9

∧
method.Accepts;

10 compNeg = roleAwaits
∧
¬ method.Accepts;

11

12 compFCReq = method.FCRequiresEnsures.Requires ;
13 compFCEns = {method.FCRequiresEnsures.Ensures}
14

⋃
rolePostEnsures;

15 IN
16 :: atomic {
17 port.Channel_req ? method.Args : compPos ->
18 assert(compFCReq); // Ensure functional completeness
19 calcData(comp.SimpleCType.VarSet , compFCReq ,
20 compFCEns);
21 port.Channel_res ! method.Args;
22 }
23 :: atomic {
24 port.Channel_req ? method.Args : compNeg ->
25 assert(! compNeg); // Request rejected - CHAOS
26 }

Figure 13: Translating a provided port to ProMeLa

In order to identify race-conditions that may arise due to the
non-atomicity of required method requests, we also introduce an-
other variable var.Pre_State_Copy for each data var appearing in
an ensures clause (lines 30-31). This variable keeps a copy of the
data’s pre-value (var.Pre_State) at the point the request was started
at the port. For required port methods, we have that var.Pre_State=
var.Pre_State_Copy before and immediately after enacting the meth-
od request. But when the response is received we may find that
var.Pre_State 6= var.Pre_State_Copy, because some other compo-
nent port has modified var.Pre_State (the current variable value)
in between. This is a write-read race when a post-condition at-
tempts to use the value vari.Pre_State to establish the value of some
var j.Post_State and a write-write race when a post-condition at-
tempts to establish a new value for vari.Post_State itself. We check
for such conflicts separately, as architects may be interested in the
particular type of race-conditions in their system.

3.2 Translating Provided Ports
Figure 13 shows the translation to ProMeLa of provided ports.

Their methods are translated as a pair of mutually exclusive atomic
actions (lines 16–22 and 23-26). Both are guarded by the delay-
ing guards of the role port variables that have been assumed by
the port (roleAwaits in line 5, which is part of both compPos and
compNeg defined in lines 8-10). When both role and method proto-
col guards are satisfied, service requests are processed by the first
atomic block of actions (lines 16-22), which computes the next val-
ues of the component and role variables and sends back a response
to the caller. On line 18 we check the completeness of the required
conditions, when the interaction constraints (compPos) are satisfied.
If the role guards are satisfied and the negation of the method’s
accepts guard is also satisfied, then the service request is rejected
(lines 23-26) and the model fails explicitly, so as to indicate that
a service user has violated the protocol constraints of the provided
service. Both atomic blocks use the extended (non-)ProMeLa ex-
pression chanX ? msg : pred to receive msg from chanX only when msg

satisfies pred – we have implemented this ourselves.
As can be seen, the role constraints are injected in the corre-

sponding port (see usage of roleAwaits in lines 8-10 of Figure 13).
The same behaviour could have been achieved by using a wrapper
around provided ports, in which case ports would not need to know
about their role constraints. Wrappers however cannot constrain

1 Port2Promela_Required(SimpleCInstance comp , Port port)
2 FORALL method ∈ port.MethodSet
3 LET
4 roles = { method.roleMethod(r) | r ∈ port.RoleSet };
5 roleAwaits = { r.method.Awaits | r ∈ roles };
6 rolePostEnsures = { r.method.Ensures | r ∈ roles };
7

8 compPos = rAwaits
∧

method.Awaits;
9

10 compFCProm =
11 {method.FCPromisesRequiresEnsures.Promises} ;
12 compFCReq = method.FCPromisesRequiresEnsures.Requires;
13 compFCEns = {method.FCPromisesRequiresEnsures.Ensures}
14

⋃
rolePostEnsures;

15

16 RoleVarsRace = { v ∈ e.VarSet | e ∈ rolePostEnsures };
17 compVarsRace = { v ∈ method.Ensures.VarSet };
18 VarSetRace = RoleVarsRace

⋃
compVarsRace;

19 IN
20 :: atomic { // sending a request
21 selectParams(method.Args,
22 comPos

∧
!port.Lock ,compFCProm)→

23 port.Lock = method;
24 FORALL var ∈ VarSetRace
25 var.Pre_State_Copy = var.Pre_State;
26 port.Channel_req
27 ! method.Args;
28 }
29 :: atomic { // receiving a response
30 port.Channel_res ? method.Args
31 : port.Lock == method →
32 raceCheck(compVarsRace,compFCEns); // Check race-conditions
33 calcData(comp.SimpleCType.VarSet ,compFCReq ,
34 compFCEns);
35 port.Lock = 0;
36 }

Figure 14: Translating a required port to ProMeLa

required ports, as these can make requests whenever their proto-
col constraints allow them to do so. A wrapper of a required port
could only delay such a request but it could not undo it – the request
would still exist. For this reason we have opted for the injection of
the role constraints directly into the components. This is similar to
how human actors work – they are given the script of their roles to
read, as, unlike marionettes, they are active entities which need to
know when they should perform an action. Directors do not attempt
to delay actions initiated by actors during a play.

3.3 Translating Required Ports
Required ports are translated to ProMeLa as shown in Figure 14.

Now actions are translated into a pair of co-dependent atomic ac-
tions (lines 20-28 and 29-36). The first block initiates a service
request to a provided port; the second treats the response.

If each port was a separate process then they would be specified
as two sequential (non-atomic) steps – the port process would block
after sending a request, until it would receive the response. In our
translation however all ports are part of the same component pro-
cess, so as to decrease the overall number of active processes (Spin
has an upper limit). This is why we use a lock (port.Lock) per each
required port, to hold the currently active method. When none is ac-
tive, a request can be made, as long as we can also select appropri-
ate method parameter values that meet the promise of the method
and satisfy its protocol constraints (lines 21-22). In this case we
keep copies of the variables that might suffer a race-condition, so
as to identify these later, and emit the request message, updating
the lock to indicate which method made the request.

Once a response can be received (line 29-31), we check for race-
conditions among the variables (line 32), use the ensures clause of
the method contract to compute new values for the component data
(lines 33-34), and free the lock on this required port.

Table 1: Memory and time required for verifying architectural specifications

Case Study Issues ‡ State-vector States Memory Time
(Bytes) Stored Matched (MB) (sec)

[5] Centralized Nuclear Plant 424 168349 407776 186 1.21
Decentralized Nuclear Plant 1 240 137 73 130 0.00

[39, 7, 27] Lunar Lander v. 1 4 372 118 78 131 0.01
Lunar Lander v. 2 392 4223125 8072166 3793 15.50

[29] Gas Station (1 customer) 188 1003 1401 130 0.00
Gas Station (2 customers) 288 1136214 2793961 382 3.23
Gas Station (3 customers) 368 25056808 89254880 7024† 78.00

BITSTATE Gas Station (3 customers) 368 62792292 207452380 24 242.00
BITSTATE Gas Station (4 customers) 456 66989014 289982810 25 321.00
BITSTATE Gas Station (5 customers) 544 69607515 356984080 26 365.00

[3] Aegis v. 1 2 620 13834057 71301546 7024† 52.00
BITSTATE Aegis v. 1 2 620 64408848 266469200 37 330.00
BITSTATE Aegis v. 2 548 63568962 268078040 35 304.00

[15] English auction v. 1 (1 participant) 3, 4 140 296 295 130 0.00
English auction v. 2 (1 participant) 4 144 776 1642 130 0.00
English auction v. 2 (2 participants) 4 232 1293488 3732650 367 5.00
English auction v. 2 (3 participants) 4 312 27315867 96797687 7024† 134.00

BITSTATE English auction v. 2 (3 participants) 4 312 57105380 189090640 20 310.00
‡ Issues: The model fails to satisfy a property. 1: glue, 2: local deadlock, 3: global deadlock, 4: buffer overflow.
Column “States Stored” shows the number of unique global system states stored in the state-space, while column “States
Matched” the number of states that were revisited during the search – see: spinroot.com/spin/Man/Pan.html#L10
† Cases marked with † in the Memory column run out of memory.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux version 3.5.0-39-generic.
Spin (version 6.2.4) and gcc (version 4.7.2) used, with up to 7024MB of RAM and a search depth of 50,000:
spin -a configuration.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
./pan -m50000 -c1
For bit-state verification, the -DBITSTATE option needs to be passed to gcc. All case studies available at the XCD web site [40].

4. TOOL EVALUATION
We have evaluated our language and translation tool by consid-

ering a number of well-known case studies, apart from the nuclear
plant used so far. The Lunar Lander [39, 7, 27] has been consid-
ered extensively in the software architecture community. A num-
ber of sensors and actuators are controlled by a single controller
that attempts to safely land a spacecraft on the moon. The Gas
Station [29], another classic case study in software architectures,
consists of a number of gas pumps and customers that need to pay
a cashier before a pump is released for them. The Aegis Weapons
System [3] is a Command-and-Control system developed by the
US Navy using a client-server approach, containing a number of
sensors to establish the environment a ship is in and components
that analyze this context in order to react to potential threats. Fi-
nally, FIPA’s English Auction [15], describes a marketplace with
an auctioneer who uses the English auction variant to sell an item.

The XCD models of these systems (available at the XCD web
site [40]) were translated into ProMeLa so as to verify various
properties that are encoded in our translation. First, we verify that
users respect the protocol constraints of provided services, i.e., no
chaotic behaviours are possible. Second, we verify that provided
services functional pre-conditions are complete when their protocol
constraints are satisfied. Third, we verify against race-conditions,
write-read and write-write ones. Fourth, we verify that when us-
ing events, then the finite size of the asynchronous channel buffers
suffices. Finally, Spin itself verifies deadlock-freedom.

Currently our language and tool do not allow the specification in
XCD of other, more general properties, e.g., like the nuclear plant
glue property. For these one needs to edit the produced ProMeLa
model. We added an extra ProMeLa process (glueP), which receives
messages through an additional channel from the UR and NA pro-
cesses whenever they act on a request and checks if the glue prop-
erty sequence is respected. Most importantly, we had to modify the
produced ProMeLa models of UR and NA, so that they notify glueP.

These modifications added another message emission (to glueP) in
their code, right before they emit the inc/double method response in
the atomic block, i.e., between lines 20 and 21 of Figure 13. This
should be done carefully and only after having verified the general
properties, as these message emissions render provided methods
non-atomic – they terminate the atomic block in Spin (since emis-
sion is blocked by a full channel buffer). This is how we verified
that while the decentralized version of the plant does not satisfy the
property, the centralized version of it (in Figure 6-9) satisfies it.

Table 1 shows the obtained experimental results. These case
studies can be analyzed extremely quickly in most cases, with a rea-
sonable amount of memory. When memory is insufficient (marked
with a †), one can use Spin’s bit-state hashing mode, which reduces
memory drastically through Bloom filters [10].

We view these results as extremely promising – they indicate
that a formal architectural analysis of systems is far from unrealis-
tic, even when these are described with such detailed models (e.g.,
modelling method parameters). We believe that having widespread
support for this is something that can improve software systems
quality substantially, as architectural errors that are not identified
early are extremely costly to correct at later development stages
and can easily lead to project failure. At the same time, powerful
architectural analysis greatly facilitates architectural design explo-
ration, thus helping designers to consider many more alternatives
when designing their systems, without increasing their workload
or the overall cost unreasonably.

The downside of our approach is that components and connec-
tors cannot be analyzed in isolation, as Spin requires a closed sys-
tem. For each component one wishes to analyze, a corresponding
testing component is needed. Similarly, for each connector one
wishes to analyze, a testing component is needed for each role.

5. RELATED WORK
All the ADLs supporting connectors that we have studied permit

the specification of unrealizable connectors [33], since they all sup-

spinroot.com/spin/Man/Pan.html##L10

port an element like Wright’s glue. Of the ADLs we studied that do
not support connectors, all of them are realizable apart from Rapide
[24], which allows the specification of global constraints.

ArchJava [1, 2] supports connectors but targets code generation,
not formal analysis. It uses reflection to type-check that connector
roles are associated with appropriate component ports but this con-
siders just their interfaces. Connector roles function as wrappers
to component ports, thus we cannot see how required port methods
can be (temporarily or permanently) deactivated (not just delayed),
as XCD can do by strengthening their protocol constraints.

Trust-By-Contract [38] uses DbC to describe component port
protocols but does not support connectors. XCD also follows a
more programming-like approach in the description of interfaces
and contracts, like JML [11, 37], so that it looks more familiar to
practitioners than the usual formal notations used in ADLs. Un-
like JML that allows it but does not insist on it, XCD imposes the
separation of protocol and functional constraints – we believe that
this can make both easier to understand. XCD also extends DbC to
support required methods too, that JML does not consider (as they
are not part of a class’s interface – only provided methods are).

Archface [42] is geared more towards code generation and de-
sign/code bidirectional traceability. In Archface connector roles
are specified through interfaces (called component interfaces) that
also contain predicates on aspect-oriented “pointcuts”, such as “call
(method call), execution (method execution), and cflow (control
flow)”. These seem to be able to describe a local role behaviour
like in XCD, though the use of interfaces means that Archface can-
not have as fine control as XCD – one cannot declare role vari-
ables. The connector element itself specifies how some role in-
terface ports (i.e., methods) are connected to each other, adding
further interaction constraints. These constraints can only be ap-
plied at the provided method side “A connector interface repre-
sents connections among ports. The types of advice that can be
applied to [a provided port] are declared in an in statement.” [42,
p. 80]. We could not see any global constraints in the provided
examples, so it seems that Archface specifications are realizable.
The formal ProMeLa models produced are far simpler than those
for XCD, not modelling component data, method parameters, race-
conditions, etc. Indeed, constraints on these cannot be specified in
Archface. Its input language requires that users know AOP, while
XCD does not require so. We failed to understand how connec-
tor usage integrity is achieved – consider the following architecture
[42, List 3, lines 01-04, p. 79]:

1 architecture aObserverPattern {
2 class Subject implements cSubject;
3 class Observer implements cObserver ;}

Types cSubject and cObserver are role interfaces used by a connec-
tor called cObserverPattern. But the latter does not appear in the
architecture (nor did we find a rule that makes it impossible for
another connector to use the same role interfaces). We cannot see
what would happen if designers forgot to instantiate one of the roles
or added an Observer component instance without stating that it im-
plements cObserver. In XCD a connector is instantiated explicitly
and the components that use it are passed as parameters to the con-
nector constructor, so there is no doubt of which connector is being
used or which component has assumed which role.

6. DISCUSSION AND CONCLUSIONS
The XCD formal architectural description language (ADL) sup-

ports arbitrary, user-defined connectors/protocols that are guaran-
teed to be realizable. It does so without requiring underlying mech-
anisms that introduce extra, unspecified information flows, e.g.,
distributed consensus protocols, which break communication in-

tegrity. XCD guarantees connector realizability by not allowing the
expression of any global interaction constraints. All constraints in
XCD are expressed using local state and therefore each interacting
party in a protocol knows at any time what it needs to do. All other
ADLs we have studied [33] fail in this respect because they allow
architects to impose any kind of global constraint through what they
call connector glue – XCD has no connector glue.

We believe that support for user-defined connectors is crucial
if we are ever to achieve the goal of CBSE for modular, reusable
component specifications that we can easily adapt through our con-
nectors when exploring different architectural solutions. Without
support for connectors, one needs to restrict component specifica-
tions to specific protocol interactions, thus reducing their reusabil-
ity, while substantially increasing their complexity at the same time.

XCD also attempts to increase the uptake of formal ADLs by
practitioners, through a programming language-like syntax and use
of Design-by-Contract (DbC) concepts. As reported recently [26],
practitioners find that formal ADLs have a “steep-learning curve”,
as these require the use of process algebras. Compared to languages
like π-Calculus or CSP, we believe that XCD specifications are eas-
ier to understand. We have extended DbC to better support compo-
nents (and connectors), by splitting contracts into their protocol and
functional parts and by providing contractual support for required
services, along with that already existing for provided services.

Our experience so far with the tool [40] that translates XCD into
ProMeLa models is quite encouraging. We can verify that (i) users
of provided services respect their local protocol constraints, (ii)
functional pre-conditions of provided services are complete (mod-
ulo their protocol constraints), (iii) there are no race-conditions, (iv)
event buffer sizes suffice, and (v) there is no global deadlock.

We are working on improving the support for component/role ar-
rays and recursive definitions, as well as the efficiency of our mod-
els. A user-friendly (sub-)language for expressing general proper-
ties, e.g., a glue, is an open issue.

7. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:

Connecting software architecture to implementation. In
W. Tracz, M. Young, and J. Magee, editors, ICSE, pages
187–197. ACM, 2002.

[2] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin.
Language support for connector abstractions. In L. Cardelli,
editor, ECOOP, volume 2743 of LNCS, pages 74–102,
Darmstadt, Germany, July 2003. Springer-Verlag.

[3] R. Allen and D. Garlan. A case study in architectural
modelling: The Aegis system. In IWSSD-8, pages 6–15,
Paderborn, Germany, Mar. 1996.

[4] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM TOSEM, 6(3):213–249, July 1997.

[5] R. Alur, K. Etessami, and M. Yannakakis. Inference of
message sequence charts. IEEE TSE, 29(7):623–633, 2003.

[6] R. Alur, K. Etessami, and M. Yannakakis. Realizability and
verification of MSC graphs. Theor. Comput. Sci.,
331(1):97–114, 2005.

[7] H. Bagheri and K. J. Sullivan. Monarch: Model-based
development of software architectures. In D. C. Petriu,
N. Rouquette, and Ø. Haugen, editors, MoDELS (2), volume
6395 of LNCS, pages 376–390. Springer, 2010.

[8] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H.
Nguyen, and J. Sifakis. Rigorous component-based system
design using the BIP framework. IEEE Software,
28(3):41–48, 2011.

[9] S. Basu, T. Bultan, and M. Ouederni. Deciding choreography
realizability. In J. Field and M. Hicks, editors, POPL, pages
191–202. ACM, 2012.

[10] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[11] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. STTT, 7(3):212–232, 2005.

[12] T. Bures. Automated synthesis of connectors for
heterogeneous deployment. Tech. report no. 2005/4, Dep. of
SW Engineering, Charles University, Prague, Aug. 2005.

[13] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing
advanced features in a hierarchical component model. In
SERA, pages 40–48. IEEE Computer Society, 2006.

[14] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Commun. ACM,
18(8):453–457, 1975.

[15] FIPA TC C. FIPA English auction interaction protocol
specification. Technical Report XC00031F (Experimental),
FIPA, Aug. 2001. www.fipa.org/specs/fipa00031/.

[16] O. Galik and T. Bures. Generating connectors for
heterogeneous deployment. In E. D. Nitto and A. L. Murphy,
editors, SEM, pages 54–61. ACM, 2005.

[17] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch or why it’s hard to build systems out of existing
parts. In ICSE, pages 179–185, Apr. 1995.

[18] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch: Why reuse is still so hard. IEEE Software,
26(4):66–69, 2009.

[19] D. Garlan and M. Shaw. An introduction to software
architecture. In Adv. in SW Eng. and Knowledge Eng., pages
1–39, Singapore, 1993. World Scientific Publishing
Company.

[20] G. J. Holzmann. The Spin model checker. IEEE TSE,
23(5):279–295, May 1997.

[21] C. Kloukinas and M. Ozkaya. XCD - Modular, realizable
software architectures. In C. S. Pasareanu and G. Salaün,
editors, FACS, volume 7684 of LNCS, pages 152–169.
Springer, 2012.

[22] K.-K. Lau, P. V. Elizondo, and Z. Wang. Exogenous
connectors for software components. In G. T. Heineman,
I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski,
and K. C. Wallnau, editors, CBSE, volume 3489 of LNCS,
pages 90–106. Springer, 2005.

[23] G. Lekeas, C. Kloukinas, and K. Stathis. Producing enactable
protocols in artificial agent societies. In D. Kinny, J. Y. jen
Hsu, G. Governatori, and A. K. Ghose, editors, PRIMA,
volume 7047 of LNCS, pages 311–322. Springer, 2011.

[24] D. C. Luckham, J. Kenney, L. Augustin, J. Verra, D. Bryan,
and W. Mann. Specification and Analysis of System
Architecture Using Rapide. IEEE TSE, 21(4):336–355, Apr.
1995.

[25] J. Magee and J. Kramer. Concurrency – state models and
Java programs. Wiley, 2 edition, 2006.

[26] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang. What industry needs from architectural languages:
A survey. IEEE TSE, 39(6):869–891, 2013.

[27] S. Maoz, J. O. Ringert, and B. Rumpe. Synthesis of
component and connector models from crosscutting
structural views. In B. Meyer, L. Baresi, and M. Mezini,
editors, ESEC/SIGSOFT FSE, pages 444–454. ACM, 2013.

[28] B. Meyer. Applying “Design by Contract”. IEEE Computer,
25(10):40–51, 1992.

[29] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Applying static analysis to software architectures.
In M. Jazayeri and H. Schauer, editors, ESEC / SIGSOFT
FSE, volume 1301 of LNCS, pages 77–93. Springer, 1997.

[30] OMG. Common object request broker architecture (CORBA)
specification, version 3.3 – Part 3: CORBA component
model. Specification formal/2012-11-16, OMG, Nov. 2012.
omg.org/spec/CORBA/3.3/.

[31] OSGi Alliance. OSGi core release 5. Specification, Mar.
2012. osgi.org.

[32] M. Ozkaya and C. Kloukinas. Highly analysable, reusable,
and realisable architectural designs with XCD. In T.-h. Kim,
C. Ramos, H.-k. Kim, A. Kiumi, S. Mohammed, and
D. Slezak, editors, Computer Applications for Software
Engineering, Disaster Recovery, and Business Continuity,
volume 340 of CCIS, pages 72–79. Springer Berlin
Heidelberg, 2012.

[33] M. Ozkaya and C. Kloukinas. Are we there yet? Analyzing
architecture description languages for formal analysis,
usability, and realizability. In O. Demirors and O. Turetken,
editors, SEAA, pages 177–184, Santander, Spain, Sept. 2013.
IEEE.

[34] M. Ozkaya and C. Kloukinas. Towards a design-by-contract
based approach for realizable connector-centric software
architectures. In J. Cordeiro, D. A. Marca, and M. van
Sinderen, editors, ICSOFT, pages 555–562. SciTePress,
2013.

[35] M. Ozkaya and C. Kloukinas. Towards design-by-contract
based software architecture design. In SoMeT, pages
157–164. IEEE, 2013.

[36] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, Oct. 1992.

[37] E. Rodríguez, M. B. Dwyer, C. Flanagan, J. Hatcliff, G. T.
Leavens, and Robby. Extending JML for modular
specification and verification of multi-threaded programs. In
A. P. Black, editor, ECOOP, volume 3586 of LNCS, pages
551–576. Springer, 2005.

[38] H. W. Schmidt, I. Poernomo, and R. H. Reussner.
Trust-by-contract: Modelling, analysing and predicting
behaviour in software architectures. Journal of Integrated
Design and Process Science, 5(3):25–51, September 2001.

[39] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley,
2010.

[40] XCD. Website, 2013. Maintained by Mert Ozkaya. URL:
www.staff.city.ac.uk/c.kloukinas/Xcd/.

[41] S. Tripakis. Undecidable problems of decentralized
observation and control on regular languages. Inf. Process.
Lett., 90(1):21–28, 2004.

[42] N. Ubayashi, J. Nomura, and T. Tamai. Archface: A contract
place where architectural design and code meet together. In
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors,
ICSE, pages 75–84. ACM, 2010.

[43] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios. ACM TOSEM, 13(1):37–85, 2004.

www.fipa.org/specs/fipa00031/
omg.org/spec/CORBA/3.3/
osgi.org
http://www.staff.city.ac.uk/c.kloukinas/Xcd

	Introduction
	Connector Realizability
	Paper Contribution and Structure

	Contracts for Architectures
	Structure of Simple Components
	Functional and Interaction Contracts

	Connector/Protocol Structure
	A Centralized Nuclear Plant Xcd Connector

	Structure of Composite Xcd Components

	Translating Xcd into ProMeLa
	Translating Simple Component Instances
	Translating Provided Ports
	Translating Required Ports

	Tool Evaluation
	Related Work
	Discussion and Conclusions
	References

