Better Abstractions for Reusable Components & Architectures

Christos Kloukinas
Department of Computing, City University London, Northampton Square, EC1V OHB, U.K.

Abstract

Software architecture (SA) is a crucial component of
Model Driven Engineering (MDE), since it eases the com-
munication and reuse of designs and components. However,
existing languages (e.g., UML, AADL, SysML) are lacking
many needed features. In particular, they provide rudimen-
tary support for connectors, a first-class element in the com-
ponents and connectors (C&C) architectural view and one
of the most reusable architectural elements. This is unfortu-
nate, since the difficult properties that need to be guaranteed
for complex systems are mainly the non-functional proper-
ties, like throughput, security and dependability, which are
greatly influenced by the employed connectors.

This work reviews the basic abstractions of the C&C view
of SA and examines extra architectural elements which can
support the detailed, explicit and separate description of be-
haviour, interaction and control logic.

1. Introduction

Current standards for system architectures provide only
rudimentary support for architectural connectors [1], thus
impeding the description of the very basic C&C view [18, 8].
Since a UML 2.0 connector is just a UML association, ar-
chitects must use modelling elements other than UML con-
nectors to describe C&C connectors [11]. AADL [6] only
supports certain specific, basic connector types and does not
offer the possibility to define more complex connector types,
while SysML [2] does not support connectors at all.

As such, designers either forgo describing connectors al-
together or combine their description with the behavioural
description of the components, thus producing unnecessarily
complex models. Both these approaches obstruct architec-
tural analysis and the early estimation of the non-functional
properties of a system, such as throughput, security and
dependability. Such properties are, however, crucial for a
proper MDE-based architectural exploration and system de-
velopment or for correctly supporting Service Level Agree-
ments in the Service Oriented paradigm. One of the rea-
sons for this situation is that CBSE has been advocated and
used longer than SA and has a much better mapping to the
constructs designers use routinely, e.g., modules, classes.

Indeed, connectors are always implemented through code
which is either part of or a single component, e.g., pipes.
For the formal analysis of SAs, connectors are also mapped
to the same structures as components, €.g., automata, which
doesn’t help distinguish them. Another possible reason
could be the term connector itself; this aspect of SA might
have been ignored less if the term used was interaction pro-
tocol. Finally, in certain cases we tend to use simple con-
nectors [17, 10], e.g., procedure calls, to break down a more
complex one. This hides the forest for its trees, making it dif-
ficult to see the usefulness of complex connectors and lead-
ing to system specifications which are at a very low level of
abstraction, as is the case with AADL [4].

For these reasons we believe it is time to revisit the C&C
view of SA and the support needed from modelling lan-
guages. Thus, we reexamine the basic elements of the C&C
view and suggest ways to improve them, along with new ar-
chitectural elements for easing high-level system specifica-
tion. After a more or less standard treatise of components,
we revisit connectors and some issues which are still prob-
lematic in them. Then, before concluding, we examine con-
figurations and the new element of control strategies.

2. Specifying Components

Components are the best supported abstraction of the
C&C view. As such, the definition provided herein is largely
similar to what one would expect to see in other formalisms.
They contain a set of ports, P, through which they are used,
divided into sockets, P*®, and plugs, PP. Plugs are the ports
through which a component uses other components, while
sockets are the ports through which it is used. Each port
supports a specific interface of the computation/data related
actions it can perform. Interfaces supported by plugs are the
required interfaces, while those supported by sockets are the
provided interfaces. Unlike UML, ports cannot both pro-
vide and require interfaces, since this complicates architec-
tural descriptions unnecessarily. Note that the same inter-
face may be both provided and required by a component,
as for example is often the case with filters. Components
also define cardinality constraints (Ca) on the number of
ports which will be supporting each interface, Ca = I —
(NU{0}) x (NU {oo}). For example, a monitor has an
explicit requirement to restrict the ports of the component to

< I ={i1 ={long read(),void write (long) }},
P = (a1 P =0,
D ={long D}, B,
Pre ={(D= 1)U write (X) },
Inv =0,
Post = {read () =D,write(X) = (D=XU write (X'))},
Ca ={(41,1,1)}, F = {implemented.as = software} >
where B is the following:
long read(void) = { return D; },
void write(long d) = { D = d; }

Figure 1: A component for a simple monitor

exactly one, so as to enforce serial, mutual-exclusive access.
The lower bound can be zero to disallow certain actions, e.g.,
in an element of a product family. Along with the compo-
nent’s behaviour, B and a set of private data variables, D,
for specifying the preconditions (Pre), invariants (/nv) and
postconditions (Post), a minimal description of a component
type is < I, PP, P* D, B, Pre, Inv, Post, Ca, F' >, where
F is a list of additional features (e.g., whether it should be a
hardware or software component). Figure 1 shows a simple
monitor component. This example shows a basic problem
with components - they almost always assume a particular
interaction protocol with their environment [7]. Indeed, the
interface of this component declares two procedures, which
assume a request-response interaction protocol. As a con-
sequence of this, each interface must offer actions of only a
single type, i.e., either procedures or notifications, and each
port must support interfaces of a similar type only.

Apart from the cardinality constraints and the requirement
that all procedures of an interface should be of the same type,
the definition of components herein is more or less standard
and well supported by the various specification languages
and tools. Indeed, it is the connector element which is not
supported so well.

3. Connectors - Interaction Protocols

As aforementioned, a connector represents an interac-
tion protocol. As such, its foremost characteristic is a
description of the different roles participating in the in-
teraction. Roles are finite - in a protocol instantiation
however there can be many, even infinite, instances of
them. Each role defines the interaction primitives that
components assuming that role are allowed to perform and
their acceptable sequences. Roles, just like the behaviour
of the components, can be modelled using different for-
malisms, depending on the particular interaction seman-
tics one wishes to enforce and the analyses that need to
be performed, e.g., CSP as in [1] or BIP [3]. In any
case, structurally the (inter-)actions used in the definition of
a role are parametric ones, e.g., send#asynch (server,
id, f(arguments)), whose parameters are given spe-
cific values by the components that use them, e.g.,
send#asynch (server, ID1, add(l, 2, 3)). Role
behavioural descriptions may also comprise private data,
which effectively model the local knowledge of the roles

concerning the global state of the protocol.

Another very important (and ignored) defining character-
istic of a protocol is its goal, G, that it tries to achieve, which
usually can be expressed in temporal logic. This goal, de-
fines what should be achieved at the end of the protocol or
the invariant of the protocol, if it is not to ever terminate. In
complex protocols one may wish to describe a separate goal
for each of the participating roles, G'*. For example, in a bus
communication protocol, each sender role may have a goal
to eventually transmit a message, which is different to saying
that eventually a message will be transmitted, since the latter
is not necessarily fair to all senders. In the request-response
protocol, the goal is the reception of the response by the
client, i.e., 0 client:receive (response (id, r)),
while the roles do not need to specify their own goals. Again,
the choice of logic for describing the protocol and roles goals
depends on the specific protocol; some may require support
for metric time or probabilities in order to express their goal,
such as “the message will be transmitted within x time units,
with a probability higher than p.” Others may need epis-
temic operators to specify security properties as well. Ex-
plicit, formal goals can substantially help in the documenta-
tion, design and testing of roles, in the synthesis of control
strategies or in run-time monitoring [16, 15, 19, 5].

Along with these two main characteristics of a protocol,
i.e., its roles and goals, other useful structural characteris-
tics can be defined as well. These have to do with extra
constraints one may wish to impose upon the instances of
the roles. So one can define compatibility constraints (Co)
concerning which roles can be assumed by the same com-
ponent, Co = R x R. For example, in order to disallow
recursion, role client can be rendered incompatible with
server. Or one can define cardinality constraints (Ca)
on the number of role instances that can participate in the
same instantiation of a protocol, e.g., #client = #server
=1, Ca = R — (NU{0}) x (NU {oo}). Finally,
one can define constraints on the min/max number of in-
stances of a role (IC) that a single component can assume,
IC = R — (NU{0}) x (NU {o0}), e.g., to state that
a replica must have a single vote. In other protocols, how-
ever, a single entity can assume many instances of the same
role, e.g., in Blackjack, where players can split their hand
and start playing as two players. It should be noted here that
the aforementioned constraints are orthogonal to architec-
tural style constraints, such as these of ACME [12]. The lat-
ter are global constraints enforcing a particular style, while
the ones presented herein are local, part of the definition of
a connector, required to define when a protocol is adhered to
or not. So there can be cases where the connector constraints
are respected but the style ones are not. An example of this
is a pipe-and-filter style which requires linear sequences of
pipes and filters - this cannot be described by the local con-
nector constraints proposed herein, which can only constrain

< R ={client,server},
G =0Cclient:receive (response (id, r)),
GE=10,D,
Ca = {(client,1,1),(server,1,1)}
Co = {(client,client), (server,server)}
IC = {(client,1,1),(server,1,1)}

>
Where D is the following:

client = { id = new nonce

; send#asynch (server, id, f (args))

; receive(server,id,RESULT) ; client },
server = { receive (client, ID,F (ARGS))

; r = F(ARGS)

; send#asynch(client,ID,r) ; server }

Figure 2: A simple request-response protocol

the system so that no local feedback loops exist (from a filter
back to itself).

More formally, < R, G, G® D, Ca, Co,IC > is the
septuple defining a protocol, where G is the goal of the pro-
tocol, R the set of role names, G¥ are the different role
goals, D the set of role descriptions and Ca, Co, IC the
sets of the cardinality, compatibility and instance constraints
respectively. Figure 2 shows a simple request-response con-
nector, where messages cannot be lost and therefore ac-
knowledgements or replays of messages are not required.

Connector Glue is Dangerous. Unlike [1], here a “glue”
does not link actions of different roles. This can be achieved
with other, simpler means, such as action renaming or the
use of send/receive primitives on channels, etc. In fact, glues
are dangerous, since they can introduce errors in the protocol
description by ignoring the distributed nature of the protocol
and requiring unimplementable behaviours [14]. This occurs
when the glue requires roles to perform an action when the
roles are unsure about the real global protocol state, i.e., the
glue’s state, due to their partial knowledge of its global state.
However, unimplementable protocols are impossible to spec-
ify when composing role descriptions directly without using
a glue, since the role actions in this case will depend neces-
sarily only upon their local knowledge.

4. Architectural Configuration

In most approaches on software architectures, the config-
uration is more or less an assignment of component ports
to protocol roles. However, we believe that the architec-
tural configuration needs to specify a lot more than sim-
ple port-role mappings. Indeed, for each port-role mapping
there needs to be defined a control strategy for it. This is
the strategy that a component will follow when participat-
ing in the particular protocol, to achieve the role/protocol
goals. These strategies are associated with the port-role map-
pings since they must be local (to be implementable) and
they may need information from the specific mapping, e.g.,
the ID of the current port/component instance. Some of the
protocol strategies employed by components will be trivial
ones, when a protocol has no choices, like the server of the
request-response connector of Figure 2. In other cases these

Phil (N) = sit Phil (N) = sit
; £[N].take ; (£[N].take)
; £[N+1] .take || £[N+1].take)
; eat ; eat
; f£[N+1l].release ; (£[N+1l] .release)

; f[N].release || £[N].release)
; think ; Phil ; think ; Phil
(a) Dining Philosopher (b) Reusable Dining Philosopher

CS(N) = (when (N%2=0) f[N+1].take ; f[N].take
| when (N%$2=1) f[N].take ; f[N+1].take)

(c) A control strategy for (b)
Figure 3: Two versions of the Dining Philosopher

strategies can be quite complicated, e.g., in real-time sys-
tems [16, 13]. There a connector describes the protocol used
by components to request resources with specific deadlines
from the platform and synchronise with each other. There-
fore, the employed strategy will be crucial in achieving the
system goals - meeting deadlines, minimising jitter, etc. In
cases where it is difficult to express the component strate-
gies in this distributed fashion, it may well be necessary to
redesign the connector in question with an explicit role of a
centralised controller. Then, an extra component needs to be
used which will assume the role of the controller and imple-
ment a centralised strategy for all the protocol participants.
However, it should be noted that this is not always possible
- if the components are distributed then the control aspect
itself may need to be distributed. In certain cases, both dis-
tributed and centralised control will be needed, sometimes
for better structuring the system design. For example, the
distributed strategies may define local goals of the particular
components, while the central one defines the overall, sys-
tem goals. In either case, we consider the explicit descrip-
tion of component strategies to be crucial in order to accu-
rately specify highly complex systems in a well structured
manner and be able to evaluate their correctness. Indeed,
through their use we may hope to disentangle the current
spaghetti-like combination of function, interaction and con-
trol behaviour within components, leading to a more struc-
tured approach, where the functional component behaviour
is separated from the behaviour describing their interaction
with and control of their environment.

Component strategies themselves may be structured [9],
e.g., as a stack, in order to specify generic strategies first and
then specialised ones. Thus, a designer can define a strategy
to guard against deadlocks, another one for deadlines and so
on, as in [16, 13]. This will make the strategies easier to un-
derstand/optimise/validate and also make the system easier
to analyse and more robust. For example it will remove ob-
scure dependencies of different system properties with each
other, such as deadlocks being hidden by temporal relations
which can easily change during implementation.

Control Strategies Increase Reuse. Figure 3a shows a
typical model for the philosopher component of the classic
dining philosophers problem. A problem with this model

is that the component has considered a specific interaction
strategy with its environment, specifying the order in which
it obtains and releases fork resources. By using control
strategies this can be delayed, as in Figure 3b, where the
specific order is to be specified by the port-role strategies.
This is what will allow to model a deadlock-free system by
setting the strategy of even philosophers to obtain the right
fork first while odd philosophers obtain the left fork first,
as in Figure 3c. This solution is not applicable on the first
model, which combines its behaviour with the control strat-
egy for its communication. It should be noted that this way of
specifying the components does not change their functional
behaviour. It simply identifies their interaction needs and
specifies them in a general manner, without superfluous con-
straints. This increases the re-usability of the component and
decreases the adaptation cost of the component in a new en-
vironment. More general strategies, applied at the role level,
would usually need to work at a grosser grain than the ones
applied at the configuration level chosen here. Thus they
would unnecessarily over-constrain the system, with nega-
tive effects on other non-functional properties. However,
when applying control strategies at the configuration level
one can take advantage of the extra knowledge. For exam-
ple, if there were fewer instances of philosophers than forks
then a safe control strategy against deadlocks could very well
be the empty, i.e., non-deterministic, one.

5. Conclusions

While Software Architecture is crucial for an MDE ap-
proach to the development of high quality complex systems,
current modelling languages do not provide adequate sup-
port for it. The situation is particularly bad for connec-
tors, thus one cannot easily describe and reason about in-
teraction protocols. Yet these are crucial for analysing and
meeting system-wide, non-functional properties and for dis-
entangling the spaghetti-like component descriptions of to-
day. This luck of support makes it even more difficult to
develop secure and dependable systems. It also hinders the
analysis of these systems, which is needed to support Service
Level Agreements in the Service Oriented paradigm.

This work revisits the basic notions of Software Architec-
tures (components, connectors and configuration) and dis-
cusses how these can be better supported. It introduces con-
straint relations upon both the component ports and the con-
nector roles, assigns goals to roles and requires that port-
role configuration bindings have associated control strate-
gies, which describe how the port will behave when assum-
ing that role. The constraints help with better describing the
structural properties of an element, while the strategies help
in separating the interaction and control logic from the com-
putation one, thus leading to designs which are easier to un-
derstand and analyse. Future work includes the provision of
tool support and the consideration of dynamic architectures.

Acknowledgements. This work has been funded by the
European Commission Information Society Technologies
Programme, as part of the projects SERENITY (contract
FP6-27587) and SLA@SOI (contract FP7-216556).

References

[1] R. Allen and D. Garlan. A formal basis for architectural con-
nection. ACM TOSEM, 6(3):213-249, July 1997.

[2] L. Balmelli. An overview of the systems modeling language
for products and systems development. J. of Obj. Tech.,
6(6):149-177, July—Aug. 2007 //sysml.org.

[3] S. Bliudze and J. Sifakis. The algebra of connectors - struc-
turing interaction in BIP. In EmSoft, pages 11-20, Oct. 2007.

[4] D.Delanote, S. Van Baelen, W. Joosen, and Y. Berbers. Using
AADL to model a protocol stack. In ICECCS, pages 277—
281, Apr. 2008.

[5] A.Dingwall-Smith and A. Finkelstein. Monitoring goals with
aspects. UCL //eprints.ucl.ac.uk/837,2003.

[6] P.H.Feiler, B. A. Lewis, and S. Vestal. The SAE architecture
analysis & design language. In IEEE Intl Symp. on Intell.
Control, pages 1206-1211, Oct. 2006 //aadl.info.

[7] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In ICSE, pages 179-185, Apr. 1995.

[8] D. Garlan and M. Shaw. An introduction to software archi-
tecture. In Adv. in SW Eng. and Knowledge Eng., pages 1-39,

Singapore, 1993. World Scientific Publishing Company.
[9] I.J. Hayes, M. A. Jackson, and C. B. Jones. Determining the
specification of a control system from that of its environment.
In FME, volume 2805 of LNCS, pages 154169, 2003.
[10] D.Hirsch, S. Uchitel, and D. Yankelevich. Towards a periodic
table of connectors. In COORDINATION, volume 1594 of

LNCS, page 418, 1999.

[11] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and
J.R. O. Silva. Documenting component and connector views
with UML 2.0. TR CMU/SEI-2004-TR-008, 2004.

[12] J. S. Kim and D. Garlan. Analyzing architectural styles with

alloy. In ROSATEA, July 2006.

[13] C. Kloukinas. Thunderstriking constraints with Jupiter. In
MEMOCODE, pages 211-220. IEEE Press, July 2005.

[14] C. Kloukinas, G. Lekeas, and K. Stathis. From agent game
protocols to implementable roles. In EUMAS, pages 2741,
Dec. 2008.

[15] C. Kloukinas and G. Spanoudakis. A pattern-driven frame-
work for monitoring security and dependability. In TrustBus,
volume 4657 of LNCS, pages 210-218, Sept. 2007.

[16] C. Kloukinas and S. Yovine. Synthesis of safe, QoS ex-
tendible, application specific schedulers for heterogeneous
real-time systems. In ECRTS, pages 287-294, July 2003.

[17] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a tax-
onomy of SW connectors. In ICSE, pages 178—187, 2000.

[18] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17(4):40—
52, Oct. 1992.

[19] G. Spanoudakis, C. Kloukinas, and K. Mahbub. The runtime
monitoring framework of SERENITY. In G. Spanoudakis,
A. Maiia, and S. Kokolakis, editors, Security and Depend-
ability for Ambient Intelligence, number 13 in Information
Security Series, pages 190-214. Springer-Verlag, 2009.

